Active scaffolds for on-demand drug and cell delivery

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1007862108</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Apr 24 14:51:19 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/64971</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Active scaffolds for on-demand drug and cell delivery

Xuanhe Zhao*b, Jaeyun Kimb, Christine A. Cezarb, Nathaniel Huebscb, Kangwon Leeb, Kamal Bouhadird, and David J. Mooney*a

*Soft Active Materials Laboratory, Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708; bSchool of Engineering and Applied Sciences and Wyss Institute, Harvard University, Cambridge, MA 02139; cHarvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139; and dDepartment of Chemistry, American University of Beirut, Beirut 11-0236, Lebanon

Porous biomaterials have been widely used as scaffolds in tissue engineering and cell-based therapies. The release of biological agents from conventional porous scaffolds is typically governed by molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulation. We present a new active porous scaffold that can be remotely controlled by a magnetic field to deliver various biological agents on demand. The active porous scaffold, in the form of a macroporous ferrogel, gives a large deformation and a volume change of over 70% under a moderate magnetic field. The deformation and volume variation allows a new mechanism to trigger and enhance the release of various drugs including mitoxantrone, plasmid DNA, and a chemokine from the scaffold. The porous scaffold can also act as a depot of various cells, whose release can be controlled by external magnetic fields.

For over two decades, porous biomaterials fabricated from natural and synthetic polymers, metals, ceramics, and glasses have been intensively studied and widely used as drug delivery vehicles and scaffolds for tissue regeneration (1–5). For example, collagen sponges that release bone morphogenetic proteins are widely used in spine surgery, with an approximately billion-dollar market (6). The porous scaffolds provide a three-dimensional environment that preserves tissue volume, supports cell interactions, and delivers biological agents (7–10). More recently, porous scaffolds have shown great promise as carriers in cell therapy in the treatment of a variety of diseases (11–14). Significant improvement in cell viability, engraftment, and control over cell fate is possible by delivering cells with the porous scaffolds, in contrast to cell injections or infusions (15–17). In all these cases, it is highly desirable to trigger and/or regulate the delivery of biological agents (e.g., drugs and cells) with external cues, because dynamical control over delivery can potentially improve the safety and efficiency of the agents, and permit new therapies (18). In the field of drug delivery, active biomaterials that are responsive to external stimuli such as temperature, pH, enzymes, and various physical fields have been extensively explored for controlled delivery (19–24). On the other hand, the porous scaffolds currently used in tissue engineering and cell therapy are mostly passive in that they deliver biological agents mainly through mechanisms involving molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulations. We believe that active porous scaffolds capable of delivering biological agents under the controls of external stimuli can be achieved by appropriate design and tailoring of porous biomaterials (25).

Here, we demonstrate an active scaffold in the form of a macroporous ferrogel, which is responsive to magnetic fields. Ferrogels consisting of magnetic particles embedded in polymer gels have been intensively investigated, due to the broad application and clinical acceptance of magnetic particles and magnetic fields (26–31). Recent studies have shown controlled release of a number of drugs from ferrogels subject to magnetic fields (32–37). Ferrogels have also been made biodegradable (38) and injectable (39). However, typical ferrogels for drug delivery demonstrate very limited deformation and volumetric change, and the pore sizes in most ferrogels are in the nanometer range (36), which limits transport of large molecules and cells through the gels. Cell delivery from ferrogels is particularly difficult, and the polymers typically used to fabricate ferrogels do not support cell adhesion (33, 37). To create the magnetic-sensitive scaffolds capable of on-demand drug and cell delivery in the current study, polymer gels were fabricated with three-dimensionally connected macropores and coupled with magnetic nanoparticles and cell-binding peptides. Alginate, a naturally occurring polysaccharide, which comprises α-L-guluronic and β-D-mannuronic acid sugar residues, was used to fabricate the scaffolds, because it had been used extensively in biomedical applications. Peptides containing the arginine-glycine-aspartic acid (RGD) amino acid sequence, a ubiquitous cell-binding domain found in many extracellular matrix molecules, were covalently coupled to the alginate. Iron oxide particles with diameters ~10 nm were embedded in the alginates, which results in a superparamagnetic gel (39). Macroporous structures with interconnected pores in the micrometer range were generated from the gels. Under applied magnetic fields, the macroporous ferrogel can give large and prompt deformation, causing water flow through the interconnected pores. The deformation and water convection can trigger and enhance release of biological agents. Various drugs and cells were encapsulated in the scaffolds, and their ability to be released under the control of external magnetic fields was probed in vitro and in vivo.

Results

Macroporous ferrogels were first developed to allow for bioactive agents ranging from molecules to cells to be encapsulated and released on demand. Macroporous gels with a hierarchical structure (Fig. 1) of various sizes (millimeter to centimeter or larger) and shapes (Fig. L4) can readily be fabricated to accommodate specific applications. Pores with controlled sizes and connectivity were introduced into the ferrogels by freezing gels at different temperatures prior to lyophilization (40). Corresponding to freezing temperatures of −20, −80, and −180 °C, the average diameters of the pores were 700, 300, and 20 μm. Highly interconnected pores were observed in gels prepared at −20 and −80 °C, whereas poorly interconnected pores were observed in gels prepared at −180 °C (Fig. S1 and Movies S1, S2, and S3). This finding agrees with the earlier reports on alginate macroporous gels (40, 41). Highly monodisperse iron oxide nanoparticles with a diameter ~10 nm were embedded in the gel at predetermined concentrations (Fig. 1C, Left, 13 wt %; Right, 4 wt %) (42). The surfaces of the nanoparticle were precoated with Pluronic F127 (Fig. 1D) (43) to minimize agglomeration, which resulted in a relatively homogeneous distribution of nanoparticles in the gels.

Author contributions: X.Z. and D.J.M. designed research; X.Z., J.K., C.A.C., N.H., K.L., and K.B. performed research; X.Z., J.K., C.A.C., N.H., K.L., and D.J.M. analyzed data; and X.Z. and D.J.M. wrote the paper.

The authors declare no conflict of interest.

This article is PNAS Direct Submission.

*To whom correspondence should be addressed. E-mail: mooneyd@seas.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007862108/-/DCSupplemental.
Alginate gels were covalently cross-linked with adipic acid dihydrazide (AAD) (Fig. 1D) (40), because the covalent cross-links allowed gels to maintain the macroporous structure following lyophilization and subsequent rehydration. Peptides containing the RGD amino acid sequence were covalently coupled to the polymer prior to gel formation (Fig. 1D) (44). The RGD coupling confers a specific mechanism for integrin-mediated cell adhesion to the otherwise nonadhesive polymer, and the RGD density can be manipulated to provide control over cell adhesion.

The influence of the macropores on the gel mechanical properties were next evaluated because the stiffness of the gels will dictate the extent of deformation that will result from a specific magnetic field. It is well established that by creating pores in a gel, one can greatly reduce its elastic rigidity (45). A ferrogel fabricated with 13 wt % Fe$_3$O$_4$ and 1 wt % alginate cross-linked by 5 mM AAD gives an initial Young’s modulus (i.e., the slope of the initial part of the stress vs. strain curve in Fig. 2A) of ∼30 kPa in a compression test. Introducing connected pores of ∼700-μm diameter into the ferrogel led to a dramatic reduction in the initial modulus, to ∼2.5 kPa (Fig. 2A). These macroporous gels can also be reversibly deformed to a compressive strain of over 80% before fracture, in contrast to the more brittle nature of the standard nanoporous alginategels (Fig. 2A). In addition, it has been observed that the initial Young’s modulus of the macroporous gel decreases with the rise of the freezing temperature used in preparation of the gel (Fig. S2). Macroporous ferrogels fabricated with 13 wt % Fe$_3$O$_4$ and 1 wt % alginate cross-linked by 5 mM AAD, and frozen at −20°C were used for the remaining experiments. The macroporous ferrogels with interconnected pores, larger pore size (Fig. 1B), higher concentration of iron oxide particles (Fig. 1C), and lower modulus (Fig. S2) were chosen because (i) drug and cell transport will presumably be more efficient in scaffolds with larger pore sizes and better connectivity (40), (ii) a higher iron-oxide-particle density gives a higher body force under the same magnetic field, and (iii) a gel with lower modulus tends to deform more when subject to the same body forces. Large deformation of the gel leads to more pronounced effects on drug and cell release.

The deformation of nanoporous and macroporous ferrogels under the influence of a moderate magnetic field was next examined. Subject to a nonuniform magnetic field, a ferrogel experiences a body force proportional to the gradient of the applied field, which results in a shape change (46, 47). A cylinder of a typical nanoporous ferrogel reduced its height by ∼5% when subjected to a vertical magnetic-field gradient of ∼38 A/m2. The corresponding macroporous ferrogel deformed ∼70% under the same magnetic field. (Fig. 2B) SEM images of a freeze-dried macroporous ferrogel in the undeformed and deformed states. (Scale bar: 500 μm.)

Fig. 1. The hierarchical structure of macroporous ferrogels. (A) Photograph of bulk gels with various shapes. (B) SEM images of scaffold with various pore sizes (average diameter from left to right: 700, 300, and 20 μm) and pore connectivity (from left to right: good, good, poor) in the ferrogels. (C) Transmission electron microscope images of iron oxide nanoparticles in the gel at predetermined concentrations (Left, 13 wt %; Right, 4 wt %). (D) Schematic plots of the nanoparticles coated with Pluronic F127 (Left) and alginate covalently cross-linked by AAD and coupled with RGD peptides (Right). Size bars are shown on images.

Fig. 2. (A) Stress vs. strain curves for nanoporous ferrogel and macroporous ferrogel subjected to compression tests. (B) A cylinder of a nanoporous ferrogel reduced its height ∼5% when subjected to a vertical magnetic-field gradient of ∼38 A/m2. (C) The corresponding macroporous ferrogel deformed ∼70% under the same magnetic field. (D) SEM images of a freeze-dried macroporous ferrogel in the undeformed and deformed states. (Scale bar: 500 μm.)

larger deformation, ~70%, under the same magnetic field (Fig. 2C), due to its lower modulus and the increase of iron-oxide-particle density during deformation (Fig. 2D). In addition, the cylinder of the macroporous gel also reduced its volume by ~70% (Fig. 2C), as contrasted to a minimal volume change of the nanoporous gels (Fig. 2B). The large volume change of the macroporous gels was caused by collapse of the pores in these gels, as demonstrated by SEM images of freeze-dried macroporous ferrogels in the deformed and undeformed states (Fig. 2D). The collapsing pores will force water contained in the connected pores to flow out of the gel. Once the magnetic field is off, the elastically deformed gel quickly returns to its original, undeformed configuration in less than 1 s, as surrounding water was reabsorbed into the gel (Movie S4).

We hypothesized that the magnetic-field-induced gel deformation and resulting water convection and associated shear forces could accelerate the release of drugs encapsulated in ferrogels or cells adherent to the pore surfaces of the macroporous ferrogels. To test this hypothesis, we first chose mitoxantrone (M₄, 444 444), an antineoplastic agent, as a model drug. Mitoxantrone forms an ionic complex with the carboxylate groups on alginate, which retards its release (48). Macroporous ferrogels each containing 300 mg mitoxantrone were placed in a PBS solution. Every 30 min, one group of the macroporous ferrogels was subjected to 120 cycles (on/off) of the magnetic field over 2 min by manually approaching and retracting a magnet against the gels, while no magnetic field was applied to the other gels. The short recovery time of the gels allows them to recover their initial dimensions in each cycle. Gel deformation and water convection promotes dissociation of drugs from the polymer and enhances transport of unbound drugs out of the gel. The macroporous gel deformed reversibly and promptly in response to the cycling magnetic field, and the applied magnetic stimulation greatly accelerated the release of mitoxantrone, as shown grossly by the increasing blue color in the PBS. (see Movie S2). The cumulative release profile showed a stepwise increment with magnetic stimulation, and the total amount of mitoxantrone released from the stimulated gel was ~7 times more than that of the control case after 3 h (Fig. 3A). This study was repeated with higher molecular-weight biological agents, plasmid DNA (M₄, ~10⁹) condensed with polyethyleneimine (PEI, M₄, ~22,000), and the chemokine SDF-1α (M₄, 8,000) to determine if this approach would have utility with a wide range of potential drugs. Again, significant stepwise increases in release were noted with application of the magnetic field, as compared to control gels (Fig. 3 B and C).

Next, we used the macroporous ferrogel to examine controlled cell release in vitro (Fig. 4A). The RGD on alginate in macroporous ferrogels enables cells to adhere on the porous surfaces and the adhesion strength increases with RGD density (49). A baseline RGD density was set to 7.43 μmol RGD per gram of alginate (50), and 50% and 10% of the baseline RGD density were also used to examine the role of gel adhesiveness on cell release. Human dermal fibroblasts (1.5×10⁶) were seeded in each gel, and gels were incubated at 37°C for 4 h to allow cell adhesion. Thereafter, the macroporous ferrogels were subject to 120 cycles (on/off) of the magnetic field for ~2 min, at 2-h intervals. The cumulative release of cells was quantified as a function of time (Fig. 4B). Magnetic stimulation resulted in burst release of cells and the release profile varied for gels with different RGD densities. After 6 h (three rounds of magnetic stimulation), around a third of the cells were released from gels with the baseline RGD density, while over half of the cells were released from ferrogels with 50% less RGD. The gels with only 10% of the baseline RGD content delivered over 90% of their cells after 4 h (two rounds of stimulation). These results are consistent with the lower RGD densities providing weaker cell adhesion, resulting in more cell detachment and release under the magnetic stimulation (51). The released cells were collected and probed for viability. More than 95% of the released cells were viable (Fig. S3). The released cells were also incubated in a Petri dish at 37°C. These cells spread normally and became confluent after 2 d (Fig. 4C), indicating that released cells remained viable and functional.

Finally, we examined the capability of macroporous ferrogels in controlled delivery of cells in vivo. Mouse mesenchymal stem cells (1.5×10⁶) stained with DiOC18, a membrane dye with near infrared emission maximum, were seeded in macroporous ferrogels with 50% baseline RGD content. The gels were implanted into the subcutaneous space of mice. One hour after the implantation, the gels were subjected to 120 cycles (on/off) of the external magnetic field by approaching and retracting a magnet against the mouse skin over the gel. As a control, implanted ferrogels were subject to no magnetic stimulation, and in vivo fluorescence images of both conditions were obtained before and after magnetic stimulation (Fig. 5). The control mouse (Fig. 5A and B, Left) showed almost no change in fluorescence, indicating few cells were released from the ferrogel. In contrast, application of the external magnetic field led to a significant increase in

![Graph A](image1.png)

Fig. 3. (A) Cumulative release profiles of mitoxantrone from macroporous ferrogels subject to 2 min of magnetic stimulation every 30 min, or no magnetic stimulation. (B) Cumulative release profiles of plasmid DNA from macroporous ferrogels subject to 2 min of magnetic stimulation every 2 h or no magnetic stimulation. (C) Cumulative release profiles of SDF-1α from macroporous ferrogels subject to 2 min of magnetic stimulation every 2 h or no magnetic stimulation. Values represent mean and standard deviation of each increment (n = 3–5).
to no magnetic stimulation. The positions of the gel disks are indicated by
statistically significant at each time point (between the values of cell release at the various RGD densities were
sent mean and standard deviation of each increment (of cycled magnetic field. (Profiles of fibroblasts from macroporous ferrogels with 100% (cross), 50%
at various times after replating onto tissue culture plastic. Values in
tion inducing cell release from macroporous gels (51). (h) Spreading and proliferation of the released cells
repre-
B
n
cumulative release
3–5). Differences
between the values of cell release at the various RGD densities were
statistically significant at each time point (p < 0.05).

fluorescence around the ferrogel, indicating a burst release of
cells.

Discussion
The results of this study suggest an on-demand and reversible
approach for delivering various biological agents from a newly
designed macroporous ferrogel, in response to external magnetic

fields. A delivery mechanism, based on deformation of macroporous
ferrogels under magnetic stimulation, and subsequent water
flow through connected pores is demonstrated. By creating large
 pores in a ferrogel, one can greatly reduce the rigidity of the
gel and increase its hydraulic conductivity (45). As a result,
the macroporous ferrogels demonstrate very large deformation,
volumetric change, and water convection under applied magnetic
fields, in contrast to the minimal values of conventional nanoporous
ferrogels. Furthermore, it is generally difficult for nanoporous
ferrogels to release drugs with high molecular weight, such as
proteins and plasmid DNA, due to the limited mobility of these
drugs in the nanopores (32–37). The connected macropores
in the new ferrogel enable the rapid transport of various drugs
ranging from small molecules such as mitoxantrone to very large
molecules such as the protein SDF-1α and plasmid DNA out of
the gel, upon magnetic stimulation. This result is consistent with
previous observations that mechanical compression of macroporous
or nanoporous gels can enhance the release of biological
tides because the peptide density can be manipulated to provide
control over cell adhesion. On-demand release of human dermal
fibroblasts and mouse mesenchymal stem cells were demonstr-
ated in vitro and in vivo under the control of external magnetic
fields. The peptide-modified macroporous ferrogel also main-
tains the adhesion and viability of the resident cells, and subject-
ning the gels to external magnetic stimulation allows one to release
a prescribed number of the resident cells on demand over various
time frames. Multiple parameters in this delivery system are tun-
able, including peptide density, the strength of applied magnetic
field, number of magnetic cycles, and frequency of magnetic sti-
mulation, to control the release of various cell types. This on-
demand release of cells from porous scaffolds is potentially of
wide utility for tissue regeneration and cell therapies. The current
study has been focused on the capability of active porous scaffolds
in on-demand drug and cell deliveries, but we also expect these
macroporous ferrogels to find broader applications, including
serving as actuators and sensors in biomedical and other appli-
cations, due to their large and fast deformation and volume change
under magnetic fields.

Materials and Methods
Materials. Sodium alginate with high guluronate content (Protanal LF 20/60)
was purchased from Pronova Biopolymers, Inc. and used without further pur-
ification. PBS was purchased from Invitrogen. AAD, 1-ethyl-3-(dimethylami-
nopropyl) carbodiimide (EDC), MES, 1-hydroxybenzotriazole (HOBt), Iron(III)
chloride hexahydrate, oleic acid, 1-octadecene, and cetyltrimethylammo-
nium bromide were purchased from Sigma-Aldrich. Sodium oleate was
purchased from TCI. Pluronic F127 was purchased from BASF. The integrin-
binding peptide (Gly)4-Arg-Gly-Asp-Ala-Ser-Ser-Lys-Tyr was purchased from
Commonwealth Biotech.

Macroporous Ferrogel Fabrication. The Fe3O4 nanoparticles were fabricated
according to ref. 42 and the surfactant, Pluronic F127, was coated on
the nanoparticles following the procedure in ref. 43. Alginates were coupled
with RGD following aqueous carbodiimide chemistry as described in ref. 44.
To prepare macroporous ferrogels, RGD-modified alginate in MES buffer
(0.1 M MES and 0.5 M NaCl, pH 6.0) was sequentially mixed with
an aqueous solution of Fe3O4 nanoparticles, HOBt, EDC, and AAD. The con-
centration of alginate was 1 wt %, Fe3O4 nanoparticles was 13 wt %, and
AAD was 5 mM in the resulting solution. A baseline RGD density was set
to 7.43 μmol RGD per gram of alginate according to ref. 50. The mixture
was immediately cast between two glass plates separated by 4–11-mm

Fig. 4. (A) Schematic plot of gel deformation and resulting water convec-
tion inducing cell release from macroporous gels (51). (B) Cumulative release
profiles of fibroblasts from macroporous ferrogels with 100% (cross), 50%
circle), and 10% (square) of the baseline RGD density, following application
of cycled magnetic field. (C) Spreading and proliferation of the released cells
at various times after replating onto tissue culture plastic. Values in B repre-
sent mean and standard deviation of each increment (n = 3–5). Differences
between the values of cell release at the various RGD densities were
statistically significant at each time point (p < 0.05).

Fig. 5. In vivo fluorescence images of mice implanted with macroporous
ferrogels containing mouse mesenchymal stem cells stained with DiOC18
before (A) and after (B) magnetic stimulation. The control case was subject
to no magnetic stimulation. The positions of the gel disks are indicated by
circles on the figure.

Zhao et al.
spacers. After 2 h, the ferrogel was cut into various shapes and placed in a large volume of distilled water, for a minimum of 24 h, to remove any residual reagents. The gels were then frozen at −20, −80, or −180 °C and lyophilized to generate macroporous ferrogels with variable pore characteristics.

SEM Sample Preparation. The SEM samples in Fig. 1B were prepared by sputter coating the macroporous ferrogels before dehydration in an oven. To prepare the SEM samples in Fig. 1D, hydrated macroporous ferrogels were frozen in the undeformed and deformed states in liquid nitrogen, and then lyophilized and sectioned for observation.

Pore Size and Connectivity Evaluation. The average sizes of the pores in macroporous gels were calculated by averaging the diameters of the pores in the gels. To assess the pore connectivity, the gels were soaked in a solution containing 1.0 × 10⁶ Fluorospheres red fluorescent microspheres (Molecular Probes) with 1-μm diameter and subject to 120 cycles (on/off) of the external magnetic field. The gels were then dehydrated and examined using microcomputed tomography (micro-CT) to determine the distribution of the fluorescent beads within the gels. Micro-CT images visualized were obtained from the midplane (2.5-mm above the bottom of gels) of the cylindrical-shaped ferrogel scaffolds (5 mm in height). Fluorescent beads were imaged at high resolution (HMXST225, X-Tek; Nikon Metrology NV) with the scanner set to a voltage of 100 kV and a current of 100 μA. A next, a series of 2D images of each sample was taken with an X-Tek X-ray machine while the sample was rotated 360°. The series of 2D images were converted to 3D images using CT Pro software. Image rendering and subsequent image processing including movie production were performed with Volume Graphics studio MAX. The pore connectivity was further evaluated using a water wicking technique in which the interconnected porosity was calculated as the interconnected void volume over the total volume. To determine total volume, gels were soaked in water for 1 h and weighed. A Kimwipe was then used to wick away water within interconnected pores and the gels were weighed once again. The interconnected void volume was calculated as the volume of water wicked from the gels.

Mechanical Testing. The nanoporous ferrogel and macroporous ferrogel were cut into cylinders (15-mm diameter, 8-mm height). The cylinders were subject to compression tests using an Instron 3342 from Instron with a strain rate of 20% per minute. Engineering stresses and strains were recorded. The ferrogel cylinders were kept hydrated throughout the tests.

Controlled Release of Mitoxantrone. The macroporous ferrogels in dry state were cut into disks with a volume ~2 mL. Each disk was allowed to absorb 1 mL of an aqueous solution of mitoxantrone with a concentration of 300 mg/mL. The resulting gels were stored at room temperature for ~6 h. The macroporous ferrogels were then placed in a PBS solution. Every 30 min, one group of the macroporous ferrogels was subjected to 120 cycles (on/off) of the magnetic field over 2 min, while no magnetic field was applied to the other gels. The medium surrounding each disk was collected and replaced with fresh buffer every 2 h instead of every 30 min. The medium surrounding each disk was collected and replaced with fresh buffer every 2 h and after each period of magnetic stimulation. The concentration of plasmid DNA released into the medium was measured using Quant-IT™ PicoGreen® dsDNA Assay Kit (Invitrogen).

Controlled Release of SDF-1α. Macroporous ferrogels with a volume ~1 mL were allowed to absorb 0.5 mL of an aqueous solution of human SDF-1α (PeproTech) with a concentration of 2 μg/mL. Ferrogel disks were used for the release study following a procedure similar to that described in the controlled release of mitoxantrone, except the magnetic field was applied every 2 h instead of every 30 min. The medium surrounding each disk was collected and replaced with fresh buffer every 2 h and after each period of magnetic stimulation. SDF-1α protein concentrations were then determined using an Enzyme Linked Immunosorbent Assay Kit for human SDF-1α (R&D Systems).

Controlled Cell Release in Vivo. Mouse dermal fibroblasts (1.5 × 10⁶) (Lonza) were seeded in each ferrogel gel disk, and the gel disks were incubated at 37 °C for 4 h to allow cell adhesion. Thereafter, the ferrogel disks were placed in PBS-supplemented DMEM and the cells were released following a similar procedure as described in controlled release of mitoxantrone, except the magnetic field was applied every 2 h instead of every 30 min. The gel disks were implanted subcutaneously into the back region of female nude mice (NU/J, Jackson Laboratory) under anesthesia, and the incisions were closed by 5-0 Ethilon sutures (Johnson & Johnson). In order to create a space for placement of gels and cell release, liquid pockets were generated around the ferrogels by subcutaneous PBS injection prior to gel placement. One hour after the implantation, the ferrogels were subject to 120 cycles (on/off) of the external magnetic field by approaching and retracting a magnet against the skin of the mouse. Fluorescence images of mice were obtained on a Xenogen IVIS Spectrum system (Caliper Life Sciences). Animal work was performed in compliance with National Institutes of Health and institutional guidelines.

ACKNOWLEDGMENTS. This work was supported by the Materials Research Science and Engineering Centers at Harvard University, National Institutes of Health/National Institute of Dental and Craniofacial Research Grant (ROI DE019917), the BASF research initiative at Harvard University, and the Defense Advanced Research Projects Agency (W911NF-10-0113). X.Z. acknowledges the startup funds from the Pratt School of Engineering at Duke University.

REFERENCES

9. Shindo movie production. MACS L. Preparation in water.

