Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.106.181802</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Access</td>
<td>Sun Dec 16 14:39:12 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/65855</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurements of Direct CP Violating Asymmetries in Charmed Decays of Strange Bottom Mesons and Bottom Baryons

T. Aaltonen,21 B. Álvarez González,9,w S. Amerio,41a D. Amidei,32 A. Anastassov,56 A. Annovi,17 J. Antos,12 G. Apollinari,15 J. A. Appel,15 A. Apresyan,46 T. Arisawa,56 A. Artikov,13 J. Asaadi,51 W. Ashmanskas,15 B. Auerbach,59 A. Aurisano,51 F. Azfar,40 W. Badgett,15 A. Barbaro-Galtieri,26 V. E. Barnes,46 B. A. Barnett,23 P. Barria,15 A. Barigozzi,44b,44a P. Bartos,56 M. Bauer,44b,44a G. Bauer,30 F. Bedeschi,44a D. Beecher,28 S. Behari,23 G. Bellentini,44b,44a J. Bellinger,58 D. Benjamín,14 A. Beretvas,15 A. Bhatti,38 M. Binkley,15a D. Bisello,41b,41a I. Bizjak,28,a,a K. R. Bland,3 B. Blumenfeld 23 A. Bocci,14 A. Bodek,47 D. Bortoletto,46 J. Boudreau,45 A. Boveia,11 B. Braun,15b L. Brigliadori,6b,6a A. Brisuda,12 C. Bromberg,33 E. Bruken,21 M. Bucciantonio,44b,44a J. Budagov,13 H. S. Budd,47 S. Budd,22 K. Burkett,15 G. Busetto,41b,41a P. Bussey,19 A. Buzatu,31 C. Calancha,29 S. Camarda,44b M. Campanelli,33 M. Campbell,32 F. Canelli,12,15 A. Canepa,47 B. Carls,22 D. Carlsmith,58 R. Carosi,44a S. Carollo,41b,41a S. Carron,15 b,15 C. Casarsa,5 A. Castro,6a,6b P. Catastini,43 P. Cattaneo,52a E. Brucken,21 M. Cavallini,44b,44a J. C. Freeman,15 Y. Funakoshi,56 I. Furic,16 M. Gallinaro,48 J. Galyardt,10 J. E. Garcia,18 A. F. Garfinkel,46 P. Garosi,44c,44a D. Carlsmith,58 R. Carosi,44a S. Carrillo,16,l S. Carron,15 B. Casal,9 M. Casarsa,15 A. Castro,6b,6a P. Catastini,15 D. Cauz,52a

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 University of California, Davis, Davis, California 95616, USA
8 University of California, Los Angeles, Los Angeles, California 90024, USA
9 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708, USA
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16 University of Florida, Gainesville, Florida 32611, USA
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138, USA
21 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
22 University of Illinois, Urbana, Illinois 61801, USA
23 The Johns Hopkins University, Baltimore, Maryland 21218, USA
24 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25 Center for High Energy Physics, Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
26 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27 University of Liverpool, Liverpool L69 7ZE, United Kingdom
28 University College London, London WC1E 6BT, United Kingdom
29 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

181802-2
However, additional sources of CP Maskawa (CKM) [1] theory of quark-flavor dynamics. supported the success of the Cabibbo-Kobayashi-Maskawa (CKM) theory of quark-flavor dynamics. The vast majority of experimental data are in agreement with the current world average. Measurements of branching fractions of $B^0 \to K^+ K^-$ and $B^0 \to \pi^+ \pi^-$ decays are also updated.

We report measurements of direct CP-violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb$^{-1}$ of integrated luminosity, we obtain the first measurements of direct CP violation in bottom strange mesons, $A_{CP}(B^0 \to K^- \pi^+) = +0.39 \pm 0.15 \pm 0.08$ (syst), and bottom baryons, $A_{CP}(\Lambda_b^0 \to p\pi^-) = +0.03 \pm 0.17 \pm 0.05$ (syst) and $A_{CP}(\Lambda_c^0 \to pK^-) = +0.37 \pm 0.17 \pm 0.03$ (syst). In addition, we measure CP violation in $B^0 \to K^- \pi^-$ decays with 3.5σ significance, $A_{CP}(B^0 \to K^- \pi^-) = -0.086 \pm 0.023$ (stat) ± 0.009 (syst), in agreement with the current world average. Measurements of branching fractions of $B^0 \to K^+ K^-$ and $B^0 \to \pi^+ \pi^-$ decays are also updated.

Noninvariance of the fundamental interactions under the combined symmetry transformation of charge conjugation and parity inversion (CP violation) is an established experimental fact. The vast majority of experimental data are well described by the standard model (SM), and have supported the success of the Cabibbo-Kobayashi-Maskawa (CKM) [1] theory of quark-flavor dynamics. However, additional sources of CP violation are required to explain the matter—antimatter asymmetry of the Universe in standard big bang cosmology. This would have profound consequences on our understanding of fundamental interactions.

Violation of CP is direct if the partial decay-width (Γ) of a particle into a final state differs from the width of the corresponding antiparticle into the CP-conjugate final state. In recent times, the pattern of direct CP violation in charmless mesonic decays of B mesons has shown some unanticipated discrepancies from expectations. Under
standard assumptions of isospin symmetry and smallness of contributions from higher-order processes, similar CP asymmetries are predicted for $B^0 \rightarrow K^+ \pi^-$ and $B^+ \rightarrow K^+ \pi^0$ decays [2,3]. However, experimental data show a significant discrepancy [4], which has prompted intense experimental and theoretical activity. Several simple extensions of the standard model could accommodate the discrepancy [5], but uncertainty on the contribution of higher-order SM amplitudes has prevented a firm conclusion [6]. The violation of CP symmetry in charmless modes remains, therefore, a very interesting subject of investigation [6]. The violation of higher-order SM amplitudes has prevented a firm conclusion [5], but uncertainty on the contribution of tensions of the standard model could accommodate the required, with reconstructed transverse momenta p_{T1}, $p_{T2} > 2 \text{ GeV}/c$, the scalar sum $p_{T1} + p_{T2} > 5.5 \text{ GeV}/c$, and an azimuthal opening angle $\Delta \phi < 135^\circ$ [16]. At level 2, tracks are combined with silicon hits and their impact parameter d (transverse distance of closest approach to the beam line) is determined with $45 \mu\text{m}$ resolution (including the beam spread) and required to be $0.1 < d < 1.0 \text{ mm}$. A tighter opening-angle requirement, $20^\circ < \Delta \phi < 135^\circ$, is also applied. Each track pair is then used to form a B candidate, which is required to have an impact parameter $d_B < 140 \mu\text{m}$ and to have travelled a distance $L_T > 200 \mu\text{m}$ in the transverse plane. At level 3, a cluster of computers confirms the selection with a full event reconstruction.

The offline selection is based on a more accurate determination of the same quantities used in the trigger, with the addition of requirements on two other observables: the isolation (I_B) of the B candidate [17], and the quality of the three-dimensional fit (χ^2 with 1 d.o.f.) of the decay vertex of the B candidate [11]. Asymmetries in the rarer $B^0 \rightarrow K^- \pi^+$ and $A^0_b \rightarrow K^- \pi^+$ decays are measured using the selection in Ref. [11]. For the measurement of the $B^0 \rightarrow K^+ \pi^-$ asymmetry, instead, the selection is optimized by minimizing the expected variance of the measurement, evaluated by performing the full analysis on a set of simulated samples obtained with varied selection criteria [18]. This procedure yields the final selection: $I_B > 0.5$, $\chi^2 < 7$, $d > 100 \mu\text{m}$, $d_B < 80 \mu\text{m}$, and $L_T > 300 \mu\text{m}$. Only one B candidate per event is found after this selection, and a mass ($m_{\pi\pi}$) is assigned to each, using a nominal charged-pion mass assignment for both decay products. The resulting mass distribution is shown in Fig. 1. A large peak is visible, dominated by the overlapping contributions of the $B^0 \rightarrow K^+ \pi^-$, $B^0 \rightarrow \pi^+ \pi^-$, and $B^0 \rightarrow K^- K^-$ decays [14]. Signals for $B_s^0 \rightarrow K^- \pi^+$, $A^0_b \rightarrow p\pi^-$, and $A^0_b \rightarrow pK^-$ modes populate masses higher than the main peak (5.33–5.55 GeV/c^2) [11]. Backgrounds include misreconstructed multibody b–hadron decays (physics

![FIG. 1 (color online). Mass distribution of the 13502 reconstructed candidates. The charged-pion mass is assigned to both tracks. The total projection and projections of each signal and background component of the likelihood fit are overlaid on the data distribution. Signals and multibody B backgrounds are shown stacked on the combinatorial background component.]

181802-4
background) and random pairs of particles (combinatorial background).

We incorporate kinematic and particle identification information into an unbinned likelihood fit [11,14] to determine the fraction of each mode and the charge asymmetries, uncorrected for instrumental effects, \(\tilde{A}_{\text{CP}} = \frac{N_{b-f} - N_{\bar{b}-f}}{N_{b-f} + N_{\bar{b}-f}} \) of the flavor-specific decays \(B^0 \rightarrow K^+ \pi^- \), \(B^0_\ell \rightarrow K^- \pi^+ \), and \(\Lambda^0_b \rightarrow p \pi^- \), \(pK^- \). For each channel, \(N_{b-f} (N_{\bar{b}-f}) \) is the reconstructed number of decays of hadrons containing the \(b (\bar{b}) \) quark into the final state \(f (\bar{f}) \). The decay flavor is inferred from the charges of final state particles assuming equal numbers of \(b \) and \(\bar{b} \) quarks at production (dominated by the strong interaction). Any effect from \(CP \) violation in \(b \)-meson flavor mixing is assumed negligible [19].

The whole kinematic information is summarized by three loosely correlated observables [11]: the mass \(m_{\pi\pi} \); the signed momentum imbalance \(\alpha = (1 - p_1/p_2) \times q_1 \), where \(p_1 \) (\(p_2 \)) is the lower (higher) of the particle momenta, and \(q_1 \) is the sign of the charge of the particle of momentum \(p_1 \); and the scalar sum of particle momenta \(p_{\text{tot}} = p_1 + p_2 \). Particle identification relies on measurement of the specific ionization \((dE/dx) \) in the drift chamber. For charged kaons and pions the \(dE/dx \) was calibrated with a sample of \(1.5 \times 10^6 D^{++} \rightarrow D^0 \pi^+ \) decays, using the charge of the pion from \(D^+ \) decay to identify the products of the Cabibbo–favored \(D^0 \) decay. For protons we used \(124\,000 \Lambda \rightarrow p \pi^- \) decays, where the kinematics and the momentum threshold of the trigger allow unambiguous identification of the decay products [18,20]. Identification information for each particle is summarized by a single observable in our fit (“kaonness”), defined as \(\kappa = (dE/dx - dE/dx_\pi)/(dE/dx_K - dE/dx_\pi) \), where \(dE/dx_\pi \) is the observed response, and \(dE/dx_K \) is the average responses expected for pions (kaons). The separation between \(K^+ \pi^- \) or \(p \pi^- \) final states and their charge—conjugates is in excess of 2.1σ (Fig. 2).

Although a lower \(dE/dx \) separation is available between \(pK^- \) and \(\bar{p}K^+ \), due to similar ionization rates of protons and kaons, sufficient discrimination is achieved from their greater kinematics differences. The background model allows for independent contributions of positively and negatively charged pions, kaons, protons, and electrons, whose fractions are determined by the fit. Muons are indistinguishable from pions with the available 10% fractional \(dE/dx \) resolution and are therefore incorporated into the pion component.

The signal yields from the fit (Table I) are corrected for different detection efficiencies to determine the physical asymmetries, \(A_{\text{CP}}(b \rightarrow f) \), defined as \(\frac{B(b \rightarrow f) - \bar{B}(\bar{b} \rightarrow \bar{f})}{B(b \rightarrow f) + \bar{B}(\bar{b} \rightarrow \bar{f})} = \frac{N_{b-f} - c_f N_{\bar{b}-f}}{N_{b-f} + c_f N_{\bar{b}-f}} \),

\[(1) \]

where \(c_f = \frac{\varepsilon(f)/\varepsilon(\bar{f})} {\varepsilon(f)/\varepsilon(\bar{f})} \) is the ratio between the efficiencies for triggering and reconstructing the final state \(f \) with respect to the state \(\bar{f} \). The \(c_f \) factors correct for
detector-induced charge asymmetries, and are extracted from control samples in data. Simulation is only used to account for small differences between the kinematics of \(B \rightarrow h^+h^- \) decays and control signals. The corrections for \(f = \pi^\pm \) are extracted from a sample of about 700,000 \(D^0 \rightarrow K^-\pi^+ \) decays, reconstructed in the same data set. By imposing the same offline selection to the \(D^0 \) decays we obtain \(K^-\pi^+ \) final states in a similar kinematic region as our signals (see Fig. 2). We assume that \(K^+\pi^- \) and \(K^-\pi^+ \) final states from charm decays are produced in equal numbers at the Tevatron, because production is dominated by the strong interaction and, compared to the detector effects to be corrected, the possible \(CP \)–violating asymmetry in \(D^0 \rightarrow K^-\pi^+ \) decays is tiny \((<10^{-3})\) as predicted by the SM [21] and confirmed by current experimental determinations [22]. We also checked that possible asymmetries in \(D^0 \) meson yields induced by \(CP \) violation in \(B \rightarrow D^0X \) decays are small and can be neglected [18]. Therefore, any asymmetry between observed numbers of reconstructed \(K^-\pi^+ \) and \(K^-\pi^- \) charm decays can be ascribed to detector-induced effects and used to extract the desired correction factors. The ratio \(N_{D^0 \rightarrow K^-\pi^+} / N_{D^0 \rightarrow K^-\pi^-} \) is measured with the same fit used for the signal. The \(dE/dx \) information is not used because kinematics alone is sufficient to provide an excellent separation in charm decays, as shown in Fig. 2. We checked separately that \(dE/dx \) information does not introduce additional charge asymmetries [18]. We find \(c_{K^-\pi^+} = 0.9871 \pm 0.0027 \), which is consistent and more precise than a previous estimate based on simulation [23]. For the \(\Lambda^0_b \rightarrow p\pi^- \) asymmetry, the factor \(c_{p\pi^-} = 1.0145 \pm 0.0075 \) is extracted using a similar strategy applied to a control sample of \(\Lambda \rightarrow p\pi^- \) decays [20]. This factor is dominated by the different interaction probability of protons and antiprotons with detector material. In the measurement of \(CP \) violation in \(\Lambda^0_b \rightarrow pK^- \) decays, instrumental charge-asymmetries induced in both kaons and protons are relevant. The \(c_{pK^-} \) factor is extracted by combining the previous ones and assuming the trigger and reconstruction efficiency for two particles factorizes as the product of the single-particle efficiencies. Corrections are also applied for the branching ratio measurements. These corrections do not exceed 7% and account for differences in trigger and reconstruction efficiency between channels due to different lifetimes and kinematics (from simulation), and isolation properties (from control samples of fully reconstructed \(B^0 \rightarrow J/\psi K^* \) \((892)^0 \) and \(B^0 \rightarrow J/\psi \phi \) decays).

The dominant contributions to the systematic uncertainties on the asymmetry measurements come from the uncertainty on the \(dE/dx \) calibration and parameterization, the uncertainty on the combinatorial background model, and the uncertainty on \(b \)-hadron masses. Smaller contributions are assigned for the uncertainty on the global mass scale and the \(c_f \) corrections. The uncertainty on the \(dE/dx \) model dominates also the systematic uncertainty for the branching ratio measurements, for which the mass scale (in the \(B^0 \rightarrow \pi^+\pi^- \) case) and the uncertainty on the difference in isolation efficiency between \(B^0 \) and \(B^0 \) mesons \((B^0 \rightarrow K^+\pi^-) \) also play a role. The results are reported in Table I. We report 3.5 \(\sigma \) evidence of \(CP \) violation in \(B^0 \rightarrow K^-\pi^- \) decays. The observed asymmetry is consistent, and of comparable accuracy, with current results from asymmetric \(e^+e^- \) colliders [4]. It is also consistent with the result in Ref. [4] and supersedes it. The \(B^0 \rightarrow K^-\pi^- \) result is the first measurement of direct \(CP \) violation in bottom strange mesons. It differs by 2.3 \(\sigma \) from zero and it is consistent with recent theoretical predictions [3,24]. It allows the first experimental verification of the model-independent test proposed in Ref. [8]. Under the assumption of equal \(B^0 \) and \(B^0 \) lifetimes, using the measurement of the \(B^0 \rightarrow K^-\pi^- \) branching ratio [19] and known values for the branching ratio and \(CP \)–violating asymmetry in \(B^0 \rightarrow K^-\pi^- \) decays, and the \(b \)–quark fragmentation probabilities [19], we obtain

\[
\frac{R}{\Gamma(B^0 \rightarrow K^-\pi^-) - \Gamma(B^0 \rightarrow K^-\pi^+)} = 0.85 \pm 0.42 \text{(stat)} \pm 0.13 \text{(syst)},
\]

which is consistent with the standard prediction, \(K_{SM} = 1 \) [8]. The first measurement of \(CP \) violation in bottom baryons is also reported. The observed asymmetry in the \(\Lambda^0_b \rightarrow pK^- \) decay is 2.1 \(\sigma \) from zero. The \(\Lambda^0_b \rightarrow p\pi^- \) result is consistent with zero. The limited experimental precision does not allow a conclusive discrimination between the standard model prediction \((8\%)\) and much suppressed values \((\approx 0.3\%)\) expected in R-parity violating supersymmetric scenarios [12].

Table I includes also improved measurements of \(B^0 \rightarrow K^+K^- \) and \(B^0 \rightarrow \pi^+\pi^- \) \(CP \)-averaged branching fractions, using the \(B^0 \rightarrow K^-\pi^- \) channel as a reference. Results are consistent with previous CDF measurements [14] and supersedes them. The \(B^0 \rightarrow K^+K^- \) result is the most precise to date and consistent with recent theoretical predictions [3,24–26]. Theory uncertainties, which are significantly larger than the experimental ones, prevent sensible discrimination between models. The present measurement of \(B(B^0 \rightarrow \pi^+\pi^-) \) agrees with measurements at \(e^+e^- \) colliders [27] with comparable accuracy. The dominant systematic uncertainties are limited by the finite size of control samples and should decrease in future extensions of the measurements.

In conclusion, we have measured \(CP \)-violating asymmetries in charmless \(B^0 \), \(B^0 \), and \(\Lambda^0_b \) decays into pairs of charged hadrons reconstructed in CDF data. We report the first measurement of direct \(CP \) violation in bottom strange mesons, the first measurement of \(CP \) violation in bottom baryons, evidence for \(CP \) violation in \(B^0 \rightarrow K^-\pi^- \) decays, and updated measurements of the \(B^0 \rightarrow K^-\pi^- \) and \(B^0 \rightarrow \pi^+\pi^- \) branching fractions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of...
Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Italian Istituto Nazionale di Fisica Nucleare et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

\[\text{With visitors from Iowa State University, Ames, IA 50011, USA.} \]
\[\text{With visitors from University of MA Amherst, Amherst, MA 01003, USA.} \]
\[\text{With visitors from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monseirato (Cagliari), Italy.} \]
\[\text{With visitors from University of CA Irvine, Irvine, CA 92697, USA.} \]
\[\text{With visitors from University of CA Santa Barbara, Santa Barbara, CA 93106, USA.} \]
\[\text{With visitors from CERN, CH- 1211 Geneva, Switzerland.} \]
\[\text{With visitors from Cornell University, Ithaca, NY 14853, USA.} \]
\[\text{With visitors from University of Cyprus, Nicosia CY-1678, Cyprus.} \]
\[\text{With visitors from University College Dublin, Dublin 4, Ireland.} \]
\[\text{With visitors from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.} \]
\[\text{With visitors from Universidad Iberoamericana, Mexico D.F., Mexico.} \]
\[\text{With visitors from Iowa State University, Ames, IA 50011, USA.} \]
\[\text{With visitors from University of Iowa, Iowa City, IA 5224, USA.} \]
\[\text{With visitors from Kinki University, Higashi-Osaka City, Japan 577-8502.} \]
\[\text{With visitors from Kansas State University, Manhattan, KS 66506, USA.} \]
\[\text{With visitors from University of Manchester, Manchester M13 9PL, United Kingdom.} \]
\[\text{With visitors from Queen Mary, University of London, London, E1 4NS, United Kingdom.} \]
\[\text{With visitors from Muons, Inc., Batavia, IL 60510, USA.} \]
\[\text{With visitors from Nagasaki Institute of Applied Science, Nagasaki, Japan.} \]
\[\text{With visitors from National Research Nuclear University, Moscow, Russia.} \]
\[\text{With visitors from University of Notre Dame, Notre Dame, IN 46556, USA.} \]
\[\text{With visitors from Universidad de Oviedo, E-33007 Oviedo, Spain.} \]
\[\text{With visitors from Texas Tech University, Lubbock, TX 79609, USA.} \]
\[\text{With visitors from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.} \]
\[\text{With visitors from Yarmouk University, Irbid 211-63, Jordan.} \]
\[\text{On leave from J. Stefan Institute, Ljubljana, Slovenia.} \]
\[\text{Deceased.} \]
\[\text{Throughout this Letter, } C \text{-conjugate modes are implied and branching fractions indicate } CP \text{ averages.} \]

\[\text{(Ref. 1)} \]
\[\text{M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).} \]
\[\text{Y. Y. Keum and A. I. Sanda, Phys. Rev. D 67, 054009 (2003).} \]
\[\text{H.-N. Li, S. Mishima, and A. I. Sanda, Phys. Rev. D 72, 114005 (2005).} \]
\[\text{H. J. Lipkin, Phys. Lett. B 621, 126 (2005).} \]
\[\text{C.-D. Lu et al., Phys. Rev. D 80, 034011 (2009).} \]
\[\text{T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 031801 (2009).} \]
\[\text{R. Mohanta, Phys. Rev. D 63, 056006 (2001).} \]
\[\text{Throughout this Letter, } C \text{-conjugate modes are implied and branching fractions indicate } CP \text{ averages.} \]
\[\text{A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 211802 (2006).} \]
\[\text{CDF II uses a cylindrical coordinate system in which } \phi \text{ is the azimuthal angle, } r \text{ is the radius from the nominal beam line, and } z \text{ points in the proton beam direction, with the origin at the center of the detector. The transverse plane is the plane perpendicular to the } z \text{ axis.} \]
\[\text{Isolation is defined as } I_B = p_T(B)/(p_T(B) + \sum_{i} p_T(i)), \text{ where } p_T(B) \text{ is the transverse momentum of the } B \text{ candidate, and the sum runs over all other tracks within a cone of radius 1, in } \eta-\phi \text{ space around the } B \text{ flight-direction.} \]
\[\text{K. Nakamura et al., J. Phys. G 37, 075021 (2010).} \]