Cardiac output and stroke volume estimation using a hybrid of three models

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1109/iembs.2010.5627225
Publisher	Institute of Electrical and Electronics Engineers
Version	Final published version
Accessed	Wed Mar 16 12:36:36 EDT 2016
Citable Link	http://hdl.handle.net/1721.1/64992
Terms of Use	Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	
Abstract—Cardiac output (CO) and stroke volume (SV) are the key hemodynamic parameters to be monitored and assessed in ambulatory and critically ill patients. The purpose of this study was to introduce and validate a new algorithm to continuously estimate, within a proportionality constant, CO and SV by means of mathematical analysis of peripheral arterial blood pressure (ABP) waveforms. The algorithm combines three variants of the Windkessel model. Input parameters to the algorithm are the end-diastolic pressure, mean arterial pressures, inter-beat interval, and the time interval from end-diastolic to peak systolic pressure. The SV estimates from the three variants of the Windkessel model were weighted and integrated to provide beat-to-beat SV estimation. In order to validate the new algorithm, the estimated CO and SV were compared to those obtained through surgically implanted Transonic™ aortic flow probes placed around the aortic roots of six Yorkshire swine. Overall, estimation errors in CO and SV derived from radial ABP were 10.1% and 14.5% respectively, and 12.7% and 16.5% from femoral ABP. The new algorithm demonstrated statistically significant improvement in SV estimation compared with previous methods.

I. INTRODUCTION

Stroke volume (SV) and cardiac output (CO) are the key hemodynamic parameters to be monitored and assessed in ambulatory and critically ill patients. Currently, hemodynamic monitoring of patients in critical care settings depends heavily on the monitoring of arterial blood pressure (ABP). However, ABP is a late indicator of hemodynamic collapse and death [1]. CO and SV monitoring enables earlier prediction of hemodynamic collapse, but CO and SV are more difficult to measure and monitor.

Since thermodilution [2], the gold standard of CO measurement, requires pulmonary artery catheterization which is associated with cardiovascular risks [3, 4] and has limited accuracy [5], pulse contour methods (PCMs) have been extensively studied [6-12] as a means of estimating CO from analysis of the continuous ABP signal. A conventional PCM approach to minimally invasive CO estimation is based on the two-parameter Windkessel model that involves aortic compliance (C_a) and total peripheral resistance (TPR) (Figure 1). When the diastolic decay in blood pressure is governed by the Windkessel time constant (t), CO and SV can be estimated from the measurement of mean arterial pressure (MAP), C_a, t, and pulse pressure (PP). However, these methods are not applicable to peripheral ABP waveforms because peripheral ABP waveforms tend to distort as they propagate through the elastic tapered arterial network and, in particular, ABP waveforms in the peripheral arteries generally do not display exponential decay during the diastolic phase. Thus it is difficult to obtain the Windkessel time constant (t) [10]. For these reasons, the PCM has not achieved sufficient accuracy or reliability to be adopted clinically [13].

In order to further minimize error and enable continuous estimation of CO and beat-to-beat SV, we have developed a novel CO and SV estimation algorithm based on end-diastolic blood pressure (end-DBP) values, beat-MAP (MAP, - MAP of a single beat), inter-beat interval (T_i), and the time interval from end-DBP to peak SBP (T_{ip}) in the peripheral ABP waveform. These variables are selected for estimation of CO and SV because they are known to be relatively insensitive to the distortion of the ABP waveform in the arterial tree [14]. The purpose of this study was to validate the algorithm we developed in in-vivo animal studies, and compare it with the other methods.

II. METHODS

A. Algorithm

Figure 2 illustrates measured ABP and the theoretical
Windkessel model ABP. Although Ca declines with age [15], Ca is nearly constant on the time scale of months over a wide pressure range [16, 17], thus Ca was assumed to be constant throughout this relative short experimental period. For each cardiac cycle, the two end-DBP values (P_i^D, P_{i+1}^D) were obtained.

Then, the theoretical Windkessel ABP waveform was generated using the following equations:

$$P(t) = P_i^D \exp \left(- \frac{(t-t_i^S)}{\tau_i} \right) \quad \text{for } t_i^D < t < t_i^S$$

$$P(t) = \left(P_i^D \exp \left(- \frac{T_i^S}{\tau_i} \right) + \frac{SV(i)}{C_a} \right) \exp \left(- \frac{(t-t_i^S)}{\tau_i} \right)$$

for $t_i^S < t < t_{i+1}^D$ (2)

where t_i^D and t_i^S are time stamps of the end of diastole (onset of systole) and the peak systolic point of the ith ABP waveform, respectively. P_i^D is end-DBP immediately preceding the ith beat of measured ABP. T_i^S and T_i are the periods from the end-DBP to the peak systolic point and inter-beat interval of the ith ABP waveform, respectively. $SV(i)$ is the SV of the ith beat. Each impulse of ABP waveform is aligned to each systolic peak point of measured ABP. The Windkessel time constant (τ) was adjusted so that for each beat the MAP of the measured ABP equaled the MAP of the Windkessel ABP.

Taking the average of ABP over the ith beat using the above equations (1 and 2), the MAP can be expressed by $T_i, P_i^D, P_{i+1}^D, SV(i), \tau_i$, and C_a as follows.

$$MAP_i = \frac{1}{T_i} \int_{t_i}^{t_{i+1}} P(t) \, dt = \frac{\tau_i}{T_i} \left(P_i^D + \frac{SV(i)}{C_a} - P_{i+1}^D \right)$$

As shown in Figure 2, the ith beat PP of the ideal Windkessel ABP from (2) can be calculated by subtracting the two ABP values at T_i^S:

$$SV(i) = \frac{P_i^D}{C_a} \exp \left(\frac{T_i^S - T_i^D}{\tau_i} \right) - P_i^D \exp \left(- \frac{T_i^S}{\tau_i} \right)$$

Substituting (4) into (3),

$$MAP_i = \frac{\tau_i}{T_i} \left(P_i^D \exp \left(\frac{T_i^S - T_i^D}{\tau_i} \right) - 1 \right) + P_i^D \left(1 - \exp \left(- \frac{T_i^S}{\tau_i} \right) \right) \quad \text{(5)}$$

Equation (5) can be numerically solved for τ_i. In actual implementation, the median value of τ calculated using (5) over a 20-second moving window is used to exclude outliers, and regarded as the τ of the beat in the middle of the window. Continuous SV was calculated by shifting the 20-second moving window beat-by-beat. An interval of 20 seconds was empirically found by the authors to provide the smallest estimation errors over a wide range of physiological conditions.

However, in fact it is not known when the impulse corresponding to peak aortic blood flow occurs. Since the blood flow peak occurs before peak SBP time, we introduced two Windkessel models to cover the extremes of possible impulse times:

Model 1) Impulse at the SBP peak (shown in Fig. 2)

$$SV_{prop1}(i) = \frac{SV(i)}{C_a} = f \left(MAP_i, P_i^D, P_{i+1}^D, T_i, T_i^S \right) \quad \text{(6a)}$$

Model 2) Impulse at the beginning of the ABP waveform

$$SV_{prop2}(i) = SV_{prop1} \left(T_i^D, T_i \right) = f \left(MAP_i, P_i^D, P_{i+1}^D, T_i \right) \quad \text{(6b)}$$

Here SV_{prop1} and SV_{prop2} are proportional to SV with a proportionality constant of $1/C_a$.

A third steady state model is introduced that assumes that $P_i^D = P_{i+1}^D$:

Model 3) Steady state assumption

$$SV_{prop3}(i) = SV_{prop1} \left(\frac{P_{i+1}^D}{P_i^D}, P_i^D, T_i \right) = f \left(MAP_i, P_i^D, T_i \right) \quad \text{(6c)}$$

Of the five measured parameters, there are three dimensionless variables ($T_i^S/T_i, P_i^D/MAP_i, P_{i+1}^D/MAP_i$) that characterize the ABP waveform. Thus combining the three models for estimating SV_{prop} should span the space covered by the three dimensionless parameters. One hybrid model for estimating SV is given by:

$$SV_i = C_a SV_{prop1}(i) \left(\frac{SV_{prop1}(i)^{a_1}}{SV_{prop1}(i)^{a_2}} \right) \cdot \left(\frac{SV_{prop3}(i)^{a_1}}{SV_{prop1}(i)^{a_2}} \right) \quad \text{(7)}$$

Note that (7) is a hybrid model of SV_{prop1}, SV_{prop2}, and SV_{prop3}, geometrically weighted using the exponents a_1 and a_2. For example, if $a_1=0$ and $a_2=1$, then $SV_i = SV_{prop2}$. (6b) is adopted. The coefficients allow non-discrete switching between the three models. By taking natural logarithm of (7), the equation becomes linear

$$y(i, j) = D(j) + y_1(i, j) + a_1 X_1(i, j) + a_2 X_2(i, j) \quad \text{(8)}$$

where i is beat number, j is subject number, $y=y_i ln(SV), D(j)=ln(C_a), y_1=ln(SV_{prop1}), X_1=ln(SV_{prop2}), X_2=ln(SV_{prop3})$. Linear regression and least mean square error analysis yield aortic compliances C_a, a_1, and a_2. It is possible to generalize the hybrid model by introducing terms involving X_1 and X_2 raised to higher powers.
\[y(i, j) = D(j) + y_q(i, j) + \sum_{M=1}^{M_{\text{min}}} \sum_{q=0}^{M} c_q \alpha_{Mq} (X_1(i, j))^{M-q} (X_2(i, j))^q \] (9)

where \(M \) is the model order, \(\alpha_{Mq} \) is the binomial coefficient, while \(c_q \) are the parameters to be found by the linear regression analysis. Once the parameters are obtained, \(SV \) is calculated as

\[SV = \exp(y) \] (10)

\(CO \) is calculated by averaging \(SV \) over the six-minute window overlapping every three minutes.

B. Experimental Protocol

To validate the algorithm, previously reported [10] data from six Yorkshire swine (30–34 kg) recorded under a protocol approved by the MIT Committee on Animal Care were processed and analyzed offline. Aortic blood flow was recorded using an ultrasonic flow probe. Radial and femoral ABP were measured using micromanometer-tipped catheter and an external fluid-filled pressure transducer (TSD104A, Biopac Systems, Santa Barbara, CA). The data were recorded using an A/D conversion system (MP150WSW, Biopac Systems) at a sampling rate of 250 Hz.

C. Data analysis

The results of the CO and SV estimation were evaluated in terms of the error defined as the logarithm of the ratio of the estimated to measured values. Specifically, root normalized mean square log error (RNMSLE) was used:

\[\text{RNMSLE} = 100 \left(\frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{\ln(\text{Est}_n) - \ln(\text{Meas}_n)^2}{N - N_f}} \right) \] (11)

where \(N \) is the number of data points, \(N_f \) the number of free parameters, \(\text{Est} \) and \(\text{Meas} \) are the estimated and measured values of \(CO \) and \(SV \). Utilizing the F-test, as in pair-wise comparison of variance, RNMSLE of the new method was compared with the following methods: ARMA technique (CO estimates only) [10], Liljestrand method (Lilje) [8, 18], traditional PP method (PP1), Herd’s PP method (PP2) [7]. The CO and SV estimates by the new method were also compared with constant values (Const) in which the calculated CO and SV are set to constant values (means of the measured CO and SV). The comparison results with \(P < 0.05 \) were regarded as statistically significant.

III. RESULTS

Using the MDL criterion [19, 20], the order was set to 8 for analysis of femoral ABP, and the order was set to 9 for analysis of radial ABP. The new method yielded smaller RNMSLE \((P < 0.05) \) than the other methods for both the CO and SV estimations (Fig. 3). Over a wide physiological range achieved by administering phenylephrine (vasoconstrictor), nitroglycerin (vasodilator), dobutamine (beta agonist), and esmolol (beta blocker), the new method achieved errors of 12.7% in CO and 16.5% in SV derived from femoral ABP, and 10.1% in CO and 14.5% in SV derived from radial ABP.

IV. DISCUSSION

We have introduced a novel algorithm to estimate continuous CO and SV from analysis of peripheral ABP waveforms recorded at the femoral and radial arteries. The new algorithm uses \(\text{beat-MAP} \) and \(\text{end-DBP} \), rather than \(\text{SBP} \), values since \(\text{beat-MAP} \) and \(\text{end-DBP} \) values are relatively insensitive to distortion in the ABP waveform.

The key notion of the new method is that the three dimensionless variables \((T_i^2 T_k, P_i^2 MAP_k, P_i P_k MAP) \) used to calculate SV were converted into three proportional SV estimates \(SV_{\text{prop1}}, SV_{\text{prop2}}, \) and \(SV_{\text{prop3}} \) using three variants of the Windkessel model (6a-6c). The logarithm of the three SV estimates were weighted by parameters obtained from linear regression and least mean square error analysis, and integrated into a single SV value by (9). The new method achieved RNMSLE of 12.7% in CO and 16.5% in SV derived from femoral ABP, and 10.1% in CO and 14.5% in SV derived from radial ABP, and showed a significant improvement over the other methods \((P < 0.05, \text{Fig. 3}) \).

A limitation of the current methods, along with all PCMs is that SV and CO are all estimated only to within a proportionality constant. An independent calibration is required if absolute measures are needed.
REFERENCES

Fig. 4. Agreement of the measured and estimated cardiac output (CO) and stroke volume (SV) from radial arterial blood pressure in six Yorkshire swine.