The Jordan forms of AB and BA

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp281-288.pdf</td>
</tr>
<tr>
<td>Publisher</td>
<td>International Linear Algebra Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/63178</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
THE JORDAN FORMS OF AB AND BA^*

ROSS A. LIPPERT† AND GILBERT STRANG‡

Abstract. The relationship between the Jordan forms of the matrix products AB and BA for some given A and B was first described by Harley Flanders in 1951. Their non-zero eigenvalues and non-singular Jordan structures are the same, but their singular Jordan block sizes can differ by 1. We present an elementary proof that owes its simplicity to a novel use of the Weyr characteristic.

Key words. Jordan form, Weyr characteristic, eigenvalues

AMS subject classifications. 15A21, 15A18

1. Introduction. Suppose A and B are $n \times n$ complex matrices, and suppose A is invertible. Then $AB = A(BA)A^{-1}$. The matrices AB and BA are similar. They have the same eigenvalues with the same multiplicities, and more than that, they have the same Jordan form. This conclusion is equally true if B is invertible.

If both A and B are singular (and square), a limiting argument involving $A + \epsilon I$ is useful. In this case AB and BA still have the same eigenvalues with the same multiplicities. What the argument does not prove (because it is not true) is that AB is similar to BA. Their Jordan forms may be different, in the sizes of the blocks associated with the eigenvalue $\lambda = 0$. This paper studies that difference in the block sizes.

The block sizes can increase or decrease by 1. This is illustrated by an example in which AB has Jordan blocks of sizes 2 and 1 while BA has three 1 by 1 blocks. We could begin with Jordan matrices A and B:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The product AB is zero. The product BA also has a triple zero eigenvalue but the
rank is 1. In fact, \(BA \) is in Jordan form:

\[
BA = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

A different 3 by 3 example illustrates another possibility:

\[
A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\quad \text{and} \quad
B = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

with

\[
AB = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\quad \text{and} \quad
BA = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Those examples show all the possible differences for \(n = 3 \), when \(AB \) is nilpotent. More generally, we want to find every possible pair of Jordan forms for \(AB \) and \(BA \), for any \(n \times m \) matrix \(A \) and \(m \times n \) matrix \(B \) over an algebraically closed field. The solution to this problem, generalized to matrices over an arbitrary field, was given over 50 years ago by Harley Flanders [3], with subsequent generalizations and specializations [4, 6]. In this article, we give a novel elementary proof by using the Weyr characteristic.

2. The Weyr Characteristic. There are two dual descriptions of the Jordan block sizes for a specific eigenvalue. We can list the block dimensions \(\sigma_i \) in decreasing order, giving the row lengths in Figure 2.1. This is the Segre characteristic. We can also list the column lengths \(\omega_1, \omega_2, \ldots \) (they automatically come in decreasing order).

\[
\begin{array}{cccc}
\sigma_1 &=& 4 \\
\sigma_2 &=& 4 \\
\sigma_3 &=& 2 \\
\sigma_4 &=& 1 \\
\omega_1 &=& 4 \\
\omega_2 &=& 3 \\
\omega_3 &=& 2 \\
\omega_4 &=& 2
\end{array}
\]

Fig. 2.1. A tableau representing the Jordan structure \(J_4 \oplus J_4 \oplus J_2 \oplus J_1 \).
This is the Weyr characteristic. By convention, we define σ_i and ω_i for all $i > 0$ by setting them to 0 for sufficiently large i. If we consider $\{\sigma_i\}$ and $\{\omega_i\}$ to be partitions of their common sum n, then they are conjugate partitions: σ_i counts the number of j’s for which $\omega_j \geq i$ and vice versa. The relationship between conjugate partitions $\{\sigma_i\}$ and $\{\omega_i\}$ is compactly summarized by $\omega_{\sigma_i} \geq i \geq \omega_{\sigma_{i+1}}$ (or by $\sigma_{\omega_i} \geq i > \sigma_{\omega_{i+1}}$), the first inequality making sense only when $\sigma_i > 0$. Tying the two descriptions to linear algebra is the nullity index ν_j:

$$\nu_j(A) = \dim \text{Null}(A^j) = \text{dimension of the nullspace of } A^j \text{ (with } \nu_0(A) = 0).$$

Thus ν_j counts the number of generalized eigenvectors for $\lambda = 0$ with height j or less. In the example in Figure 2.1, ν_0, \ldots, ν_5 are 0, 4, 7, 9, 11. Then $\omega_j = \nu_j - \nu_{j-1}$ counts the number of Jordan blocks of size i or greater for $\lambda = 0$. Further exposition of the Weyr characteristic can be found in [5] and some geometric applications in [1, 2].

Our main theorem is captured in the statement that $\omega_i(BA) \geq \omega_{i+1}(AB)$. Reversing A and B gives a parallel inequality that we re-index as $\omega_{i-1}(AB) \geq \omega_i(BA)$. This observation, although in different terms, was central to the original proof by Flanders [3].

Theorem 2.1. Let F be an algebraically closed field. Given $A, B \in F^{n \times m}$, the non-singular Jordan blocks of AB and BA have matching sizes, i.e., their Weyr characteristics are equal:

\begin{equation}
\omega_i(AB - \lambda I) = \omega_i(BA - \lambda I) \quad \text{for } \lambda \neq 0 \text{ and all } i.
\end{equation}

For the eigenvalue $\lambda = 0$, the Jordan forms of AB and BA have Weyr characteristics that satisfy

\begin{equation}
\omega_{i-1}(AB) \geq \omega_i(BA) \geq \omega_{i+1}(AB) \quad \text{for all } i,
\end{equation}

which is equivalent to

\begin{equation}
|\sigma_i(AB) - \sigma_i(BA)| \leq 1 \quad \text{for all } i.
\end{equation}

If $P \in F^{n \times n}$ and $Q \in F^{m \times m}$ satisfy $\omega_i(P - \lambda I) = \omega_i(Q - \lambda I)$ for $\lambda \neq 0$ and $\omega_{i-1}(P) \leq \omega_i(Q) \leq \omega_{i+1}(P)$, then there exist $A, B \in F^{n \times m}$ such that $P = AB$ and $Q = BA$.

The equivalence of (2.2) and (2.3) is purely a combinatorial property of conjugate partitions (see Lemma 3.2).

The Jordan block sizes are hence restricted to change by at most 1 for $\lambda = 0$. Taking Figure 2.1 as the Jordan structure of AB at $\lambda = 0$, Figure 2.2 is an admissible modification (by + and −) for BA.
3. Main results

Our results are ultimately derived from the associativity of matrix multiplication. A typical example is $B(AB \cdots AB) = (BA \cdots BA)B$.

Theorem 3.1. If A and B^t are $n \times m$ matrices over a field F, then for all $i > 0$

$$
\omega_i(AB - \lambda I) = \omega_i(BA - \lambda I) \quad \text{for } \lambda \in F - \{0\}
$$

$$
\omega_i(BA) \geq \omega_{i+1}(AB) \quad \text{(for } \lambda = 0).$

Proof. (For $\lambda \neq 0$) For any polynomial $p(x)$, $p(BA)B = Bp(AB)$. Thus $p(AB)v = 0$ implies $p(BA)Bv = 0$. Since $Bv = 0$ implies $p(AB)v = p(0)v$, we have $\dim \text{Null}(p(AB)) = \dim \text{Null}(p(BA))$ when $p(0) \neq 0$. Hence $\nu_i(AB - \lambda I) = \nu_i(BA - \lambda I)$ when $\lambda \neq 0$.

(For $\lambda = 0$) We define the following nullspaces for $i \geq 0$:

$$
R_i = \{v \in F^n : B(AB)^i v = 0\}
$$

$$
R'_i = \{v \in F^n : (AB)^i v = 0\}
$$

$$
L_i = \{v \in F^m : v^t(AB)^i = 0\}
$$

$$
L'_i = \{v \in F^m : v^t(BA)^i B = 0\}
$$

We see that $R_i \subset R'_{i+1}$ and $L_i \subset L'_{i+1}$, and $\dim\{R_{i+1}\} - \dim\{R_i\} = \dim\{L'_{i+1}\} - \dim\{L'_i\}$.

Let $v_1, \ldots, v_k \in R'_{i+2}$ be a set of vectors that are linearly independent modulo R_{i+1}. Thus $\sum_{i=1}^k c_i v_i \in R_{i+1}$ only if $c_1 = \cdots = c_k = 0$. Then the vectors...

Fig. 2.2. If AB is nilpotent with Jordan structure $J_4 \oplus J_4 \oplus J_2 \oplus J_1$, then a permitted BA structure is $J_3 \oplus J_3 \oplus J_2 \oplus J_2 \oplus J_1$.
Jordan forms of AB and BA

$ABv_1, \ldots , ABv_k \in R_{i+1}'$ are linearly independent modulo R_i. Thus,
\[\dim\{R_{i+1}'/R_i\} \geq \dim\{R_{i+2}'/R_{i+1}\} \]
If $v_1, \ldots , v_k \in L_{i+2}'$ is a set of vectors, linearly
independent modulo L_{i+1}, then the vectors $(BA)^t v_1, \ldots , (BA)^t v_k \in L_{i+1}'$ are linearly
independent modulo L_i. Thus,
\[\dim\{L_{i+1}'/L_i\} \geq \dim\{L_{i+2}'/L_{i+1}\} \]
Notice that
\[\dim\{R_{i+2}'/R_{i+1}\} = \nu_{i+2}(AB) - \dim\{R_{i+1}\} \]
\[\dim\{L_{i+2}'/L_{i+1}\} = \dim\{L_{i+2}'\} - \nu_{i+1}(BA) \]
Then \[\dim\{R_{i+1}'/R_i\} \geq \dim\{R_{i+2}'/R_{i+1}\} \]
implies
\[\dim\{R_{i+2}\} - \dim\{R_{i+1}\} \geq \nu_{i+2}(AB) - \nu_{i+1}(AB) \]
and \[\dim\{L_{i+1}'/L_i\} \geq \dim\{L_{i+2}'/L_{i+1}\} \]
implies
\[\nu_{i+1}(BA) - \nu_i(AB) \geq \dim\{L_{i+2}'\} - \dim\{L_{i+1}'\} \]
Therefore, $\omega_{i+1}(BA) \geq \omega_{i+2}(AB)$, since $\omega_{i+1} = \nu_{i+1} - \nu_i$.

The first part of Theorem 3.1 says that the Jordan structures of AB and BA for
$\lambda \neq 0$ are identical, if F is algebraically closed. For a general field, the results can be
adapted to show that the elementary divisors of AB and BA, that do not have zero
as a root, are the same. An illustration is helpful in understanding the constraints
implied by the second part, $\omega_{i-1}(AB) \geq \omega_i(AB) \geq \omega_{i+1}(AB)$. Suppose the tableau
in Figure 3.1 represents the Jordan form of AB at $\lambda = 0$. Theorem 3.1 constrains the
tableau of the Jordan form of BA at $\lambda = 0$ to be that of AB plus or minus the areas
covered by the circles of Figure 3.2.

The constraints on Weyr characteristics are equivalent to constraining the block
sizes of the Jordan forms of AB and BA to differ by no more than 1. Although this
Fig. 3.2. Given AB (boxes), Theorem 3.1 imposes these constraints on the Weyr characteristic of BA (a circle can be added or subtracted from each row of the tableau): $\omega_1 \geq 6, 9 \geq \omega_2 \geq 6, 6 \geq \omega_3 \geq 4, 6 \geq \omega_4 \geq 3, 4 \geq \omega_5 \geq 3, 6 = 3, 3 \geq \omega_6 \geq 2, 3 \geq \omega_7 \geq 2, 2 = \omega_8 \geq 2, 2 \geq \omega_9 \geq 0, 2 \geq \omega_{10} \geq 0$.

equivalence “is not hard to see” [3] from Figure 3.1, it warrants a short proof. Taking $d = 1$, Lemma 3.2 establishes the equivalence of (2.2) and (2.3).

Lemma 3.2. Let $p_1 \geq p_2 \geq \cdots$ and $p'_1 \geq p'_2 \geq \cdots$ be partitions of n and n' with conjugate partitions $q_1 \geq q_2 \geq \cdots$ and $q'_1 \geq q'_2 \geq \cdots$. Let $d \in \mathbb{N}$. Then

$q'_i \geq q_{i+d}$ and $q_i \geq q'_{i+d}$ for all $i > 0$ if and only if $|p_i - p'_i| \leq d$ for all $i > 0$.

Proof. If $p'_i > d$, then $q'_i \geq i > q_{p_i + 1}$ by the conjugacy conditions. By hypothesis, $q_{p'_i - d} \geq q'_{p_i} > q_{p_i + 1}$ and thus $p'_i - d < p_i + 1$ since q_j is monotonically decreasing in j. Thus $p'_i \leq p_i + d$ (trivially true when $p'_i \leq d$). By a symmetric argument (switching primed and unprimed), we have $p_i \leq p'_i + d$.

Conversely, if $q_{i+d} > 0$, then $p'_i \geq p_{q_{i+d}} - d \geq (i + d) - d = i \geq p'_{q_i + 1}$, the first inequality by hypothesis and the next two by the conjugacy conditions. Since p'_j is monotonically decreasing, we have $q_{i+d} \leq q'_j$ for all $i > 0$ (trivially true when $q_{i+d} = 0$). A symmetric argument gives $q'_i \leq q_i$.

What remains is to show that the constraints in Theorem 3.1 are exhaustive; we can construct matrices A, B that realize all the possibilities of the theorem. Here we find it easier to use the traditional Segre characteristic of block sizes σ_i:

Theorem 3.3. Let $\sigma_1 \geq \sigma_2 \geq \cdots$ and $\sigma'_1 \geq \sigma'_2 \geq \cdots$ be partitions of n and m respectively.

If $|\sigma_i - \sigma'_i| \leq 1$, then there exist $n \times m$ matrices A and B^t such that $\sigma_j(AB) = \sigma_j$ and $\sigma_j(BA) = \sigma'_j$.
Jordan forms of AB and BA 287

Proof. For each j such that σ_j and $\sigma'_j \geq 1$, we construct $\sigma_j \times \sigma'_j$ matrices A_j and B'_j such that $A_j B_j = J_{\sigma_j}(0)$ and $B_j A_j = J_{\sigma'_j}(0)$ according to these three cases:

1. $\sigma_j = \sigma'_j$: set $A_j = J_{\sigma_j}(0)$ and $B_j = I_{\sigma_j}$.
2. $\sigma_j + 1 = \sigma'_j$: set $A_j = [0 \ I_{\sigma_j}]$ and $B_j = \begin{bmatrix} I_{\sigma'_j} \\ 0 \end{bmatrix}$.
3. $\sigma_j = \sigma'_j + 1$: set $A_j = \begin{bmatrix} I_{\sigma'_j} \\ 0 \end{bmatrix}$ and $B_j = \begin{bmatrix} 0 \ I_{\sigma'_j} \end{bmatrix}$.

This defines $k = \min \{\omega_1(AB), \omega_1(BA)\}$ matrix pairs (A_j, B_j). Consider $\{\sigma_j\}$ as a partition for n rows and $\{\sigma'_j\}$ as a partition for m columns. Construct the block diagonal matrix $A = \text{diag}(A_1, \ldots, A_k, 0, \ldots, 0)$ with zeros filling any remaining lower right part. Then with partitions $\{\sigma'_j\}$ for m rows and $\{\sigma_j\}$ for n columns let $B = \text{diag}(B_1, \ldots, B_k, 0, \ldots, 0)$. □

The final construction merely stitches together a singular piece with a non-singular piece.

Corollary 3.4. Let $P \in \mathbb{F}^{n \times n}$ and $Q \in \mathbb{F}^{m \times m}$ have Segre characteristics σ^λ_i and σ'^λ_i for each eigenvalue λ, i.e.,

$$P \sim \bigoplus_{\lambda \in \mathbb{F}} \bigoplus_{i > 0} J_{\sigma^\lambda_i}(\lambda) \quad \text{and} \quad Q \sim \bigoplus_{\lambda \in \mathbb{F}} \bigoplus_{i > 0} J_{\sigma'^\lambda_i}(\lambda).$$

If $\sigma^\lambda_i = \sigma'^\lambda_i$ for all $\lambda \neq 0$ and $|\sigma_i^0 - \sigma_i'^0| \leq 1$, then there exist matrices A and B' in $\mathbb{F}^{n \times m}$ such that $P = AB$ and $Q = BA$.

Proof. If $\tilde{P} = X^{-1}PX$ and $\tilde{Q} = Y^{-1}QY$ are in canonical form with $\tilde{P} = \tilde{A}\tilde{B}$ and $\tilde{Q} = \tilde{B}\tilde{A}$, then setting $A = XAY^{-1}$ and $B = YBX^{-1}$, we have $P = AB$ and $Q = BA$. Hence we take P and Q to be in canonical form.

Let $M = \bigoplus_{\lambda \neq 0} \bigoplus_{i > 0} J_{\sigma_i}(\lambda)$, i.e., M is a (non-singular) $k \times k$ matrix in Jordan canonical form with Segre characteristic σ^λ_i, where $k = \sum_{\lambda \neq 0} \sum_{i} \sigma^\lambda_i$. Let A_0 and B_0 be the A and B matrices from Theorem 3.3 with $\sigma_i = \sigma_i^0$ and $\sigma'_i = \sigma'_i^0$. Then $A = M \oplus A_0$ and $B = I_k \oplus B_0$. □

Acknowledgment. We thank Roger Horn for pointing us to the Flanders paper and others, and for his encouragement.

REFERENCES

