Observation of the \((1^{3}D_{J})\) bottomonium state through decays to \(\pi^{+}\pi^{-}(1S)\)

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>del Amo Sanchez, P. et al. “Observation of the ((1^{3}D_{J})) bottomonium state through decays to (\pi^{+}\pi^{-}(1S)).” Physical Review D 82 (2010). © 2010 The American Physical Society.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.82.111102</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Apr 07 19:20:19 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/65839</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Observation of the $Y(1^3D_J)$ bottomonium state through decays to $\pi^+\pi^- Y(1S)$

1550-7998/2010/82(11)/11102(7)

© 2010 The American Physical Society
Based on $122 \times 10^6 Y(3S)$ events collected with the BABAR detector, we have observed the $Y(1^3D_J)$ bottomonium state through the $Y(3S) \rightarrow \gamma \gamma Y(1^3D_J) \rightarrow \gamma \gamma \pi^+ \pi^- Y(1S)$ decay chain. The significance for the $J = 2$ member of the $Y(1^3D_J)$ triplet is 5.8 standard deviations including systematic uncertainties.
The mass of the $J = 2$ state is determined to be $10^{164.5 \pm 0.8 \text{(stat)} \pm 0.5 \text{(syst)}} \text{MeV/c}^2$. We use the $\pi^+ \pi^-$ invariant mass distribution to confirm the consistency of the observed state with the orbital angular momentum assignment of the $Y(1^3D_2)$. DOI: 10.1103/PhysRevD.82.111102

PACS numbers: 14.40.Nd, 13.25.Hw, 14.65.Fy

Heavy quark bound states below open flavor thresholds provide a key probe of the interactions between quarks. The mass spectrum and branching fractions of these states can be described by potential models and quantum chromodynamics [1–3]. S-wave and P-wave bottomonium ($b \bar{b}$) states were first observed in the 1970s and 1980s. Only recently [4] has a D-wave bottomonium state, the triplet $Y(1^3D_2)$ [5], been observed, where $J = 1, 2, 3$. The separation between the members of the triplet (intrinsic widths about 30 keV/c^2) is expected to be on the order of 10 MeV/c^2 [2]. A single state, interpreted to be the $J = 2$ member of the $Y(1^3D_2)$ triplet, was observed [4] by the CLEO Collaboration in the radiative $Y(1^3D_2) \to \gamma \gamma Y(1S)$ decay channel, but the quantum numbers L and J [5] and parity P were not verified.

In this paper, we report the observation of the $J = 2$ state of the $Y(1^3D_2)$ in the hadronic $\pi^+ \pi^- Y(1S)$ decay channel, with $Y(1S) \to \ell^+ \ell^- \ (\ell = e, \mu)$. This decay channel has been of interest for decades [2,6–8]. Predictions for the branching fraction vary widely [6–8]. It provides better mass resolution than the $\gamma \gamma Y(1S)$ channel and allows L, J, and P, for which there is currently no experimental information, to be tested, through measurement of the angular distributions of the π^\pm and ℓ^\pm. The only previous result for this channel is the 90% confidence level (C.L.) branching fraction upper limit $B_{Y(1^3D_2) \to \pi^+ \pi^- Y(1S)} \times B_{Y(1^3D_2) \to \ell^+ \ell^-} < 6.6 \times 10^{-8}$ [4].

The analysis is based on a sample of $(121.8 \pm 1.2 \times 10^6)$ $Y(3S)$ decays collected with the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ storage rings at the SLAC National Accelerator Laboratory, corresponding to an integrated luminosity of 28.6 fb^-1. The BABAR detector is described elsewhere [9]. Monte Carlo (MC) event samples that include simulation of the detector response are used to determine the signal and background characteristics, optimize selection criteria, and evaluate efficiencies. Pure electric-dipole transitions [10] are assumed when generating radiative decays.

The $Y(1^3D_2)$ in our study are produced through $Y(3S) \to \gamma \chi_{bJ'}(2P) \to \gamma \gamma Y(1^3D_J)$ transitions, with $J' = 0, 1, 2$. To reconstruct the $Y(3S) \to \gamma \gamma \pi^+ \pi^- \ell^+ \ell^-$ final states, we require exactly four charged tracks in an event, two of which are identified as pions with opposite charge and the other two as either an $e^+ e^-$ or $\mu^+ \mu^-$ pair. Pion candidates must not be identified as electrons. To reject Bhabha events with bremsstrahlung followed by γ conversions, we require the cosine of the polar angle of the electron with respect to the e^- beam direction to satisfy $\cos \theta_{e^-} < 0.8$ in the laboratory frame. To improve the e^\pm energy measurements, up to three photons are combined with e^\pm candidates to partially recover bremsstrahlung [11]. The $Y(1S)$ candidate is selected by requiring $-0.35 < m_{e^+ e^-} - m_{Y(1S)} < 0.2 \text{ GeV/c}^2$ or $|m_{\mu^+ \mu^-} - m_{Y(1S)}| < 0.2 \text{ GeV/c}^2$, where the invariant mass of the lepton pair $m_{e^+ e^-}$ is then constrained to the nominal $Y(1S)$ mass value [12]. The pion pair is combined with the $Y(1S)$ candidate to form a $Y(1^3D_2)$ candidate (mass resolution 3 MeV/c^2). To eliminate background from $\gamma \to e^+ e^-$ conversions in which both the e^+ and e^- are misidentified as pions, we reject events with a cosine for the laboratory $\pi^+ \pi^-$ opening angle $\cos \theta_{\pi^+ \pi^-}$ greater than 0.95 if the converted $e^+ e^-$ mass is less than 50 MeV/c^2 and events with a laboratory angle between the $\pi^+ \pi^-$ pair and ℓ^\pm that satisfies $\cos \theta_{\pi^+ \pi^-} > 0.98$.

Photons from $Y(3S) \to \gamma \chi_{bJ'}(2P) \to \gamma Y(1^3D_J)$ decays have energies between 86 and 122 MeV [12] (80 and 117 MeV [2]) in the $Y(3S)$ center-of-mass (c.m.) frame. Our resolution for 80 MeV photons is about 6.6 MeV. We require at least two photons in an event: one (the other) with c.m. energy larger than 70 MeV (60 MeV). Photons from final-state radiation are rejected by requiring the cosines of the laboratory angles between the cascade photons and leptons to satisfy $\cos \theta_{\ell^-} < 0.98$. In the case of multiple photon combinations, we choose the one that minimizes $\chi^2 = \sum_{i=1,2} (E_{\ell^-} - E_{\ell^-}^\text{exp})^2 / \sigma^2_{E_{\ell^-}}$, where $E_{\ell^-}^\text{exp}$ are the nominal [12] for $Y(3S) \to \gamma \chi_{bJ'}(2P)$ or expected [2] for $\chi_{bJ'}(2P) \to \gamma Y(1^3D_J)$ photon energies that correspond to one of the six possible $Y(3S) \to \gamma \chi_{bJ'}(2P) \to \gamma \gamma Y(1^3D_J)$ transition paths allowed by angular momentum conservation, with $E_{\ell^-} (\sigma_{E_{\ell^-}})$ the measured energies (resolutions). We verified that the χ^2 procedure does not bias our results, using simulated data samples in which the assumed $Y(1^3D_J)$ mass values are varied.

The $Y(1^3D_2)$ candidate is combined with the two photons to form a $Y(3S)$ candidate, whose c.m. momentum must be less than 0.3 GeV/c. The $Y(3S)$ mass is then constrained to its nominal value [12]. The $Y(3S)$ laboratory energy (resolution 25 MeV) is required to equal the summed e^+ and e^- beam energies to within 0.1 GeV.

We identify four background categories within our fit interval $10.11 < m_{\pi^+ \pi^-} < 10.28 \text{ GeV/c}^2$: $Y(3S)$ decays to (I) $\gamma \chi_{bJ'}(2P)$ with $\chi_{bJ'}(2P) \to \omega Y(1S)$ and $\omega \to \pi^0 \pi^0 (\pi^0)$, (II) $\pi^+ \pi^- Y(1S)$ with final-state radiation, (III) $\eta Y(1S)$ with $\eta \to \pi^+ \pi^- \pi^0 (\gamma)$, and (IV) $\gamma \gamma Y(2S)$.
or \(\pi^0 \pi^0 Y(2S) \) with \(Y(2S) \rightarrow \pi^+ \pi^- Y(1S) \). Categories I and II are the main backgrounds.

An extended unbinned maximum likelihood fit is applied to the sample of 263 events in the fit interval. The fit has a component for each of the three \(Y(1^3D_J) \) signal states and four background categories. The likelihood function is

\[
L = \exp(-\sum n_j) \prod_{j=1}^N \sum n_j \mathcal{P}_j(m_j),
\]

where \(N \) is the number of events, \(n_j \) is the yield of component \(j \), and \(\mathcal{P}_j \) is the probability density function (PDF) for component \(j \) and the \(\pi^+ \pi^- \ell^+ \ell^- \) invariant mass.

The PDFs are derived from MC simulations. Each signal PDF is parameterized by the sum of two Gaussians and a crystal ball function [13]. For background category I, we use the sum of a crystal ball function, which describes the \(\omega \rightarrow \pi^+ \pi^- \pi^0 \) events, and two Gaussians, which model the two peaks from \(\chi_{b1,2}(2P) \) decays to \(\omega Y(1S) \). The PDFs are adjusted to account for differences in efficiency between the channels, including those for the \(\chi_{b1}(2P) \rightarrow \omega Y(1S) \) background events, consistent with the expecta-

tions from the simulation within the uncertainties. We find \(10.6^{+5.7}_{-4.9} \) \(Y(1^3D_1) \), \(33.9^{+8.2}_{-7.5} \) \(Y(1^3D_2) \), and \(9.4^{+6.2}_{-5.2} \) \(Y(1^3D_3) \) events. The positions of the three signal peaks in Fig. 1 are stable with respect to different initial assumptions about their masses within the fit interval. The fluctuations at around 10.13 and 10.18 GeV/c^2 are discussed below.

Figure 1. The \(\pi^+ \pi^- \ell^+ \ell^- \) mass spectrum and fit results. The two peaks near 10.25 GeV/c^2 arise from \(\chi_{b1}(2P) \rightarrow \omega Y(1S) \) background events with \(\omega \rightarrow \pi^+ \pi^- \).

Figure 2. The \(\pi^+ \pi^- \ell^+ \ell^- \) mass spectra for the separated (a) \(Y(1S) \rightarrow e^+ e^- \) and (b) \(Y(1S) \rightarrow \mu^+ \mu^- \) channels. The results of the fit are shown. The legend is given in Fig. 1.

The fitted background category I and II yields of 50 ± 9 and 94 ± 13 events agree with the MC expectations of 51 and 94 events, respectively. The fitted \(\chi_{b1}(2P) \) mass value of 10 255.7 ± 0.7(stat) MeV/c^2 [after applying the shift of +0.7 MeV/c^2 from the \(Y(2S) \) mass calibration] is in good agreement with the nominal value 10 255.5 ± 0.5 MeV/c^2 [12], validating the calibration.
Fit biases are evaluated by applying the fit to an ensemble of 2000 simulated experiments constructed by randomly extracting events from MC samples. The numbers of signal and background events and the $Y(1^3D_J)$ masses correspond to those of the fit. The biases are 1.6 ± 0.1, −1.8 ± 0.2, and 1.0 ± 0.1 events for the $Y(1^3D_1)$, $Y(1^3D_2)$, and $Y(1^3D_3)$, respectively. We subtract these biases from the signal yields. The biases on the masses are negligible.

Multiplicative systematic uncertainties arise from the uncertainty in the number $N_{Y(3S)}$ of $Y(3S)$ events in the initial sample (1.0%) and in the reconstruction efficiencies for tracks (1.4%), photons (3.0%), and particle identification (2.0%). Additive systematic uncertainties originate from signal and background PDFs, evaluated by varying the PDF parameters within their uncertainties, background yields, evaluated by varying the background category IV (III) yield by its uncertainties (by ±100%), the fit bias, and the $Y(2S)$ mass calibration. The fit bias uncertainties are defined as the quadratic sum of half the biases and their statistical uncertainties. The mass calibration uncertainty is taken to be half the $Y(2S)$ mass shift added in quadrature with the $Y(2S)$ mass uncertainty [12]. The overall additive uncertainties for the signal yields (masses) are 1.5–2.0 events (0.48 MeV/c^2) and are dominated by the contribution from the background yields [$Y(2S)$ mass calibration].

As a check, we repeat the fit with an additional background term, given by a second-order polynomial. The purpose of this check is to test for the effect of potential unmodeled background. The parameters of the polynomial are left free in the fit (thus there are 14 free parameters). The fitted $Y(1^3D_J)$ yields are affected by less than 0.5 events compared to our standard fit, for all J values. The shifts in the fitted mass values are less than 0.05 MeV. Since this polynomial background term is not motivated by any known source and since the description of the background without the additional term is good, we do not use this alternate background model to define a systematic uncertainty.

We define the statistical significance of each $Y(1^3D_J)$ state by the square root of the difference between the value of $-2 \ln L$ for zero signal events and assuming the bias-corrected signal yield, with the masses and yields of the other two states held at their fitted values. These results are validated with frequentist techniques. Systematics are included by convoluting L with a Gaussian whose standard deviation (σ) equals the total systematic uncertainty. The significances of the $Y(1^3D_1)$, $Y(1^3D_2)$, and $Y(1^3D_3)$ observations are 2.0 (1.8), 6.5 (5.8), and 1.7 (1.6) σ without (with) systematics included, respectively. If we use the raw signal yields, rather than the bias-corrected yields, the statistical significances of the $J = 1$, 2, and 3 states are 2.4, 6.2, and 2.0 σ, respectively.

From Fig. 1 it is seen that the data exhibit upward fluctuations at $\pi^+\pi^-\ell^+\ell^-$ masses around 10.13 and 10.18 GeV/c^2. To investigate the significance of these fluctuations, we reperform the fit with the $J = 1$ mass constrained to 10.13 GeV/c^2 rather than leaving it as a free parameter. An analogous fit is made with the $J = 3$ mass constrained to 10.18 GeV/c^2. The statistical significance for this alternate $J = 1$ ($J = 3$) peak, evaluated using the raw signal yield, is 2.0σ (1.3σ), compared to 2.4σ (2.0σ) for our standard fit. The $J = 2$ signal yield and mass shift by less than 1 event and 0.04 MeV/c^2, respectively, in these alternate fits.

We determine branching fractions by dividing the bias-corrected signal yields by the selection efficiencies and $N_{Y(3S)}$. The significances of the $Y(1^3D_1)$ and $Y(1^3D_3)$ peaks are low and we do not have clear evidence for them. For the $J = 1$ and 3 states, we also present upper limits on the branching fractions assuming the fitted masses. The efficiencies for the six allowed $Y(3S) \to \gamma \chi_{bJ}(2P) \to \gamma \gamma Y(1^3D_J)$ paths differ by up to 7.5% and therefore do not factorize, leaving six unknown branching fractions but only three measured signal yields. However, 91.4% of the $Y(3S) \to \gamma \gamma Y(1^3D_1)$ and 88.7% of the $Y(3S) \to \gamma \gamma Y(1^3D_2)$ transitions are predicted [2] to proceed through the $\chi_{b1}(2P)$ state, while $Y(3S) \to \gamma \gamma Y(1^3D_3)$ transitions can only proceed through the $\chi_{b2}(2P)$. Therefore, we evaluate the branching fractions for the dominant modes only, using the predicted ratios of the branching fractions to account for the nondominant transitions. The efficiencies of the dominant modes, averaged over the $Y(1S) \to e^+e^-$ and $\mu^+\mu^-$ final states, are 26.7 ± 0.1%, 26.7 ± 0.1%, and 25.7 ± 0.2% for the $Y(1^3D_1)$, $Y(1^3D_2)$, and $Y(1^3D_3)$, respectively.

The branching fraction products for the dominant modes $B_{J^P \gamma} = B_{Y(3S)\to\gamma\chi_{bJ}(2P)} \times B_{\chi_{bJ}(2P)\to\gamma\gamma Y(1^3D_J)} \times B_{\chi_{b1}(2P)\to\gamma\gamma Y(1^3D_1)} \times B_{\chi_{b2}(2P)\to\gamma\gamma Y(1^3D_2)} \times B_{\chi_{b3}(2P)\to\gamma\gamma Y(1^3D_3)} \times B_{\gamma\gamma Y(1^3D_J)\to\gamma\gamma}$ (or the upper limits at 90% C.L. with systematics included) are, in units of 10^{-7},

\[B_{1^1} = 1.27_{-0.69}^{+0.81} \pm 0.28(0.25), \quad B_{1^3} = 4.9_{-1.0}^{+1.1} \pm 0.3, \quad B_{2^3} = 1.34_{-0.83}^{+0.92} \pm 0.24(0.80). \]

We determine the $Y(1^3D_3)$ mass to be $10\,164.5 \pm 0.8 \pm 0.5$ MeV/c^2, which is consistent with, and more precise than, the result $10\,161.1 \pm 0.6(0.7) \pm 1.6(syst)\,\text{MeV}/c^2$ from CLEO [4].

From the $Y(3S) \to \gamma \chi_{bJ}(2P)$ branching fractions and uncertainties [12] and $\chi_{bJ}(2P) \to \gamma Y(1^3D_J)$ branching fraction predictions [2] we determine $B_{Y(1^3D_J)\to\gamma\gamma}$ (or 90% C.L. upper limits including systematics) to be $0.42_{-0.27}^{+0.27} \pm 0.10(0.02)$ for the $Y(1^3D_1)$, $0.66_{-0.14}^{+0.15} \pm 0.06\%$ for the $Y(1^3D_2)$, and $0.29_{-0.14}^{+0.32} \pm 0.06\%(0.62\%)$ for the $Y(1^3D_3)$, which lie between the predictions of about 0.2% from Ref. [7] and 2% from Ref. [8].

Figure 3(a) shows the $\pi^+\pi^-$ mass distribution for events in the $Y(1^3D_2)$ signal region $10.155 < m_{\pi^+\pi^-} < 10.168\,\text{GeV}/c^2$ after subtraction of the backgrounds using the estimates from the fit. The data are corrected for mass-dependent efficiency variations. Shown in comparison are the expectations for the decay.
FIG. 3 (color online). (a) The \(\pi^+ \pi^- \) mass spectrum in the \(Y(1^3D_2) \) signal region. The area under each curve equals the number of events. (b), (c) Distributions in the \(Y(1^3D_2) \) signal region of (b) the angle \(\chi \) between the \(\pi^+ \pi^- \) and \(\ell^+ \ell^- \) planes and (c) the \(\pi^+ \) helicity angle. The uncertainties include both statistical and systematic terms.

of a \(D \) [15], \(S \) [15], or \(P_1 \) [16] bottomonium state to \(\pi^+ \pi^- Y(1S) \). The resulting \(\chi^2 \) probabilities of 81\%, 11\%, and 10\%, respectively, strongly favor the \(D \) state.

The distribution of the angle \(\chi \) between the \(\ell^+ \ell^- \) and \(\pi^+ \pi^- \) planes in the \(Y(1^3D_2) \) rest frame, for events in the \(Y(1^3D_2) \) signal region, is shown in Fig. 3(b). The data are corrected for background and efficiency. The \(\chi \) distribution is expected to have the form \(1 + \beta \cos^2 \chi \) with \(\text{sgn}(\beta) = (-1)^J P \) [17], where \(P \) is the parity. A fit to the data yields \(\beta = -0.41 \pm 0.29(\text{stat}) \pm 0.10(\text{syst}) \), consistent with the expected assignments \(J = 2 \) and \(P = -1 \).

The background-subtracted, efficiency-corrected distribution of the helicity angle \(\theta_{\pi^+} \), for events in the \(Y(1^3D_2) \) signal region, is shown in Fig. 3(c), where \(\theta_{\pi^+} \) is the angle of the \(\pi^+ \) in the \(\pi^+ \pi^- \) rest frame with respect to the boost from the \(Y(1^3D_2) \) frame. For \(D \)-state decays to \(\pi^+ \pi^- Y(1S) \), \(\theta_{\pi^+} \) follows a \(1 + (3\cos^2 \theta_{\pi^+} - 1) \) distribution, where \(\xi \) is a dynamical parameter to be determined experimentally. For \(S \)-state decays, the \(\theta_{\pi^+} \) distribution is flat (\(\xi = 0 \)). A fit to data yields \(\xi = -1.0 \pm 0.4(\text{stat}) \pm 0.1(\text{syst}) \), disfavoring the \(S \) state.

In summary, we have observed the \(Y(1^3D_2) \) bottomonium state through decays to \(\pi^+ \pi^- Y(1S) \). The significance is 5.8\(\sigma \) including systematic uncertainties. We improve the measurement of the \(Y(1^3D_2) \) mass and determine the \(Y(1^3D_2) \to \pi^+ \pi^- Y(1S) \) branching fractions or set upper limits. We use the \(\pi^+ \pi^- \) invariant mass, the angle between the \(\pi^+ \pi^- \) and \(\ell^+ \ell^- \) planes, and the \(\pi^+ \) helicity angle, to test the consistency of the observed state with the expected quantum numbers \(L = 2 \) and \(J = 2 \) and parity \(P = -1 \) for the dominant member of the triplet \(Y(1^3D_2) \).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

[5] Fermion-antifermion bound states are denoted \(n^{2S+1}L_J \), where \(n, S, L, \) and \(J \) are the radial, spin, orbital angular momentum, and total angular momentum quantum numbers of the pair, respectively.