Measurements of the Electric Form Factor of the Neutron up to $Q^2=3.4$ GeV2 Using the Reaction $(^3\text{He})\rightarrow (e,e'\text{n})pp$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurements of the Electric Form Factor of the Neutron up to $Q^2 = 3.4$ GeV2

Using the Reaction 3He$(\bar{e}, e' n)pp$

1 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
2 University of Virginia, Charlottesville, Virginia 22903, USA
3 University of Massachusetts, Amherst, Massachusetts 01003, USA
4 Yerevan Physics Institute, Yerevan 375036, Armenia
5 College of William and Mary, Williamsburg, Virginia 23187, USA
6 University of Kentucky, Lexington, Kentucky 40506, USA
7 University of Maryland, College Park, Maryland 20742, USA
8 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
9 Florida International University, Miami, Florida 33199, USA
10 Kent State University, Kent, Ohio 44242, USA
11 California State University Los Angeles, Los Angeles, California 90032, USA
12 University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
13 Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
14 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
15 University of New Hampshire, Durham, New Hampshire 03824, USA
16 North Carolina Central University, Durham, North Carolina 27707, USA
17 INFN gruppo Sanità collegato Sezione di Roma and Istituto Superiore di Sanità, Rome, Italy
18 Université Blaise Pascal/IN2P3, F-63177 Aubière, France
19 Universidad Complutense de Madrid, Madrid, Spain
20 Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
21 Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
22 Syracuse University, Syracuse, New York 13244, USA
23 University of Illinois, Urbana-Champaign, Illinois 61801, USA
24 Norfolk State University, Norfolk, Virginia 23504, USA
25 Universität Basel, CH-4056 Basel, Switzerland
26 Old Dominion University, Norfolk, Virginia 23529, USA
27 Temple University, Philadelphia, Pennsylvania 19122, USA
28 Budker Institute for Nuclear Physics, Novosibirsk 630090, Russia
29 Tel Aviv University, Tel Aviv, 69978 Israel
30 Duke University and TUNL, Durham, North Carolina 27708, USA
31 Kyungpook National University, Taegu City, South Korea
32 Institute for Nuclear Physics, Tomsk 634050, Russia
33 Instituto de Estructura de la Materia, Madrid, Spain
(Rceived 10 August 2010; published 30 December 2010)
The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. More than doubling the Q^2 range over which it is known, we find $G_E^p = 0.0236 \pm 0.0017 \text{(stat)} \pm 0.0026 \text{(sys)}, 0.0208 \pm 0.0024 \pm 0.0019$, and $0.0147 \pm 0.0020 \pm 0.0014$ for $Q^2 = 1.72, 2.48$, and 3.41 GeV^2, respectively.

Understanding the nucleon in terms of QCD degrees of freedom requires precision measurements of nucleon structure, including the form factors (FFs) that govern the elastic scattering of electrons. Important advances in such efforts came from the determination, at Jefferson Lab (JLab), of the ratio of the electric and magnetic elastic FFs of the proton, G_E^p / G_M^p, over a range of the negative four-momentum transfer squared (Q^2) of 1–6 GeV2 [1]. The ratio G_E^p / G_M^p was observed to decrease almost linearly with increasing Q^2, when expectations, based on both earlier cross-section measurements and prevailing theoretical models of the nucleon, had been that such a ratio is constant. This observation has clarified the necessity for a reconsideration of nucleon structure with an increased emphasis on the significance of quark orbital angular momentum; see, e.g., the review [2]. Evidence of quark orbital angular momentum has subsequently been observed in several other independent contexts [3].

The powerful method of determining FFs by using double-polarization asymmetries [4], which led to the striking results of Ref. [1], has also been used to study $g_n = \mu_n G_E^p / G_M^p$, where $\mu_n = -1.913$ is the neutron magnetic moment, up to $Q^2 = 1.5 \text{ GeV}^2$. These experiments have employed polarized electrons and either a neutron polarimeter [5,6], a polarized deuterium target [7,8], or a polarized ^3He target [9–12]. At low momentum transfer, the nuclear effects in double-polarization asymmetries have been taken into account by using precise nonrelativistic calculations of ^3He based on the Faddeev-like integral equations [13], whereas at large Q^2 the eikonal approximation [14] provides sufficient precision. For Q^2 values of several GeV2, even polarization-based studies of g_n become very challenging due to the small cross sections involved, thus necessitating significant technical development. We report a measurement of g_n, up to $Q^2 = 3.4 \text{ GeV}^2$, performed at JLab in experimental Hall A. The experiment was made possible through the use of a high-luminosity optically polarized ^3He target, a 76 msr solid angle magnetic spectrometer to detect the scattered electrons, and a large neutron detector with matched acceptance. The typical ^3He-electron luminosity was $5 \times 10^{35} \text{ cm}^{-2}/\text{s}$. The central kinematics and the average values of experimental parameters are listed in Table I.

The experiment, E02-013, used a longitudinally polarized electron beam with a current of 8 μA. The helicity of the beam was pseudorandomly flipped at a rate of 30 Hz. The helicity-correlated charge asymmetry was monitored and kept below 0.01%. The beam polarization, monitored continuously by a Compton polarimeter and measured several times by a Möller polarimeter [15], was determined with a relative accuracy of 3%.

The polarized ^3He target, while similar in many respects to the target described in Ref. [15], included several important improvements. The ^3He was polarized by spin exchange with an optically pumped alkali vapor, but, unlike earlier targets at JLab, the alkali vapor was a mixture of Rb and K [16] rather than Rb alone. This greatly increased the efficiency of spin transfer to the ^3He nuclei, resulting in a significantly higher polarization. The ^3He gas (at a pressure of $\sim 10 \text{ atm}$), a 1% admixture of ^3He, and the alkali vapor were contained in a sealed glass cell with two chambers. The electron beam passed through the lower “target” chamber, a cylinder 40 cm in length and 2 cm in diameter, where the polarization was monitored every six hours with a relative accuracy of 4.7% by using NMR. The polarization was calibrated in the upper “pumping” chamber by using a technique based on electron paramagnetic resonance [17]. A magnetic field of 25 G was created in the target area by means of a 100 cm gap dipole magnet. The horizontal direction of the field in the target area, 118° with respect to the electron beam, was nearly orthogonal to the momentum-transfer vector and was measured to 1 mrad accuracy over the length of the target. The target cell alignment along the beam was regularly checked by varying the size of the electron beam spot. The background from beam-cell interactions was estimated by using data collected with an empty cell and was found to be negligible.

| TABLE I. Kinematics and other parameters of the experiment: the negative four-momentum transfer Q^2; the rms of the Q^2 range, ΔQ^2; beam energy E_{beam}; central angle of the electron spectrometer, θ_e; central angle of the neutron detector, θ_n; distance from the target to the neutron detector, D; longitudinal beam polarization P_L; and target polarization P_{he}. |
|-----------------|------------------|------------------|------------------|------------------|
| (Q^2) [GeV2] | 1.72 | 2.48 | 3.41 |
| ΔQ^2 [GeV2] | 0.14 | 0.18 | 0.22 |
| E_{beam} [GeV] | 2.079 | 2.640 | 3.291 |
| θ_e [deg] | 51.6 | 51.6 | 51.6 |
| θ_n [deg] | 33.8 | 29.2 | 24.9 |
| D [m] | 8.3 | 11 | 11 |
| (P_L) [%] | 85.2 | 85.0 | 82.9 |
| (P_{he}) [%] | 47.0 | 43.9 | 46.2 |
The scattered electrons were detected in the BigBite spectrometer, originally used at Nationaal Instituut voor Kernfysica en Hoge-Energiefysica-Kernfysica (NIKHEF-K) [18]. It consisted of a dipole magnet and a detector stack subtending a solid angle of 76 msr for a 40 cm long target. The spectrometer was equipped with 15 planes of high-resolution multiwire drift chambers, a two-layer lead-glass calorimeter for triggering and pion rejection, and a scintillator hodoscope for event timing information. BigBite provided a relative momentum resolution of \(\sim 1\% \) for electrons with a momentum of 1.5 GeV/c, a time resolution of 0.25 ns, and an angular resolution of 0.3 (0.7) mrad in the vertical (horizontal) direction. The \(Q^2 \) acceptance was \(\sim 10\% \) of the \(Q^2 \) value despite the large angular acceptance of BigBite, thanks to its large 5:1 vertical/horizontal aspect ratio.

The recoiling nucleons were detected in coincidence by using a large hadron detector, BigHAND, that included two planes of segmented veto counters followed by a 2.5 cm lead shield, and then seven layers of neutron counters. Each neutron-counter layer covered a 3 cm lead shield, and then seven layers of neutron counters. The trigger was formed by using a 100 ns wide coincidence of the recoiling nucleon. The three-momentum \(q \) was the angle between the neutron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the electron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the neutron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the electron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the neutron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the electron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the neutron scattering plane and the direction of the recoil nucleon. The three-momentum \(q \) was the angle between the electron scattering plane and the direction of the recoil nucleon.

The trigger was formed by using a 100 ns wide coincidence between the signals from BigHAND and BigBite and required the total energy in the BigHAND scintillator counters to lie above 25 MeV and the total energy deposited in the BigBite calorimeter to be above 500 MeV. A Monte Carlo simulation of our experiment, which included a modeling of the detector response utilizing GEANT4 [19], was found to be in good agreement with the detector characteristics obtained from the experimental data.

The BigBite spectrometer optics were used to reconstruct the momentum, the direction, and the reaction vertex of the electrons. BigHAND was used to determine the direction and charge of the recoiling particle. By using BigBite, it was also possible to accurately determine the time at which the scattering event took place, which in turn provided the start time for computing the time of flight of the recoil particles arriving in BigHAND and, hence, the momentum \(p_{\perp} \) of the recoil nucleon. The three-momentum transfer \(\vec{q} \) was used to calculate, for the recoil nucleon, the missing perpendicular momentum \(p_{\perp} = \frac{|(\vec{q} - \vec{p}_n) \times \vec{q}|}{|\vec{q}|} \) and the missing parallel momentum \(p_{||} = (\vec{q} - \vec{p}_n) \cdot \frac{\vec{q}}{|\vec{q}|} \). The invariant mass of the system comprised of the virtual photon and the target nucleon (assumed to be free and at rest), \(W \), was calculated as

\[
W = \sqrt{m^2 + 2m(E_i - E_f) - Q^2},
\]

where \(m \) is the neutron mass, \(E_i \) the beam energy, and \(E_f \) the energy of the detected electron. The identification of quasielastic events was largely accomplished by using cuts on \(p_{\perp} \) and \(W \).

Table II.

<table>
<thead>
<tr>
<th>(Q^2) [GeV(^2)]</th>
<th>1.72</th>
<th>2.48</th>
<th>3.41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W) [GeV]</td>
<td>0.7–1.15</td>
<td>0.65–1.15</td>
<td>0.6–1.15</td>
</tr>
<tr>
<td>(p_{\perp}) [GeV]</td>
<td><0.15</td>
<td><0.15</td>
<td><0.15</td>
</tr>
<tr>
<td>(p_{</td>
<td></td>
<td>}) [GeV]</td>
<td><0.25</td>
</tr>
<tr>
<td>(m_{\text{inv}}) [GeV]</td>
<td><2.0</td>
<td><2.0</td>
<td><2.2</td>
</tr>
<tr>
<td>(A_{\text{meas}})</td>
<td>-0.136</td>
<td>-0.134</td>
<td>-0.098</td>
</tr>
<tr>
<td>(D_f)</td>
<td>0.948</td>
<td>0.949</td>
<td>0.924</td>
</tr>
<tr>
<td>(A_{\text{bgd}})</td>
<td>0.970</td>
<td>0.981</td>
<td>0.975</td>
</tr>
<tr>
<td>(A_{\text{phys}})</td>
<td>-0.148</td>
<td>-0.145</td>
<td>-0.109</td>
</tr>
<tr>
<td>(D_{p/n})</td>
<td>0.980</td>
<td>0.963</td>
<td>0.851</td>
</tr>
<tr>
<td>(A_{\text{in}})</td>
<td>-0.108</td>
<td>-0.254</td>
<td>-0.113</td>
</tr>
<tr>
<td>(A_{\text{QE}})</td>
<td>-0.149</td>
<td>-0.141</td>
<td>-0.109</td>
</tr>
<tr>
<td>(D_{p/n})</td>
<td>0.782</td>
<td>0.797</td>
<td>0.807</td>
</tr>
<tr>
<td>(\delta D_{p/n})</td>
<td>0.022</td>
<td>0.033</td>
<td>0.042</td>
</tr>
<tr>
<td>(A_{cp})</td>
<td>-0.010</td>
<td>-0.008</td>
<td>-0.006</td>
</tr>
<tr>
<td>(A_{\text{end-exp}})</td>
<td>-0.188</td>
<td>-0.175</td>
<td>-0.134</td>
</tr>
</tbody>
</table>

Additional cuts included \(p_{||} \) and the total mass of the undetected hadrons, \(m_{\text{inv}} \). See Table II.

The measured asymmetry was calculated as

\[
A_{\text{meas}} = \frac{1}{P_\rho P_{\text{He}}} \left[N_{p(a)} - N_{p(a)}^{-}\right],
\]

where \(N_{p(a)} \) is the number of events (normalized to beam charge) with the target polarization parallel (antiparallel) to the vector of the holding magnetic field and \(h \) is beam helicity. A statistically weighted average of \(A_{\text{meas}} \) and \(A_{\text{meas}}^d \), \(A_{\text{meas}} \), was used in the \(g_n \) analysis. In the case of the elastic scattering of 100% longitudinally polarized electrons off 100% polarized free neutrons, in the one-photon approximation, \(g_n \) is related to the double spin asymmetry \(A_{en} \) through [20]

\[
A_{en} = \frac{-2\sqrt{\tau(1 + \tan^2(\theta_r/2)}\cos \theta^* g_n / \mu_n)}{(g_n / \mu_n)^2 + \tau[1 + 2(1 + \tau)\tan^2(\theta_r/2)]}
\]

\[
+ \frac{-2\sqrt{\tau(1 + \tan^2(\theta_r/2)}\tan(\theta_r/2)\cos \theta^* g_n / \mu_n)}{(g_n / \mu_n)^2 + \tau[1 + 2(1 + \tau)\tan^2(\theta_r/2)]},
\]

where \(\tau = Q^2/4m^2, \theta^* \) is the angle between the neutron polarization vector \(\vec{P}_n \) and \(\vec{q} \), and \(\phi^* \) is the angle between the electron scattering plane and the \((\vec{P}_n, \vec{q}) \) plane.

To obtain \(g_n \) from \(A_{\text{meas}} \), a number of corrections were applied, the most important of which are presented in Table II. A target dilution factor \(D_f \) was applied to account for scattering from the \(N_2 \) admixture in the target gas. Accidental coincidences were accounted for by using a background dilution \(D_{\text{bgd}} \) associated with an asymmetry \(A_{\text{bgd}} \) and were determined by considering the interval of the time-of-flight spectrum that was free from real
Our results for g_n are shown in Fig. 1 along with recent data sets that extend beyond $Q^2 = 0.5$ GeV2 [5–8,12]. It is important to compare our results with calculations that have described well the proton FF data. Three such calculations are shown in Fig. 1. In all of them, quark orbital angular momentum plays an important role. One is a logarithmic scaling prediction for the ratio of the Pauli and Dirac nucleon form factors: $F_2/F_1 \propto \ln^2(Q^2/\Lambda^2)/Q^2$ [28], based on perturbative QCD (pQCD), which is shown for two values of the soft-scale parameter Λ. It is in clear disagreement with the combined neutron data, despite providing a good description of the proton data. The authors of Ref. [28] noted, however, that the agreement with the proton data may well have been due to delicate cancellations, given the relatively low values of Q^2 involved. Another calculation is the light front cloudy bag model [29], an example of a relativistic constituent quark model (RCQM) calculation that, in this case, includes a pion cloud. Several RCQMs anticipated the observed decreasing Q^2 dependence of G_E^p/G_M^p. Finally, we show a calculation based on QCD’s Dyson-Schwinger equations (DSE) [30], in which the mass of the quark propagators is

\[(Q^2) \text{ [GeV}^2] \quad g_n \pm \text{stat} \pm \text{syst} \quad G_E^p \pm \text{stat} \pm \text{syst} \quad G_M^p \quad P_{He} \quad P_{n} \quad P_{e} \quad D_{p/n} \quad D_{m} \quad \text{Other} \\
1.72 \quad 0.273 \pm 0.020 \pm 0.030 \quad 0.0236 \pm 0.0017 \pm 0.0026 \quad 0.020 \quad 0.076 \quad 0.033 \quad 0.055 \quad 0.033 \quad 0.011 \quad 0.025 \\
2.48 \quad 0.412 \pm 0.048 \pm 0.036 \quad 0.0208 \pm 0.0024 \pm 0.0019 \quad 0.024 \quad 0.059 \quad 0.024 \quad 0.031 \quad 0.036 \quad 0.027 \quad 0.023 \\
3.41 \quad 0.496 \pm 0.067 \pm 0.046 \quad 0.0147 \pm 0.0020 \pm 0.0014 \quad 0.026 \quad 0.047 \quad 0.016 \quad 0.026 \quad 0.032 \quad 0.060 \quad 0.026

FIG. 1 (color). The ratio of $\mu_nG_E^p/G_M^p$ vs the momentum transfer with results of this experiment (solid triangles) and selected published data: diamonds [5], open triangles [6], circles [7], squares [8], open circles [12], and calculations: pQCD [28], RCQM [29], DSE [30], GPD [31], and VMD [32]. The curves labeled pQCD present pQCD-based scaling prediction [28] normalized to 0.3 at $Q^2 = 1.5$ GeV2. The error bars for our data points show the statistical and the systematic uncertainties added in quadrature. Our fit is also shown; see parameterization in the text.

262302-4
FIG. 2 (color). Nucleon flavor FF ratio F_1^u/F_1^d vs Q^2. The band indicates the lattice QCD result [35]. The data and curves correspond to those shown in Fig. 1. See the text for details.

dynamically generated. The calculation [30] is closest to our results. Also shown in Fig. 1 are predictions based on

Table III our experimental results. This experiment more than doubles the Q^2 range over which G_E^u is known, greatly sharpens the

We thank the Jefferson Lab Hall A technical staff for their outstanding support. This work was supported in part by the National Science Foundation, the U.S. Department of Energy and the United Kingdom Engineering and Physical Science Research Council. Jefferson Science Associates, LLC, operates Jefferson Lab for the U.S. DOE under U.S. DOE Contract No. DE-AC05-06OR23177.

*Corresponding author.

†Deceased.

