Cell-Trappable Fluorescent Probes for Nitric Oxide Visualization in Living Cells

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Cell-Trappable Fluorescent Probes for Nitric Oxide Visualization in Living Cells

Michael D. Pluth, Lindsey E. McQuade, Stephen J. Lippard*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
lippard@mit.edu

Received Date (will be automatically inserted after manuscript is accepted)

ABSTRACT

Two new cell-trappable fluorescent probes for nitric oxide (NO) are reported based on either incorporation of hydrolyzable esters or conjugation to aminodextran polymers. Both probes are highly selective for NO over other reactive oxygen and nitrogen species (RONS). The efficacy of these probes for the fluorescence imaging of nitric oxide produced endogenously in Raw 264.7 cells is demonstrated.

The selective detection of nitric oxide (NO) in living systems has attracted much interest since the discovery that NO is the endothelium-derived relaxing factor (EDRF).1 Nitric oxide is an active signal-inducing molecule in the immune, cardiovascular, and nervous systems, initiating cascades that promote smooth muscle dilation by activating soluble guanylyl cyclase.2 More recently, NO has been implicated to modulate synaptic activity in the CNS, where it may play a role in signal transduction in the olfactory bulb.3 Numerous pathological conditions including carcinogenesis, septic shock, inflammation, and neurodegradation have been associated with the misregulation of NO production.4 Understanding the multiple biological roles of NO will benefit from the development of tools for its selective detection in vivo. Strategies for monitoring NO have relied on a variety of techniques, including the application of fluorescent probes.5 Here we describe fluorescent probes that react directly and specifically with NO that are cell-trappable by means of either ester functionalization or dextran conjugation.

The scaffold of these NO probes is based on that of CuFL15 (Scheme 1), previously reported to detect endogenously produced nitric oxide in mammalian and bacterial cells.6 The CuII fluorescein-based NO probe is formed in situ by treating FL15 with one equiv of CuCl2. When non-emissive CuFL15 reacts with NO, Cu(II) is reduced to Cu(I) with concomitant N-nitrosation of the secondary amine of the ligand to produce the fluorescent species, FL15-NO (Scheme 1). CuFL15 is minimally cytotoxic, cell-membrane permeable, and selective for NO over other biologically relevant reactive oxygen and...
nitrogen species (RONS). One limitation of CuFL1₅, however, is that it cannot be trapped within a cell. Under conditions of continual media perfusion, the probe readily diffuses out of cells after initial loading, rendering it ineffective for many biological experiments.

The first strategy that we applied to impart cell trappability to FL1₅ was to incorporate an ester moiety on the quinoline ring, yielding FL1E. The esterified version of this probe is cell membrane permeable until cytosolic esterases cleave the ester to yield a carboxylic acid, FL1A, which is negatively charged at physiological pH and prohibits re-crossing of the cell membrane.

A second strategy was to append the FL1₅ probe to a macromolecule, specifically aminodextran, which because of its high molecular weight can gain entry to cells by endocytotic pathways. Dextran conjugates are stable in cells. We attached the FL1₅ derivative, FL1A, to amino dextran using an acid linker on the quinoline ring for ease of coupling as well as minimal perturbation of the photophysical properties of the fluorophore.

The syntheses of FL1E, FL1A, and FL₁ Düx are outlined in Fig. 1. The Schiff’s base formed by condensation of aminoquinoline 1 with fluorescein aldehyde 2 in ethanol was reduced with NaBH₄ to afford FL1E. Subsequent hydrolysis under basic conditions yielded the corresponding acid, FL1A. The photophysical properties of FL1A and FL1E are similar to those of FL1₅, as shown in Table 1. The dextran conjugate, FL₁ Düx, was prepared by in situ formation of the NHS-ester of FL1A followed by EDC coupling to 10 kDa aminodextran (2.6 amine/dextran). Optimization of the amide coupling efficiency as well as the fluorescence turn-on with NO of the product conjugate revealed that two equiv of FL1A per primary amine of the dextran provides optimal coupling. Although the coupling was mainly complete, capping excess primary amines with 2-methoxyacetic acid resulted in an enhanced fluorescence turn-on with NO by comparison to the uncapped version. The final conjugate FL₁ Düx was purified by dialysis.

Titrations of the various ligands with CuCl₂ revealed that both FL1E and FL1A form 1:1 Cu:ligand complexes, whereas FL₁ Düx binds 1.7 equiv of Cu²⁺ per FL1A unit, probably due to non-specific Cu-binding to the dextran backbone. Using the copper stoichiometry determined by titration, exposure of solutions of the probes generated in situ to excess NO under anaerobic conditions led to an immediate fluorescence enhancement with a concomitant bathochromic shift of the emission maxima (Fig. 2 and Table 1). These results are consistent with formation of the N-nitrosoamine products.
The relative fluorescence enhancement of CuFL1A when exposed to excess NO was 11.3 ± 0.1 fold, which is similar to that of CuFL1E (16 ± 1) (Fig. 2). Although the fluorescence enhancement of CuFL1E is somewhat diminished (5.4 ± 0.3), it is sufficient to be visualized by spectroscopy and microscopy. Because CuFL1E is not the biologically relevant sensing species, it is therefore not a liability that it is less bright than CuFL1A. CuFL_{Dex} exhibited an intermediate, 6.9 ± 0.8 fold, fluorescence enhancement. This result may be due self-quenching by adjacent fluorophores on the dextran backbone. Treatment of any of the probes with NO under anaerobic conditions in the absence of Cu^{II} did not result in fluorescence turn-on. CuFL1E, CuFL1A and CuFL_{Dex} all turn on with NO and NO donors such as S-nitroso-N-acetyl-DL-penicillamine (SNAP), but are only minimally responsive to other physiologically relevant RONS NO_{2}·, NO_{3}·, ClO−, H_{2}O_{2}, ONOO−, HNO and NO_{2} (Fig. 3).

Because FL_{Dex} enters cells through endocytosis, we wanted to confirm that the FL1A platform bound Cu^{II} at a pH similar to that encountered in the endosomes. In order to confirm that the CuFL_{Dex} is stable under these conditions and that copper would not dissociate at the low pH of the endosome, FL1A and CuFL1A were used as a model and their UV-vis and fluorescence spectra were monitored as a function of pH. For FL1A, as the pH decreased, the fluorescence maxima blue-shifted; however, for CuFL1A, no shift in maxima was observed from pH 6.5 – 4.0, indicating stability of the copper complex at the acidic pH most likely encountered in the endosome (Fig. 4).

Figure 4. pH dependence of λ_{max} (emission) for FL1A and CuFL1A (5 µM FL, 100 mM KCl, 25 °C)

In order to evaluate the efficacy of the probes in live cells, Raw 264.7 murine macrophages, which produce NO from iNOS when induced in response to external activators, were investigated. In these cells, NO production is stimulated by addition of endotoxins, such as lipopolysaccharide (LPS), and cytokines, such as interferon-γ (INF-γ). Raw 264.7 macrophages were therefore treated with LPS and INF-γ, incubating with either CuFL1E or CuFL_{Dex} for 14 h prior to imaging. In both cases, an increase in fluorescence was observed (Fig. 5) confirming turn-on with NO or other biologically relevant NO-transfer agents such as S-nitrosothiols.

Cells that were incubated with the probes without LPS or INF-γ did not display increased fluorescence (Fig. 5). Similarly, stimulation with LPS and INF-γ and treatment with L-N^\omega-nitroarginine (L-NNA), an iNOS inhibitor (K_{i} = 4.4 µM for murine macrophages), showed little fluorescence enhancement. These experiments demonstrate that CuFL1E and CuFL_{Dex} can detect NO.
produced in vivo. Control experiments demonstrated that CuFL1A is not cell permeable (Fig. S1). In order to test the cell trappability of CuFL1E and CuFL1Dex, Raw 264.7 macrophages were stimulated with LPS and IFN-γ and then incubated with the probes for 14 h. The cells were washed and imaged in the microscope incubator, where minimal change in fluorescence intensity was observed over the course of 30 min, confirming cell trappability in contrast to the parent FL1 scaffold (Fig. S2-S4). Subcellular localization studies using nuclear and mitochondrial dyes indicated that CuFL1E localizes to the mitochondria whereas CuFL1Dex is minimally localized (Fig. S5, S6).

In conclusion, we have prepared two new sensors of the FL1 family that impart cell trappability. Both probes maintain sufficient fluorescence to allow for imaging of NO produced endogenously in live Raw 264.7 cells.

Acknowledgment This work was supported by the NSF grant CHE-0907905. MDP thanks the NIH for a postdoctoral fellowship (5 F32 GM085930). The authors acknowledge Gloria Odusote (MIT) for assistance with dextran assays. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of General Medical Sciences or the National Institutes of Health.

Supporting Information Available Experimental details, spectroscopic data, and diffusion/localization cell imaging information. This information is available free of charge via the Internet at http://pubs.acs.org

---

13. For comparison with CuFL1E, 1300 equiv of NO were used. Additon of 100 equiv of NO yielded similar results; see Table S1.