The Cooperation between hMena Overexpression and HER2 Signalling in Breast Cancer

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1371/journal.pone.0015852</td>
</tr>
<tr>
<td>Publisher</td>
<td>Public Library of Science</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/64748</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/2.5/</td>
</tr>
</tbody>
</table>
The Cooperation between hMena Overexpression and HER2 Signalling in Breast Cancer

Francesca Di Modugno2, Marcella Mottolese3, Lucia DeMonte4, Paola Trono1, Michele Balsamo1,6, Andrea Conidi5, Elisa Melucci3, Irene Terrenato8, Francesca Belleudi9, Maria Rosaria Torrisi10, Massimo Alessio5, Angela Santoni10, Paola Nistico1*

1 Laboratory of Immunology, Regina Elena National Cancer Institute, Rome, Italy, 2 Experimental Chemotherapy, Regina Elena National Cancer Institute, Rome, Italy, 3 Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy, 4 Tumor Immunology, Dibit, San Raffaele Scientific Institute, Milan, Italy, 5 Proteome Biochemistry, Dibit, San Raffaele Scientific Institute, Milan, Italy, 6 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 7 Department of Molecular and Developmental Genetics, VIB11, Katholieke Universiteit Leuven, Leuven, Belgium, 8 Department of Epidemiology, Regina Elena National Cancer Institute, Rome, Italy, 9 Azienda Ospedaliera S. Andrea, Rome, Italy, 10 Department of Clinical and Molecular Medicine, University ‘Sapienza’, Rome, Italy

Abstract

hMena and the epithelial specific isoform hMena11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena11a expression and phosphorylates hMena11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena11a in breast cancer. The aim of this study was to determine whether the hMena/hMena11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena11a expression and hMena11a phosphorylation. On the other hand, hMena/hMena11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena11a knock-down reduced the mitogenic activity of EGF and NG1. Collectively these data provide new insights into the relevance of hMena and hMena11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.

Introduction

Breast cancer is a heterogeneous disease and in recent years the introduction of new targeted therapeutic approaches highlights the need to stratify patients and consequently to identify accurate biomarkers to select the best therapeutic choice. The molecular classification of breast tumors has identified tumor subtypes, among which the overexpression of the ErbB family of receptors is confined to tumors with unfavourable prognosis [1]. The human ErbB receptor family comprises four tyrosine kinases members (EGFR, HER2, HER3 and HER4) and their deregulation has been correlated with cancer development and progression [1,2]. Upon ligand binding ErbB receptors undergo homodimerization or heterodimerization and activate a complex signalling network that controls tumor cell proliferation as well as motility through different pathways that regulate rearrangements of the actin cytoskeleton [3]. HER2 functions as a common co-receptor recruited from EGFR or HER3 upon binding to their ligands [4] and HER2/HER3 heterodimer has been defined as the major oncogenic unit in HER2 positive breast cancer [5,6]. The two main signalling pathways downstream from the ErbB receptors are the phosphatidylinositol 3’-kinase (PI3K) and the mitogen activated protein kinase (MAPK) [4]. PI3K activation results in the phosphorylation of PIP2 to yield PIP3 which in turn activates several downstream signalling molecules including AKT and regulates actin regulatory proteins such as cofilin and capping proteins [7,8]. MAPK activation is responsible for the EGF dependent mitogenic effect in normal and transformed mammary epithelia [9] and its role in cell cycle progression is also sustained by cytoskeletal organization [10].

hMena (ENA), the human ortholog of murine Mena [11], is a member of the Ena/VASP protein family which in mammals includes Mena, VASP and Evl. Ena/VASP are key actin regulatory molecules that control cell shape, adhesion and migration [12,13], processes that are frequently deregulated following neoplastic transformation. Ena/VASP proteins behave

Copyright: © 2010 Di Modugno et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Associazione Italiana per la Ricerca sul Cancro (AIRC) (P.N., M.M.); Italian Ministry of Health Ricerca Finalizzata (P.N.); Italian Ministry of Health PIO-2006 RO strategici 5/07 (M.A.). Ludwig Fund Postdoctoral Fellowship (M.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nistico@ifo.it

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15852
as homo and heterotetramers, and the functions of the three members are redundant in cells and in vivo. However, only Mena may be regulated by the tumor suppressor Tes, which binds the EVH1 domain of Mena and not VASP or EVL through an unconventional Lim-domain mediated interaction [14].

Recently, we have demonstrated that hMena overexpression represents an early marker of breast tumorigenesis, being undetectable in normal breast epithelium, and overexpressed in benign breast lesions with an increased risk of transformation and, in more than 70% of tumors, with HER2+, ER/PgR- and high Ki67 phenotype [15]. While Neuregulin-1 (NRG1) and EGF growth factors induce an increase of hMena expression, Herceptin treatment down-regulates hMena in breast cancer cell lines overexpressing HER2 [15,16]. The hMena isoform hMena11a, recently characterized by our group, shows an additional 21 amino acids between the F-actin binding and the coiled-coil domain in recently characterized by our group, shows an additional 21 amino acids between the F-actin binding and the coiled-coil domain in the EVH2 domain which possesses three putative phosphorylation sites [16]. This isoform undergoes phosphorylation upon long term stimulation with EGF, associated with p44/42 MAPK activation and with an increased proliferation rate in breast cancer cell lines [16]. hMena11a expression is associated with an epithelial phenotype [16,17,10] and identifies human pancreatic adenocarcinoma cell lines that are sensitive to the EGFR inhibitor Erlotinib [17]. Thus, we hypothesize that cross-talk takes place between the ErbB receptor family and hMena.

In the present work, through a combination of experimental and in vivo studies, we have demonstrated that hMena/hMena11a are downstream targets of HER2 activity and that they affect HER2 signalling. Moreover, hMena overexpression is a frequent event in the HER2 breast tumor subtype and significantly correlates with HER2 overexpressing tumors and an activated status of MAPK and AKT. On the contrary, depletion of hMena by specific RNA interference reduces the phosphorylation of HER3, p44/42 MAPK and AKT and inhibits both EGF and NRG1-mediated phosphorylation of HER2 and EGF as well as cell proliferation. Of note in breast cancer patients, undetectable levels of hMena are more frequent in luminal breast tumors, and discriminate HER2 overexpressing tumors with downstream inactive pathways carried by patients that have a better prognosis. Conversely, the concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients with a worse prognosis indicating that hMena overexpression adds prognostic information in HER2 overexpressing tumors.

Results

hMena overexpression occurs more frequently in the HER2 subtype and correlates with Ki67, MAPK and AKT activity

We have evaluated hMena expression in a series of 286 primary breast cancer (BC) classified in Luminal A (ER+/PR+ HER2−), Luminal B (ER+/PR+ HER2+), Triple Negative (ER-/PR-/HER2−) and HER2 subtype (ER+/PR− HER2+), as indicated in Table 1. The immunohistochemical analysis demonstrated a significant linear trend (p = 0.022) between hMena and HER2 expression, independent of breast tumor subtype. Figure 1 panel A shows the frequency of HER2 positive tumors (2+ with gene amplification and 3+ score) with different hMena staining. Of interest, hMena is differently distributed within the four BC subtypes (p = 0.032). In fact, only 29% of the Luminal A and Luminal B subtypes overexpressed hMena with a score 3, whereas 48% and 44% of the HER2 and the Triple Negative subtypes, respectively showed hMena overexpression (Figure 1 panel B).

Table 1. Clinico-pathological characteristics of the patients.

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>No of cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>Median age, y (range)</td>
<td>53 (28–86)</td>
<td></td>
</tr>
<tr>
<td>hMena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (score 0/1)</td>
<td>96</td>
<td>34</td>
</tr>
<tr>
<td>Positive (score 2/3)</td>
<td>190</td>
<td>66</td>
</tr>
<tr>
<td>Histotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive ductal carcinoma</td>
<td>246</td>
<td>86</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>Other carcinomas</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Histologic grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>Grade 2</td>
<td>146</td>
<td>54</td>
</tr>
<tr>
<td>Grade 3</td>
<td>96</td>
<td>36</td>
</tr>
<tr>
<td>Lymph node status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>154</td>
<td>54</td>
</tr>
<tr>
<td>Positive</td>
<td>132</td>
<td>46</td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>171</td>
<td>60</td>
</tr>
<tr>
<td>T2</td>
<td>80</td>
<td>29</td>
</tr>
<tr>
<td>T3,4</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>89</td>
<td>31</td>
</tr>
<tr>
<td>Positive</td>
<td>197</td>
<td>69</td>
</tr>
<tr>
<td>PgR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>107</td>
<td>37</td>
</tr>
<tr>
<td>Positive</td>
<td>179</td>
<td>63</td>
</tr>
<tr>
<td>Ki67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (≤15)</td>
<td>164</td>
<td>57</td>
</tr>
<tr>
<td>Positive (>15)</td>
<td>122</td>
<td>43</td>
</tr>
<tr>
<td>HER-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>204</td>
<td>71</td>
</tr>
<tr>
<td>Positive</td>
<td>82</td>
<td>29</td>
</tr>
<tr>
<td>Molecular Subtypes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminal A</td>
<td>177</td>
<td>62</td>
</tr>
<tr>
<td>Luminal B</td>
<td>34</td>
<td>12</td>
</tr>
<tr>
<td>Triple Negative</td>
<td>27</td>
<td>9</td>
</tr>
<tr>
<td>HER2 subtype</td>
<td>48</td>
<td>17</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pone.0015852.t001

To analyze downstream signalling pathways of the ErbB family by immunohistochemistry (IHC), the expression of the phospho-MAPK (P-MAPK) and phospho-AKT (P-AKT) were analyzed in 178 BC randomly selected from the entire series of 286 patients included in our study. The IHC findings, reported in Figure 1 panel C, clearly demonstrate a significant correlation between hMena (score 3), HER2 overexpression (p = 0.021) and the proliferation index as assessed by Ki-67 (p<0.0001), as we have already reported in a different cohort of patients [15]. A strong correlation among hMena overexpression and P-AKT and P-MAPK positivity (p<0.0001 in both cases) was found. Immunohistochemical analyses of serial sections of a representative invasive BC are reported in Figure 1 panel D.
To evaluate the role of hMena overexpression in MAPK and AKT activation, we categorized in hMena negative (score 0/1) and hMena positive (score 2/3) 60 HER2 positive and 118 HER2 negative primary BC of 178 cases analyzed. As reported in Figure 2 panel A, only 17% and 11% HER2-positive/hMena-negative tumors expressed P-MAPK and P-AKT, whereas the majority of HER2-positive/hMena-positive tumors showed an activated status of both MAPK (83.1%) and AKT (89%). In HER2 negative tumors hMena expression has a minor contribution in MAPK and AKT activity, suggesting that hMena overexpression cooperates with HER2 in sustaining MAPK and AKT activity. Interestingly, as shown in a representative, although not paradigmatic case

Figure 1. hMena is differently distributed among breast cancer subtypes and correlates with HER2 overexpression, MAPK, AKT activity and Ki67. A. Relationship between hMena staining and HER2 positivity in human breast carcinomas. Histograms represent the percentage of the hMena staining (score 0; 1; 2; 3) in 82 HER2 positive breast cancer samples (2+ with gene amplification and 3+) (p = 0.02). B. hMena distribution within 286 human breast tumors grouped according to molecular subtypes. hMena expression (0, 1, 2, 3 scores) in Luminal A, Luminal B, HER2 subtypes and Triple Negative. The percentage of hMena-positive cases (score 3) is significantly higher in the HER2 subtype and Triple-Negative in comparison to Luminal A and Luminal B breast cancer (p = 0.032). C. Correlation between hMena expression and HER2, P-AKT, P-MAPK and Ki67 in a subgroup of 178 breast cancer patients. Percentage of HER2 positivity, high Ki67 proliferation index, elevated P-AKT and P-MAPK expression for each hMena score. The percentage of HER2 positivity (p = 0.016), P-AKT (p<0.001) and P-MAPK (p<0.001) overexpression, high Ki67 proliferation index (p = 0.016) increase significantly in relationship to hMena score (0 to 1 to 2 to 3). D. Representative case of an invasive ductal carcinoma with a strong hMena positivity (score 3+) displaying HER2 overexpression (score 3 by IHC), P-MAPK and P-AKT positivity, elevated Ki67 index. Magnification, 40x. Original scale 1 cm = 30 micron (25 cm×33 cm). doi:10.1371/journal.pone.0015852.g001
HER2 overexpression and hMena/hMena11a overexpression in human breast cancer cell lines

We previously reported that epithelial cancer cell lines express hMena and the epithelial specific hMena11a isoform [16]. To investigate the functional link between hMena/hMena11a and HER2, we stably transfected HER2 in MCF7, a luminal epithelial breast cancer cell line with low HER2 endogenous levels [19]. HER2 overexpression in MCF7 cells leads to the upregulation of hMena and hMena11a compared to control cells (MCF7-pcDNA3) as evaluated by pan-hMena and specific hMena11a antibodies (Figure 3 panel A). This was associated with a phosphorylation of the tyrosine Y1248 in HER2 receptor and the activation of MAPK and PI3K as documented by the amount of phosphorylated p44/42 MAPK and AKT (Figure 3 panel A). Phosphorylation at Y1248 of HER2 was also observed in BT474 and SKBr3 BC cells, naturally overexpressing HER2 and hMena/hMena11a (Figure 3 panel B). Real-time qRT-PCR experiments demonstrated a 4 fold upregulation of hMena mRNA in MCF7-HER2 cells with respect to MCF7-pcDNA3 control cells.

HER2 overexpression affects hMena11a phosphorylation in breast cancer cells

EGF treatment of BC cell lines promotes concomitant up-regulation of hMena and hMena11a, resulting in a higher fraction of phosphorylated hMena11a isoform. Moreover, hMena11a overexpression and phosphorylation lead to an increase in p44/42 mitogen-activated protein kinase (MAPK) activation and cell proliferation [16]. Thus we analyzed whether hMena11a phosphorylation is downstream to HER2 signalling. T47D and MCF7 cells, with low endogenous levels of HER2 [19], display only modest hMena11a phosphorylation as evaluated by 2D-E analysis (Figure 4, panels A and B). Conversely, SKBr3 cells, endogenously overexpressing highly phosphorylated HER2 (Figure 3 panel B)

Figure 2. hMena overexpression correlates with the phosphorylated status of MAPK and AKT. A. The table evidences that in 60 HER2 positive and 118 HER2 negative breast tumors the percentage of P-MAPK and P-AKT positive breast tumors is significantly higher in hMena positive (score 2/3) than in hMena negative breast tumors (score 0/1). B. A representative, although not a paradigmatic case, where P-MAPK displays a heterogeneous immunostaining (40% tumor cells). P-MAPK positivity is mostly confined in the tumor area (positive area) concomitantly showing a strong hMena (score 3) immunoreactivity.

doi:10.1371/journal.pone.0015852.g002
show high amounts of phosphorylated hMena11a (Figure 4 panel A). To better define hMena11a as a downstream target of HER2, the levels of hMena11a phosphorylation were evaluated in MCF7-HER2 cells. As depicted by the pattern of spots presented in Figure 4 panel B, a higher percentage (77.7% vs. 63.7%) of phosphorylated hMena11a was seen in the MCF7-HER2 with respect to control (MCF7) cells, as revealed by the more pronounced shift toward lower pH, which is significantly reduced by l-phosphatase treatment. Herceptin treatment down-regulates hMena in MCF7-HER2 cells (data not shown), confirming our previous results in endogenously HER2 overexpressing BC cell lines [15]. Thus, to determine if Herceptin treatment is able to inhibit HER2-dependent hMena11a phosphorylation, MCF7-HER2 breast cancer cell line lysates (50 mg) with the indicated antibodies. As loading controls, blots were probed with anti-Actin mAb (1 mg/ml). C. HER2 transfection, NRG and EGF treatment affect hMena expression at mRNA level. QRT-PCR analysis of hMena and housekeeping β-Actin mRNA levels performed on 10 ng of total RNA from the untreated MCF7-pcDNA3, HER2 transfected MCF7, or NRG1 treated MCF7 breast cancer cell line and SKBr3 cells either untreated or treated with EGF. Results are given as the ratio between hMena and β-Actin genes relative to the internal control.

doi:10.1371/journal.pone.0015852.g003

hMena knock-down inhibits ErbB family signalling and the EGF/NRG1-mediated mitogenic effect in MCF7-HER2 cells

To investigate whether hMena/hMena11a overexpression could affect HER2 expression and activation, the MCF7-HER2 cells were depleted for hMena/hMena11a by siRNA. hMena silencing in starved cells did not affect HER2 and EGFR expression and phosphorylation, but was associated with a reduction in phospho-HER3, phospho-AKT and phospho-p44/42 MAPK levels (Figure 5 panel A). On the other hand, hMena/hMena11a knock-down prevented EGF and NRG1 mediated HER2 and EGFR activation. In particular, hMena/hMena11a depleted cells (si-hMena) treated with EGF or NRG1 for 24 h showed a reduction of phospho-HER2 and phospho-EGFR levels with respect to control cells (Si-CNTR) (Figure 5 panel A). Phospho-HER3 was not detectable following EGF and NRG1 treatment, due to treatment induced down-regulation of the HER3 protein, more evident in the hMena/hMena11a depleted cells.

To explore the hypothesis that hMena/hMena11a might have a functional role in EGF and NRG1 mediated mitogenic effects, 3H-thymidine incorporation assays were performed. hMena/hMena11a knock-down induced a slight decrease in the proliferation rate of the silenced MCF7-HER2 cells with respect to the control in untreated conditions and abolished the proliferation activity mediated by EGF and NRG1 (Figure 5 panel B). Similar results were obtained in MDA-MB-361 cells naturally expressing high levels of HER2 and HER3 (Figure 5 panel C and Figure S1). On
the contrary, in MCF7, cells with a low HER2 level, hMena/hMena11α knock-down (Figure S1) has no significant effect on the proliferation rate in untreated conditions or in EGF treated cells. A slight effect was observed in NRG1-mediated proliferation (Figure 5 panel B).

hMena overexpression adds prognostic information in BC patients with HER2 overexpressing tumors

In view of the biochemical and functional data obtained, the prognostic impact of hMena overexpression on disease free survival (DFS) was further estimated in our series of 286 BC patients with a median follow-up of 45 months (1–188 months) in which 88 relapses were recorded.

When the whole series was analyzed by unadjusted Kaplan-Meier curves, hMena/HER2 covariates had different effect on DFS (Figure 6). In particular, in HER2 negative cases hMena positivity slightly reduced the DFS (78.7% BC patients bearing HER2-/hMena- primary tumor and 71.3% with HER2-/hMena+ tumors were disease free after 6 years follow up). Differently, among the HER2 positive cases, only 20.6% of the patients were disease free at a 6 year of follow-up when hMena was overexpressed with respect to 39.3% of patients with HER2+/hMena- tumors (p<0.0001).

Figure 4. HER2 overexpression affects hMena11α phosphorylation in breast cancer cells. A. Proteins from T47D and SKBr3 cell lines were resolved by 2D-electrophoresis on a pH 3–10 nonlinear range and 7.5% acrylamide SDS-PAGE. Proteins were then electrontransferred to nitrocellulose and hMena reactivity was revealed by Western blot. Protein spot trains were compared by using Progenesis PG240 v2006 software (Nonlinear dynamics, Newcastle, UK). The set of spots corresponding to hMena and hMena11α are indicated including the isoelectric point range (dashed line). The phosphorylation threshold (arrows and vertical bars) has been arbitrarily defined as described [13]. B. Lysates of MCF7 cells, either stably transfected with HER2 or with empty vector (pcDNA3) were resolved by 2D-electrophoresis as described above, showing that a higher fraction of hMena11α is constitutively phosphorylated in MCF7-HER2 cells. MCF7-HER2 cells treated with Herceptin for 48 h (MCF7-HER2+ HRC) show a fraction of phosphorylated hMena11α similar to the dephosphorylated MCF7-HER2 lysates. MCF7-HER2 cell lysates were also incubated without or with λ-phosphatase (λ-PPase) before 2D analysis. Arrows indicated hMena11α spots after phosphatase treatment. Below the densitometric analysis of the hMena spots revealed by Western blot in MCF7-HER2 cells treated without (+ HRC) or with Herceptin for 48 h (+ HRC) are shown. Arrows indicated hMena11α spots that, after Herceptin treatment, resulted to be dephosphorylated. Pseudo-colours three-dimensional view has been obtained by using Progenesis PG240 v2006 software. C. Proteins from the MCF7-HER2 cell lines incubated with or without 100 ng/ml EGF or 10 ng/ml NRG1 for 24 h in serum starved medium, were resolved by 2D-electrophoresis and analyzed as described in panel A.

doi:10.1371/journal.pone.0015852.g004
These data indicate that hMena overexpression adds prognostic information in breast cancer patients with HER2 overexpressing tumors.

Discussion

Previous experimental and in vivo data from our group suggested that the cytoskeleton regulatory protein hMena and its splice-variant deriving isoform, hMena\(^{11a}\), may couple ErbB family signalling to the actin cytoskeleton leading to cell proliferation in breast cancer [16]. HER2 positive breast cancers vary greatly in prognosis and response to therapy, underlying the need to identify new markers to further stratify HER2 positive tumors [20]. Here we present our attempts to provide clinical and experimental evidence that hMena/hMena\(^{11a}\) are downstream targets and effectors of HER2 activity. The clinical data show that a link exists between hMena and HER2 overexpression, confirming our previous results [15,16] and further evidences that, according to the molecular classification of breast tumors [21], hMena overexpression is more frequent in the HER2 subtype. On the other hand, the finding that hMena overexpression is correlated with the expression of phosphorylated MAPK and AKT and a high proliferation index in a cohort of primary breast tumors suggests a role for hMena in sustaining an activated status of HER2 pathways. Thus we attempted to delineate the mechanisms linking HER2 activity with hMena in breast cancer cell lines. Exogeneous overexpression of...
HER2 or stimulation by EGF and NRG1 of different breast cancer cell lines induce the up-regulation of hMena both at the mRNA and protein levels, which suggests a link between ErbB family activation and hMena. Apart from the hMena overexpression, HER2 activation promotes the phosphorylation of the epithelial specific hMena11a isoform \[16\]. This is indicated by the higher percentage of phosphorylated hMena11a observed in the MCF7-HER2 cells with respect to control and confirmed by the hMena11a dephosphorylation in the same cells treated with Herceptin. Although further studies are needed to clarify the role of hMena11a phosphorylation, we hypothesize it may alter the regulation of actin dynamics, since the 11a peptide is located in the EVH2 domain, the site of protein tetramerization and binding to the grown ends of actin filaments. Studies are in progress in order to define the residue and the kinase involved in phosphorylation. A recent work has described Evl-I, a splice variant derived isoform of Evl, that similarly to hMena11a shows a 21aa peptide included in the EVH2 domain which is phosphorylated by PKD1 and regulates lamellipodia formation and membrane ruffling [22]. In view of the ability of Ena/VASP proteins to form functional tetramers [23], we can hypothesize that the phosphorylation of the two members of Ena/VASP family may implicate a similar function, and a similar regulatory pathway. In line with our results on hMena11a phosphorylation, Janssens K and coauthors [22] report that Evi-I is strongly phosphorylated in the HER2 overexpressing SKBr3 breast cancer cell line, whereas a lower level of P-Evi-I expression is shown in MCF7 and T47D cells.

Growth factor treatment further increased the hMena11a phosphorylation in HER2 overexpressing cancer cells, suggesting that stroma mediated paracrine mechanisms not only induce hMena overexpression, but also sustain the phosphorylation of hMena11a. Members of HER family take part in a complex array of combinatorial interactions through the formation of homo and heterodimers between the different family members and not only the preferred heterodimerization partner HER2, but also EGFR and recently HER3 have been defined as important therapeutic targets in breast cancer [6]. Our data demonstrating that hMena/hMena11a expression as well as hMena11a phosphorylation are induced by EGF and NRG1, indicate that hMena/hMena11a are downstream to different receptor complexes (EGFR/HER2 and HER2/HER3), and might thus represent a relevant target for therapeutic regulation.

Functionally, we suggest a dynamic reciprocal cross-talk between ErbB family signalling and actin cytoskeleton regulators, as pointed out by the results that hMena/hMena11a knock-down reduces the phosphorylation of HER3, MAPK and AKT and abolishes the EGF and NRG1 mediated phosphorylation of HER2 and EGFR. The HER2/HER3 receptor pair form the most potent mitogenic receptor complex and HER2 overexpressing tumors frequently show phosphorylated HER3 [24]. Consistently, in our model the HER2 overexpressing MCF7 cells showed a ligand independent phosphorylated status of HER3 receptor. One could envisage that hMena/hMena11a are involved in the heterodimerization of HER2/HER3 as suggested by the reduction of HER3 phosphorylation observed in hMena/hMena11a knock down cells. This could also be the reason for the reduction of phosphorylated AKT and MAPK in untreated cells, since the HER2/HER3 complex is a potent activator of PI3K and MAPK signalling [25]. As already reported, growth factor stimulation determines a down-regulation of HER3 caused by the ligand-stimulated degradation of the receptor, that does not involve HER2 despite the dimerization of the two receptors [26]. This reduction at the protein level is more evident in hMena/hMena11a silenced cells, suggesting a role of hMena/hMena11a also in the post-transcriptional mechanisms regulating the HER3 receptor. The hypothesis that hMena/hMena11a play a role in the
hMena and HER2 Signalling in Breast Cancer

Cell treatments

Cells were grown in 6 well plates to 50% confluence in RPMI supplemented with 10% fetal bovine serum. Eighteen hours after medium replacement with fresh medium containing 0.5% serum, cells were treated with recombinant human EGF 100 ng/ml (Promega Corporation, Madison, WI, USA), or NRG1 10 ng/ml (Promega Corporation) for 24 h.

Hereceptin (Roche, Monza, Italy) for clinical and in vitro use was stored at 4°C and adjusted to the final concentration of 25 μg/ml with culture medium containing 10% serum. Exponentially growing cells were exposed to the treatment for 48 h. Treated and control cells were washed and processed according to the experiment to be done.

Western blot analysis

Cells were lysed for 30 min at 4°C in 10% glycerol, 0.1% SDS, 0.5% DOC, 1% NP-40 in PBS containing protease and phosphatase-inhibitors. Lysates were centrifuged and protein quantification of supernatants was determined using BCA Protein Assay Reagent (Pierce, Rockford, IL, USA). Lysates (50 μg) were resolved on 10% polyacrylamide gel and transferred to nitrocellulose membrane (GE-Healthcare, Little Chalfont, UK). For HER3 and Phospho-HER3 detection, 80 μg of lysates were used. Blots were blocked for 1 h with 5% skimmed milk in TBST and probed in 3% skimmed milk/TBST overnight at 4°C with the following antibodies: 10 μg/ml anti-hMena rabbit CKLK1 (pan-hMena) antibody [15]; 1 μg/ml anti-hMena11a rabbit antibody, that we developed against a portion of the peptide 11a (RDSPRKNQIVFDNRSYD3) by the use of the Primm service (Primm srl, Milan, Italy), showing a similar pattern of reactivity with the previously reported anti-Mena11a antibody [17] (characterization of the antibody is reported in the Figure S2); anti-Phospho-p44/42 MAPK (Thr202/Tyr204) mouse mAb, p44/42 MAPK rabbit antibody, Phospho-AKT (Ser473) antibody, AKT antibody and Phospho-HER3 were all from Cell Signaling Technology (Beverly, MA); anti-Phospho-HER2 (Y1248) from Upstate Biotechnology (Lake Placid, NY); anti-Neu C18, anti-EGFR 1005 and anti-HER3 C17 were from Santa Cruz Biotechnology (Santa Cruz, CA); anti-EGFR (pY1068) phosphospecific antibody obtained from Biosource (Camarillo, CA). After 3 washes of 15 min each, blots were incubated with the appropriate secondary antibody conjugated with HRP for 1 h and then washed again three times. The protein signals were detected by ECL kit (GE-Healthcare). For actin signal, blots were reprobed with 1 μg/ml monoclonal anti-actin, mouse-ascites fluid clone AC-40 (Sigma Aldrich, Poole, UK). X-ray films were scanned by HP Scanjet 5470 and processed by Corel Photo Paint 12.

RNA extraction and real-time PCR

Five micrograms of total mRNA were extracted using Trizol reagent (Life Technologies Inc, Rockville, MD, USA) to obtain the relative cDNA by first strand cDNA synthesis kit (GE-Healthcare) according to the manufacturer’s protocol. Real-time PCRs (RT-PCR) were run on an ABI Prism 7900 RT-PCR machine (Applied Biosystems) using the following cycling conditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles at 95°C for 15 s each followed by termination at 60°C for 1 min. Each sample contained 10 ng template cDNA, 10 μl 2x Taqman Universal Master Mix (Applied Biosystems), 100 nmol/L of each primer, and 200 nmol/L probe in 20 μl volume. Amplification primers and probe (Assay ID Hs00430216) of Taqman gene expression assay (Applied Biosystem) were used for hMena. The β-Actin gene used as an endogenous control was amplified using the Taqman gene expression assay (Applied Biosystems). Data from triplicate
samples were analyzed with SDS 2.1 software (Applied Biosystems) and relative hMena mRNA expression levels were calculated using the \(\Delta \Delta G_{CT} \) method.

Two-Dimensional Electrophoresis (2DE)

Cells were washed extensively with PBS, pellets lyophilized and solubilized with 2DE solubilization buffer (9 M Urea, 10 mM Tris, 4% CHAPS, 65 mM DTT, 2% IPG buffer ampholine pH 3-10, protease inhibitor cocktail). Protein samples (250 μg) were applied to 7 cm IPG strips pH 3-10NL (GE-Healthcare) by in-gel rehydration. Iso-electro Focusing (IEF) was performed using an IPGphor system (GE-Healthcare) following a standard protocol as described [33]. Strips were equilibrated in 50 mM pH 8.8 Tris-HCl buffer containing 6 M urea, 30% glycerol, 2% SDS and 2% DTT, followed by an incubation in the same buffer replacing DTT with 2.5% iodoacetamide. The strips were loaded on the top of 10% acrylamide SDS-PAGE gels for the second dimension separation. Proteins were electrotransferred onto nitrocellulose membranes and Western blot performed as described above. Images were acquired at high resolution and 2D immunoreactivity patterns analyzed using Progenesis PG240 v2005 software (Nonlinear dynamics, Newcastle, UK). Relative molecular mass (Mr) were estimated by comparison with Mr reference markers (Precision, Bio-Rad, Hercules, CA, USA) and isoelectric point (pI) values assigned to detected spots by calibration as described in the GE-Healthcare guidelines.

Phosphatase treatment

Lambda Protein Phosphatase (λ-PPase) (NewEngland BioLabs, Ipswich, MA, USA) treatment was performed as described [34] with modifications. In brief, pelleted cells (25×10^6) were lyophilized and resuspended in lysis buffer (1% w/v NP-40, 1% w/v SDS, 50 mM Tris pH 7.6, 150 mM NaCl, protease inhibitor cocktail). Sixty μl of lysate, corresponding to 600 μg of protein, were brought to a final volume of 600 μl with deionized water followed by the addition of 20 μl of 20 mM MnCl₂ solution and 20 μl of λ-PPase buffer. For each addition, the solution was gently mixed. The mixture was divided into two aliquots, and 300 units of λ-PPase was added to one of the aliquots. After mixing, aliquots were incubated for 6 h at 30°C. Proteins were acetone precipitated at −20°C and used for 2DE analysis.

Small-interfering RNA treatment

Cells in exponential growth phase were plated in 6-well plates 3×10^5 cells/well. After 24 h cells were transfected with 100 nmol/l hMena-specific pooled siRNA duplexes (siRNA SMART pool) or control non-specific siRNA (DHarmaco, Lafayette, CO) using Lipofectamine 2000 reagent (Invitrogen). After 72 h the cells were analyzed by Western blot or, after 24 h, cells were serum starved for 18 h and then treated with 100 ng/ml EGF or 10 ng/ml NRG1 for additional 24 h for Western blot analysis or \(^{3}H\)thymidine incorporation assay.

\[^{3}H\]Thymidine Incorporation Assay

Thymidine was added to 7 cm IPG strips pH 3-10NL, protease inhibitor cocktail, and equilibrated in 50 mM pH 8.8 Tris-HCl buffer containing 6 M urea, 30% glycerol, 2% SDS and 2% DTT, followed by an incubation in the same buffer replacing DTT with 2.5% iodoacetamide. The strips were loaded on the top of 10% acrylamide SDS-PAGE gels for the second dimension separation. Proteins were electrotransferred onto nitrocellulose membranes and Western blot performed as described above. Images were acquired at high resolution and 2D immunoreactivity patterns analyzed using Progenesis PG240 v2005 software (Nonlinear dynamics, Newcastle, UK). Relative molecular mass (Mr) were estimated by comparison with Mr reference markers (Precision, Bio-Rad, Hercules, CA, USA) and isoelectric point (pI) values assigned to detected spots by calibration as described in the GE-Healthcare guidelines.

Phosphatase treatment

Lambda Protein Phosphatase (λ-PPase) (NewEngland BioLabs, Ipswich, MA, USA) treatment was performed as described [34] with modifications. In brief, pelleted cells (25×10^6) were lyophilized and resuspended in lysis buffer (1% w/v NP-40, 1% w/v SDS, 50 mM Tris pH 7.6, 150 mM NaCl, protease inhibitor cocktail). Sixty μl of lysate, corresponding to 600 μg of protein, were brought to a final volume of 600 μl with deionized water followed by the addition of 20 μl of 20 mM MnCl₂ solution and 20 μl of λ-PPase buffer. For each addition, the solution was gently mixed. The mixture was divided into two aliquots, and 300 units of λ-PPase was added to one of the aliquots. After mixing, aliquots were incubated for 6 h at 30°C. Proteins were acetone precipitated at −20°C and used for 2DE analysis.

Small-interfering RNA treatment

Cells in exponential growth phase were plated in 6-well plates 3×10^5 cells/well. After 24 h cells were transfected with 100 nmol/l hMena-specific pooled siRNA duplexes (siRNA SMART pool) or control non-specific siRNA (DHarmaco, Lafayette, CO) using Lipofectamine 2000 reagent (Invitrogen). After 72 h the cells were analyzed by Western blot or, after 24 h, cells were serum starved for 18 h and then treated with 100 ng/ml EGF or 10 ng/ml NRG1 for additional 24 h for Western blot analysis or \(^{3}H\)thymidine incorporation assay.

\[^{3}H\]Thymidine Incorporation Assay

The day after siRNA transfection cells from each well were transferred to 4 wells of 48-well-plates and treated with growth factors as above described. For \(^{3}H\)thymidine incorporation assay, \(^{3}H\)-thymidine (Perkin Elmer Life and Analytical Sciences, Boston, MA) was added at 5 μCi/mL for 4 h on the last day of treatment. Following medium removal, cells were washed twice with cold PBS, treated with 10% trichloroacetic acid for 30 min at 37°C, solubilized with 0.4 N NaOH and counted for incorporation of \(^{3}H\) on β liquid scintillation counter in 5 mL of scintillation fluid. Each experiment was done in quadruplicate and results were expressed as the means of at least three separate experiments.

Patients and Tissue Specimens

hMena was analyzed by immunohistochemistry in a series of 286 breast cancer patients ranging in age 28–86 years (median, 53 years) subjected to breast cancer surgery at the Regina Elena Cancer Institute (Rome, Italy) between 2000 and 2004. Follow-up data were obtained from hospital charts and by correspondence with the referring physicians. As shown in Table 1, the group included 246 (86%) invasive ductal carcinomas, 28 (10%) invasive lobular carcinomas, and 12 (4%) other histotypes. Among these, 171 (60%) were pT1, 80 (29%) pT2 and 28 (11%) pT3/4, 154 (54%) were node negative and 132 (46%) node positive, 27 (10%) G1, 146 (54%) G2 and 96 (34%) G3. Ki67 was found positive in 122 tumors (43%) and negative in 164 (57%), while hMena was overexpressed in 190 (66%) cases and negative in 96 (34%). Tumors were graded according to Bloom and Richardson and staged according to the Union Internationale Contre le Cancer tumor-node-metastasis system criteria and histologically classified according to the World Health Organization [35]. Moreover, we studied hMena distribution according to the molecular subtypes identified by a few protein biomarkers, namely ER, PgR, HER2.

The study was reviewed and approved by the ethics committee of the Regina Elena National Cancer Institute, and written informed consent was obtained from all patients.

Immunohistochemistry and CISH

hMena immunostaining was performed using a monoclonal antibody from BD Transduction (San Jose, CA, USA; 2.5 μg/mL). Anti estrogen (6F11 MoAb) and progesterone (1A6 MoAb) receptors were purchased from Novocasta (Menarini, Florence, Italy); HER-2 (A0485 pAb) and Ki67 (MIB-1 MoAb) antibodies from DAKO (Milan, Italy); phospho-p44/42 MAPK and phospho-AKT antibodies from Cell Signaling (SIAL, Rome, Italy). Immunostaining was revealed by a streptavidin-biotin enhanced immunoperoxidase technique (Super Sensitive Multi-Link, Menarini) in an automated autostainer. Diaminobenzidine was used as chromogenic substrate.

The intensity of hMena cytoplasmic staining was scored from 0 to 3 as previously described [15]; Ki67 percentage, based on the median value of our series, was regarded as high if >15% of the cell nuclei were immunostained.

HER-2 immunostaining was performed following the manufacturer’s protocol and protein overexpression was determined as defined in the HercepTest kit guide: score 0, 1+, 2+, 3+. All IHC 2+ tumors were analyzed with chromogenic in situ hybridization (CISH) as previously described [36] in order to determine the HER2 gene copy level. For statistical analysis, negative (HER2 -2/0 PG/r) and positive (HER2 +2 PG/r, HER2 3+) cases lacking gene amplification) and positive (HER2 +2 PG/r, HER2 3+) groups were created.

P-MAPK was considered positive when >25% of the neoplastic cells showed a distinct cytoplasmic staining. Breast cancers showing a distinct and intense cytoplasmic immunostaining for P-AKT1 were scored as strongly positive (2+), independent of the percentage of stained cells.
Evaluation of the immunohistochemical results was done independently and in blinded manner by two investigators (M.M., E.M.).

Statistical analysis

All experiments were repeated a minimum of three times. Data collected from [3H]thyidine incorporation assay were expressed as means ± standard deviation (SD). The data presented in some figures are from a representative experiment, which was qualitatively similar in the replicates experiments. Statistical significance was determined by Student’s t test (two tailed) comparison between two groups of data sets. Asterisks indicate significant differences of experimental groups compared with the corresponding control condition (P<0.05, see figure legends). The analysis were performed using GraphPad Prism 4. V4.03 software (GraphPad Inc., San Diego, CA). Change in the phosphorylation status was evaluated using Progenesis PG240 v.2006 software (Nonlinear dynamics) by optical density indicated as normalized spot volume. Normalization was done multiplying the total spot volume by the constant factor 100 which produces as normalized spot volume.

The Chi-Square test and Fisher exact text, when appropriate were used to assess the relationship between hMena positivity and the other biological parameters (HER2, Ki-67, P-AKT, P-MAPK). The Chi-Square test for linear trend was also applied.

The disease-free survival (DFS) curves were estimated by the Kaplan-Meier product-limit method. The log-rank test was used to assess differences between subgroups. Significance was defined at the p<0.05 level. Statistical analysis for survival were performed with SPSS statistical software version 11.5 (SPSS inc., Chicago IL, USA).

References

