A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups

Pavel Etingof

1 Introduction

In this note we give a new proof of the Macdonald-Mehta-Opdam integral identity for finite Coxeter groups. This identity was conjectured by Macdonald and proved by Opdam in [O1, O2] using the theory of multivariable Bessel functions, but in non-crystallographic cases the proof relied on a computer calculation by F. Garvan. Our proof is somewhat more elementary (in particular, it does not use multivariable Bessel functions), and uniform (does not refer to the classification of finite Coxeter groups).

Acknowledgements. I am very grateful to Ivan Cherednik, whose explanations regarding shifting the contour of integration led me to the main idea of this proof. I would also like to thank Misha Feigin and Charles Dunkl for reading the preliminary version of this note and making useful comments. The work of the author was partially supported by the NSF grant DMS-0504847.

2 Preliminaries

2.1 Coxeter groups

Let W be a finite Coxeter group of rank r with reflection representation \mathfrak{h}_R equipped with a Euclidean W-invariant inner product $(,)$.

Denote by \mathfrak{h} the complexification of \mathfrak{h}_R. The reflection hyperplanes subdivide \mathfrak{h}_R into $|W|$
chambers; let us pick one of them to be the dominant chamber and call its interior D. For each reflection hyperplane, pick the perpendicular vector $\alpha \in \mathfrak{h}_\mathbb{R}$ with $(\alpha, \alpha) = 2$ which has positive inner products with elements of D, and call it the positive root corresponding to this hyperplane. The walls of D are then defined by the equations $(\alpha_i, v) = 0$, where α_i are simple roots. Denote by S the set of positive roots, and for $\alpha \in S$ denote by s_α the corresponding reflection. We will denote the set of reflections also by S. Let

$$\Delta(x) = \prod_{\alpha \in S} (\alpha, x)$$

be the corresponding discriminant polynomial. Let $d_i, i = 1, \ldots, r,$ be the degrees of the generators of the algebra $\mathbb{C}[\mathfrak{h}]^W$. Note that $|W| = \prod_i d_i$.

2.2 Cherednik algebras

For $k \in \mathbb{C}$, let $H_k = H_k(W)$ be the corresponding rational Cherednik algebra (see e.g. [E]). Namely, H_k is the quotient of $\mathbb{C}[W] \ltimes T(\mathfrak{h} \oplus \mathfrak{h})$ (with the two generating copies of \mathfrak{h} spanned by $x_a, y_a, a \in \mathfrak{h}$), by the defining relations

$$[x_a, x_b] = [y_a, y_b] = 0, [y_a, x_b] = (a, b) + k \sum_{\alpha \in S} (\alpha, a)(\alpha, b)s_\alpha.$$

Let a_i be an orthonormal basis of \mathfrak{h}. Consider the element

$$\mathfrak{h} = \sum_i x_{a_i}y_{a_i} + \frac{r}{2} + k \sum_{\alpha \in S} s_\alpha.$$

It satisfies $[\mathfrak{h}, x_a] = x_a, [\mathfrak{h}, y_a] = -y_a$.

Let $M_k = H_k \otimes_{T(\mathfrak{h} \oplus \mathfrak{h})} \mathbb{C}$, where y_{a_i} act in \mathbb{C} by 0 and $w \in W$ by 1. Then we have a natural vector space isomorphism $M_k \cong \mathbb{C}[\mathfrak{h}]$. For this reason M_k is called the polynomial representation of H_k. The elements y_{a_i} act in this representation by Dunkl operators (see [E]).

Proposition 2.1. There exists a unique W-invariant symmetric bilinear form β_k on M_k such that $\beta_k(1,1) = 1$, which satisfies the contravariance condition

$$\beta_k(y_a v, v') = \beta_k(v, x_a v'), \ v, v' \in M_k, a \in \mathfrak{h}.$$

Polynomials of different degree are orthogonal under β_k. Moreover, the kernel of β_k is the maximal proper submodule of M_k, so M_k is reducible iff β_k is degenerate.
Proof. The proof is standard, see e.g. [E]. Namely, let M_k^* be the dual space of M_k with the dual action of H_k twisted by the antiautomorphism of H_k given by $x_a \to y_a$, $y_a \to x_a$, and $w \to w^{-1}$, $w \in W$. Then a symmetric W-invariant bilinear form $\beta : M_k \times M_k \to \mathbb{C}$ is the same thing as an H_k-homomorphism $\hat{\beta} : M_k \to M_k^*$. Since this homomorphism commutes with h, it must land in the graded dual space $M_k^1 \subset M_k^*$ and preserve the grading. But such a homomorphism clearly exists and is unique up to scaling, as it is determined by $\hat{\beta}(1)$. This implies the existence and uniqueness of β_k, and the fact that polynomials of different degrees are orthogonal under β_k.

Now, it is clear from the definition that the kernel of β_k is a submodule in M_k, so it remains to show that the module $M_k/Ker\beta_k$ is irreducible. For this, let L_k be the irreducible quotient of M_k; then we have a natural surjective homomorphism $M_k \to L_k^\dagger$ (defined up to scaling), which must factor through L_k. Thus we have a diagram

$$M_k \to L_k \cong L_k^\dagger \to M_k^\dagger,$$

which implies that $\hat{\beta}_k$ factors through L_k, i.e. $M_k/Ker\beta_k = L_k$, as desired. \qed

3 The main theorem

The goal of this note is to give a uniform and self-contained proof of the following theorem.

Theorem 3.1. (i) (The Macdonald-Mehta integral) For $\text{Re}(k) \geq 0$, one has

$$(2\pi)^{-r/2} \int_{\mathbb{R}^r} e^{-\langle x, x \rangle/2} |\Delta(x)|^{2k} dx = \prod_{i=1}^r \frac{\Gamma(1 + kd_i)}{\Gamma(1 + k)}.$$

(ii) Let $b(k) := \beta_k(\Delta, \Delta)$. Then

$$b(k) = |W| \prod_{i=1}^r \prod_{m=1}^{d_i-1} (kd_i + m).$$

For Weyl groups, this theorem was proved by E. Opdam [O1]. The non-crystallographic cases were done by Opdam in [O2] using a direct computation in the rank 2 case (reducing (i) to the beta integral), and a computer calculation by F. Garvan for H_3 and H_4.

In the next subsection, we give a uniform proof of Theorem 3.1. We emphasize that many parts of this proof are borrowed from Opdam’s previous proof of this theorem.
4 Proof of the main theorem

Proposition 4.1. The function b is a polynomial of degree at most $|S|$, and the roots of b are negative rational numbers.

Proof. Since Δ has degree $|S|$, it follows from the definition of b that it is a polynomial of degree $\leq |S|$.

Suppose that $b(k) = 0$ for some $k \in \mathbb{C}$. Then $\beta_k(\Delta, P) = 0$ for any polynomial P. Indeed, if $\deg(P) \neq |S|$, this follows from Proposition 2.1 while if P has degree $|S|$, this follows from the fact that Δ is the unique (up to scaling) polynomial of degree $|S|$ that is antisymmetric under W.

Thus, M_k is reducible and hence has a singular vector, i.e. a nonzero homogeneous polynomial f of positive degree d living in an irreducible representation τ of W killed by y_α. Applying the element h to f, we get

$$k = -\frac{d}{m_\tau},$$

where m_τ is the eigenvalue of the operator $T := \sum_{\alpha \in S}(1 - s_\alpha)$ on τ. But it is clear (by computing the trace of T) that $m_\tau \geq 0$. This implies that any root of b is negative rational. \qed

Denote the Macdonald-Mehta integral by $F(k)$.

Proposition 4.2. One has

$$F(k+1) = b(k)F(k).$$

Proof. Let $f = \frac{1}{2} \sum y_{\alpha}^2$. Introduce the Gaussian inner product on M_k as follows:

Definition 4.3. The Gaussian inner product γ_k on M_k is given by the formula

$$\gamma_k(v, v') = \beta_k(\exp(f)v, \exp(f)v').$$

This makes sense because the operator f is locally nilpotent on M_k.

Note that Δ is a nonzero W-antisymmetric polynomial of the smallest possible degree, so $(\sum y_{\alpha}^2)\Delta = 0$ and hence

$$\gamma_k(\Delta, \Delta) = \beta_k(\Delta, \Delta) = b(k).$$

(1)
Proposition 4.4. Up to scaling, γ_k is the unique W-invariant symmetric bilinear form on M_k satisfying the condition

$$\gamma_k((x_a - y_a)v, v') = \gamma_k(v, y_a v'), \ a \in \mathfrak{h}.$$

Proof. We have

$$\gamma_k((x_a - y_a)v, v') = \beta_k(\exp(f)(x_a - y_a)v, \exp(f)v') =$$

$$\beta_k(x_a \exp(f)v, \exp(f)v') = \beta_k(x_a \exp(f)v, y_a \exp(f)v') =$$

$$\beta_k(\exp(f)v, \exp(f)y_a v') = \gamma_k(v, y_a v').$$

Let us now show uniqueness. If γ is any W-invariant symmetric bilinear form satisfying the condition of the Proposition, then let $\beta(v, v') = \gamma(\exp(-f)v, \exp(-f)v')$. Then β is contravariant, so by Proposition 2.1 it’s a multiple of β_k, hence γ is a multiple of γ_k. \qed

Now we will need the following known result (see [Du2], Theorem 3.10).

Proposition 4.5. For $\Re(k) \geq 0$ we have

$$\gamma_k(f, g) = F(k)^{-1} \int_{\mathfrak{h}_k} f(x)g(x) d\mu_c(x)$$ \hspace{1cm} (2)

where

$$d\mu_c(x) := e^{-(x,x)/2}|\Delta(x)|^{2k} dx.$$

Proof. It follows from Proposition 4.4 that γ_k is uniquely, up to scaling, determined by the condition that it is W-invariant, and $y_a^\dagger = x_a - y_a$. These properties are easy to check for the right hand side of (2), using the fact that the action of y_a is given by Dunkl operators. \qed

Now we can complete the proof of Proposition 4.2. By Proposition 4.5 we have

$$F(k + 1) = F(k)\gamma_k(\Delta, \Delta),$$

so by (1) we have

$$F(k + 1) = F(k)b(k).$$
Let
\[b(k) = b_0 \prod_i (k + k_i)^{n_i}. \]

We know that \(k_i > 0 \), and also \(b_0 > 0 \) (because the inner product \(\beta_0 \) on real polynomials is positive definite).

Corollary 4.6. We have

\[F(k) = b_0^k \prod_i \left(\frac{\Gamma(k + k_i)}{\Gamma(k_i)} \right)^{n_i}. \]

Proof. Denote the right hand side by \(F_*(k) \) and let \(\phi(k) = F(k)/F_*(k) \).
Clearly, \(\phi(1) = 1 \). Proposition 4.2 implies that \(\phi(k) \) is a 1-periodic positive function on \([0, \infty)\). Also by the Cauchy-Schwarz inequality,

\[F(k)F(k') \geq F((k + k')/2)^2, \]

so \(\log F(k) \) is convex for \(k \geq 0 \). This implies that \(\phi = 1 \), since \((\log F_*(k))^\prime \to 0 \) as \(k \to +\infty \).

In particular, we see from Corollary 4.6 and the multiplication formulas for the \(\Gamma \) function that part (ii) of the main theorem implies part (i).

It remains to establish (ii).

Proposition 4.7. The polynomial \(b \) has degree exactly \(|S| \).

Proof. By Proposition 4.1, \(b \) is a polynomial of degree at most \(|S| \). To see that the degree is precisely \(|S| \), let us make the change of variable \(y = k^{1/2}x \) in the Macdonald-Mehta integral and use the steepest descent method. We find that the leading term of the asymptotics of \(\log F(k) \) as \(k \to +\infty \) is \(|S|k \log k \). This together with the Stirling formula and Corollary 4.6 implies the statement.

Proposition 4.8. The function

\[G(k) := F(k) \prod_{j=1}^r \frac{1 - e^{2\pi i k d_j}}{1 - e^{2\pi i k}} \]

analytically continues to an entire function of \(k \).
Proof. Let $\xi \in D$ be an element. Consider the real hyperplane $C_t = it\xi + \eta_R$, $t > 0$. Then C_t does not intersect reflection hyperplanes, so we have a continuous branch of $\Delta(x)^{2k}$ on C_t which tends to the positive branch in D as $t \to 0$. Then, it is easy to see that for any $w \in W$, the limit of this branch in the chamber $w(D)$ will be $e^{2\pi i kl(w)|\Delta(x)|^{2k}}$. Therefore, by letting $t = 0$, we get

$$(2\pi)^{-r/2} \int_{C_t} e^{-(x,x)/2} \Delta(x)^{2k} dx = \frac{1}{|W|} F(k)(\sum_{w \in W} e^{2\pi i kl(w)})$$

(as this integral does not depend on t). But it is well known that

$$\sum_{w \in W} e^{2\pi i kl(w)} = \prod_{j=1}^{r} \frac{1 - e^{2\pi ikd_j}}{1 - e^{2\pi ik}},$$

([Hu], p.73), so

$$(2\pi)^{-r/2}|W| \int_{C_t} e^{-(x,x)/2} \Delta(x)^{2k} dx = G(k).$$

Since $\int_{C_t} e^{-(x,x)/2} \Delta(x)^{2k} dx$ is clearly an entire function, the statement is proved.

Corollary 4.9. For every $k_0 \in [-1, 0]$ the total multiplicity of all the roots of b of the form $k_0 - p$, $p \in \mathbb{Z}_+$, equals the number of ways to represent k_0 in the form $-m/d_i$, $m = 1, ..., d_i - 1$. In other words, the roots of b are $k_{i,m} = -m/d_i - p_{i,m}$, $1 \leq m \leq d_i - 1$, where $p_{i,m} \in \mathbb{Z}_+$.

Proof. We have

$$G(k - p) = \frac{F(k)}{b(k - 1) ... b(k - p)} \prod_{j=1}^{r} \frac{1 - e^{2\pi i k d_j}}{1 - e^{2\pi i k}},$$

Now plug in $k = 1 + k_0$ and large positive integer p. Since by Proposition 4.8 the left hand side is regular, so must be the right hand side, which implies the claimed upper bound for the total multiplicity, as $F(1+k_0) > 0$. The fact that the bound is actually attained follows from the fact that the polynomial b has degree exactly $|S|$ (Proposition 4.7), and the fact that all roots of b are negative rational (Proposition 4.1).
It remains to show that in fact in Corollary 4.9, $p_{i,m} = 0$ for all i, m; this would imply (ii) and hence (i).

Proposition 4.10. Identity (i) of the main theorem is satisfied in $\mathbb{C}[k]/k^2$.

Proof. Indeed, we clearly have $F(0) = 1$. Next, a rank 1 computation gives $F'(0) = -\gamma|S|$, where γ is the Euler constant, while the derivative of the right hand side of (i) at zero equals to

$$-\gamma \sum_{i=1}^{r} (d_i - 1).$$

But it is well known that

$$\sum_{i=1}^{r} (d_i - 1) = |S|,$$

([Hn], p.62), which implies the result. \hfill \square

Remark 4.11. In fact, Proposition 4.10 allows one to make Opdam’s original proof of the main theorem given in [O2] classification independent and computer-free. Indeed, the arguments of [O2] imply that (i) holds up to a factor of the form c^k, where $c > 0$, and Proposition 4.10 implies that $c = 1$.

Proposition 4.12. Identity (i) of the main theorem is satisfied in $\mathbb{C}[k]/k^3$.

Note that Proposition 4.12 immediately implies (ii), and hence the whole theorem. Indeed, it yields that

$$(\log F)''(0) = \sum_{i=1}^{r} \sum_{m=1}^{d_i-1} (\log \Gamma)''(m/d_i),$$

so by Corollary 4.9

$$\sum_{i=1}^{r} \sum_{m=1}^{d_i-1} (\log \Gamma)''(m/d_i + p_{i,m}) = \sum_{i=1}^{r} \sum_{m=1}^{d_i-1} (\log \Gamma)''(m/d_i),$$

which implies that $p_{i,m} = 0$ since $(\log \Gamma)''$ is strictly decreasing on $[0, \infty)$.

Proof. (of Proposition 4.12) We will need the following result about finite Coxeter groups. Let $\psi(W) = 3|S|^2 - \sum_{i=1}^{r} (d_i^2 - 1)$. \hfill \square
Lemma 4.13. One has

$$\psi(W) = \sum_{G \in \text{Par}_2(W)} \psi(G),$$ \hspace{1cm} (3)

where \(\text{Par}_2(W) \) is the set of parabolic subgroups of \(W \) of rank 2.

Proof. Let

$$Q(q) = |W| \prod_{i=1}^{r} \frac{1 - q}{1 - q^{d_i}}.$$

It follows from Chevalley’s theorem that

$$Q(q) = (1 - q)^r \sum_{w \in W} \det(1 - qw|_h)^{-1}.$$

Let us subtract the terms for \(w = 1 \) and \(w \in S \) from both sides of this equation, divide both sides by \((q - 1)^2\), and set \(q = 1 \) (cf. [Hu], p.62, formula (21)). Let \(W_2 \) be the set of elements of \(W \) that can be written as a product of two different reflections. Then by a straightforward computation we get

$$\frac{1}{24} \psi(W) = \sum_{w \in W_2} \frac{1}{r - \text{Tr}_h(w)}.$$

In particular, this is true for rank 2 groups. The result follows, as any element \(w \in W_2 \) belongs to a unique parabolic subgroup \(G_w \) of rank 2 (namely, the stabilizer of a generic point \(h^w \), [Hu], p.22).

Now we are ready to prove the proposition. By Proposition 4.10, it suffices to show the coincidence of the second derivatives of (i) at \(k = 0 \). The second derivative of the right hand side of (i) at zero is equal to

$$\frac{\pi^2}{6} \sum_{i=1}^{r} (d_i^2 - 1) + \gamma^2 |S|^2.$$

On the other hand, we have

$$F''(0) = (2\pi)^{-r/2} \sum_{\alpha, \beta \in S} \int_{h} e^{-\frac{(x,x)}{2}} \log \alpha^2(x) \log \beta^2(x) dx.$$
Thus, from a rank 1 computation we see that our job is to establish the equality
\[
(2\pi)^{-r/2} \sum_{\alpha \neq \beta \in S} \int_\mathbb{R} e^{-\langle x, x \rangle/2} \log \alpha^2(x) \log \frac{\beta^2(x)}{\alpha^2(x)} dx
\]
\[
= \frac{\pi^2}{6} \left(\sum_{i=1}^{r} (d_i^2 - 1) - 3|S|^2 \right) = -\frac{\pi^2}{6} \psi(W).
\]
Since this equality holds in rank 2 (as in this case (i) reduces to the beta integral), in general it reduces to equation (3) (as for any \(\alpha \neq \beta \in S\), \(s_\alpha\) and \(s_\beta\) are contained in a unique parabolic subgroup of \(W\) of rank 2). The proposition is proved.

References

