Search for Supersymmetry in pp Collisions at $\sqrt{s}=7$ TeV in Events with Two Photons and Missing Transverse Energy

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for Supersymmetry in pp Collisions at \(\sqrt{s} = 7 \) TeV in Events with Two Photons and Missing Transverse Energy

S. Chatrchyan et al.*

(CMS Collaboration)

(Received 4 March 2011; published 24 May 2011)

A search for supersymmetry in the context of general gauge-mediated breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 pb\(^{-1}\) recorded by the CMS experiment at the LHC. The search is performed by using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for general gauge-mediated supersymmetry between 0.3 and 1.1 pb at the 95\% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.

DOI: 10.1103/PhysRevLett.106.211802
PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

Supersymmetry (SUSY), in particular the version based on gauge-mediated breaking [1–7], is of particular theoretical interest for physics beyond the standard model (SM). Supersymmetry stabilizes the mass of the SM Higgs boson, drives the grand unification of forces, and incorporates dark matter candidates within its framework. Previous searches for SUSY with gauge-mediated breaking [8–14] were performed by using a minimal model [15] as a benchmark. In that model, in order to reduce the number of free parameters, several assumptions, including gaugino mass unification, are made. These assumptions lead to a mass hierarchy in which strongly interacting SUSY partners are much heavier than the lightest chargino and neutralino. For example, the current best lower limit on the neutralino mass [9] of 175 GeV corresponds to gluino and neutralino masses of well above 1 TeV. In the more general case, the masses of strongly interacting SUSY partners can be much lighter, leading to large production cross sections at the LHC and allowing, even at low integrated luminosity, for the exploration of parameter space inaccessible at previous colliders.

In this Letter, we consider a general gauge-mediation (GGM) SUSY scenario [16,17], with the gravitino as the lightest SUSY particle and the lightest neutralino as the next-to-lightest (NLSP). In the following, it is assumed that the neutralino decays promptly to a gravitino and a photon. Cases with either a large neutralino lifetime or a large branching fraction into a Z and a gravitino are not considered in this Letter. The gravitino escapes detection, leading to missing transverse energy \(E_T^{\text{miss}} \). If \(R \) parity [18] is conserved, strongly interacting SUSY particles are pair-produced. Their decay chain includes one or several quarks or gluons and a neutralino, which in turn decays to a photon and a gravitino. The topology of interest for this search is, therefore, two or more isolated photons with large transverse energy \(E_T \), at least one hadronic jet, and large missing transverse energy \(E_T^{\text{miss}} \).

A detailed description of the CMS detector can be found elsewhere [19]. The detector’s central feature is a superconducting solenoid providing a 3.8 T axial magnetic field along the beam direction. Charged particle trajectories are measured by a silicon pixel and strip tracker system, covering \(0 \leq \phi \leq 2 \pi \) in azimuth and \(|\eta| < 2.5 \), where the pseudorapidity \(\eta = -\ln \tan \theta/2 \), and \(\theta \) is the polar angle with respect to the counterclockwise beam direction. A lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracker volume. For the barrel calorimeter (\(|\eta| < 1.479 \)), the modules are arranged in projective towers. Muons are measured in gas detectors embedded in the steel return yoke of the magnet. The detector is nearly hermetic, allowing for reliable measurement of \(E_T^{\text{miss}} \).

The data used in this analysis, corresponding to an integrated luminosity of 36 pb\(^{-1}\), were recorded during the 2010 collision data, photons with energy greater than 20 GeV are measured within the barrel ECAL with a resolution of better than 1\%, which is dominated by intercalibration precision.

The data used in this analysis, corresponding to an integrated luminosity of 36 pb\(^{-1}\), were recorded during the 2010 run at a center-of-mass energy (\(\sqrt{s} \)) of 7 TeV at the Large Hadron Collider (LHC) at CERN. A two-level trigger system was used, based on the presence of at least one photon with a minimum transverse energy of 30 GeV. This data sample is used for the selection of both signal candidates and control samples used for background estimation. The efficiency for off-line...
selected events to pass the trigger is estimated to be above 99%. The photon candidates are reconstructed from clusters of energy in the ECAL. Candidates are required to have \(E_T \geq 30 \text{ GeV} \) and \(|\eta| \leq 1.4\). The ECAL cluster shape is required to be consistent with that expected from a photon, and the energy detected in the HCAL behind the photon shower is required not to exceed 5% of the ECAL energy. To suppress photons originating from quark or gluon hadronization, the photons are required to be isolated from other activity in the tracker, ECAL, and HCAL. The scalar shower is required not to exceed 5% of the ECAL energy and the energy detected in the HCAL behind the photon is required to be consistent with that expected from a photon, for the tracker, ECAL, and HCAL, respectively.

Photons that fail either the shower shape or track isolation requirement are referred to as fake photons. Most of these fake photons are quarks or gluons that have hadronized predominantly to \(\pi^0 \)'s decaying into photons. They are used for the background estimation derived from the data.

The criteria above are efficient for selection of both electrons and photons. To separate them reliably, we search for hit patterns in the pixel detector consistent with a track from an electron (pixel match). The candidates with (without) pixel match are considered to be electrons (photons) [20]. Events in the signal sample (referred to below as the \(\gamma \gamma \) sample) are required to have at least two photon candidates.

Jets are reconstructed from energy deposits in the calorimeters by using the anti-\(k_T \) clustering algorithm [21] with a size parameter of 0.5. The jet energy is corrected by using reconstructed tracks [22]. Selected jets must have \(E_T \geq 30 \text{ GeV} \) and \(|\eta| \leq 2.6\). In addition, to separate real jets from anomalous HCAL signals, the fraction of energy contributed to the jet shower by the highest energy HCAL channels must be \(\leq 98\% \), the jet must have no single HCAL channel containing more than 90% of its total energy, and finally the ECAL energy fraction of the jet must be \(\geq 1\% \). To be retained in the signal sample, events must contain at least one such jet isolated from both of the two highest-\(E_T \) photon candidates by \(\Delta R \geq 0.9 \).

The \(E_T^{\text{miss}} \) is determined by using calorimeter energy deposits. Corrections are applied by replacing calorimeter tower energies matched to charged hadrons and muons with their corresponding charged-track momenta [23].

Events are generated in the benchmark SUSY model [24] using PYTHIA 6.4 [25] in a three-dimensional grid of the NLSP, gluino, and squark masses. The soft masses of the squarks are taken to be degenerate. Sleptons and all other gauginos except the NLSP are assigned a mass of 1.5 TeV. The QCD production cross section at next-to-leading order is calculated for these points by using PROSPINO 2.1 [26] and is dominated by gluino-gluino, gluino-squark, and squark-squark production. The generated events are passed through the CMS detector simulation program, which is based on the GEANT4 [27] package, and reconstructed by using the same program as for the collision data to ensure that all features of the data, such as trigger and reconstruction, are applied to the Monte Carlo (MC) simulated SUSY signal sample.

The SUSY signal can be mimicked in several ways. Irreducible backgrounds from SM processes such as \(Z(\rightarrow \ell \ell)\gamma \gamma \) and \(W(\rightarrow \ell \nu)\gamma \gamma \) are negligible. The main backgrounds arise from SM processes with misidentified photons and/or mismeasured \(E_T^{\text{miss}} \). The dominant contribution comes from mismeasurement of \(E_T^{\text{miss}} \) in QCD processes such as direct diphoton, photon plus jets, and multijet production, with jets mimicking photons in the latter two cases. This background is referred to as the QCD background. The strategy for determining this background is to use control samples that are kinematically similar to the candidate sample and that can be reasonably assumed to have no significant genuine \(E_T^{\text{miss}} \). Two such samples are used. The first is a sample containing two fake photons, referred to as the \(ff \) sample below, comprising QCD multijet events. The second \((ee) \) sample contains events with two electrons [28] with invariant mass between 70 and 110 GeV and is dominated by \(Z \rightarrow ee \) decays.

The \(E_T \) resolution for electrons and fake photons is similar to the resolution for photons and is much better than the resolution for hadronic energy, so the \(E_T^{\text{miss}} \) resolution is dominated by the latter. The events in both control samples are reweighted to reproduce the diphoton transverse energy distribution in the candidate \(\gamma \gamma \) sample and, therefore, the transverse energy of the hadronic recoil against the diphoton system; the reweighting factors range from 0.3 to 1.7. The shapes of the \(E_T^{\text{miss}} \) distributions obtained from both control samples are identical within the statistical and systematic uncertainties and are used to predict the \(E_T^{\text{miss}} \) background by normalizing to the number of events with \(E_T^{\text{miss}} < 20 \text{ GeV} \) in the candidate sample.

The second background comes from events with real \(E_T^{\text{miss}} \). It is dominated by events with a genuine or fake photon and a \(W \) that decays into a neutrino and an electron, with the latter misidentified as a photon. This background is referred to as the electroweak background. An electron is misidentified as a photon if it satisfies all the photon selection criteria but has no matching hit pattern in the pixel detector. To model this background, an \(e\gamma \) candidate sample is defined, selected the same way as the \(\gamma \gamma \) sample but requiring at least one electron and at least one photon instead of at least two photons. This sample is thus enriched with \(W\gamma \) and \(W \) plus jets events (with real \(E_T^{\text{miss}} \)) similar to those in the candidate \(\gamma \gamma \) sample. The probability \(f_{e\gamma} \) to misidentify an electron as a photon is measured with \(Z \rightarrow ee \) events to be \((1.4 \pm 0.4)\% \). The \(e\gamma \) sample is
samples are then scaled so that their integrals below 20 GeV match that of the $\gamma\gamma$ sample minus the estimated electroweak contribution. Their integrals above 50 GeV give predictions of the QCD background.

Table I summarizes the number of $\gamma\gamma$ events observed and the numbers of background events expected with $E_T^{\text{miss}} \geq 50$ GeV. The statistical and systematic uncertainties on the background predictions due to reweighting and normalization are shown separately. One event is observed, while the total background is expected to be 0.53 ± 0.37 (1.71 \pm 0.64) events by using the ff (ee) samples and including the electroweak background. These two consistent estimates are averaged, by using log-normal distributions as probability density functions while taking into account the common component from the electroweak background and the correlated uncertainty due to the normalization, to obtain a prediction of 1.2 ± 0.4 background events. An additional conservative systematic uncertainty of 0.7 events is assigned by taking the largest difference between the average and the individual measurements, resulting in a total background uncertainty of 0.8 events.

The efficiency for SUSY events to satisfy the selection criteria is determined by applying correction factors derived from the data to the MC simulation of the signal. Since there exists no large clean sample of isolated photons in the data, we rely on similarities between the detector response to electrons and photons to extract the photon efficiency. The difference between the efficiencies for electrons and photons according to the MC simulation is 0.5%. The ratio of the electron efficiency from $Z \rightarrow ee$ events that pass all photon identification criteria (except for the pixel match) to the corresponding electron MC efficiencies gives an MC efficiency scale factor of 0.967 ± 0.015. This scale factor is applied to the efficiency to identify a photon from NLSP decay obtained with the MC simulation. The error on the scale factor also includes possible systematic effects from multiple interactions per bunch crossing (pileup), estimated to be less than 1%. The additional uncertainty on the efficiency of the requirement for no pixel match for a photon is estimated by varying the

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of events</th>
<th>Stat error</th>
<th>Reweight error</th>
<th>Normalization error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma\gamma$ events</td>
<td>1</td>
<td>0.04 ± 0.03</td>
<td>0.02</td>
<td>0.0</td>
</tr>
<tr>
<td>Electroweak background estimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD background estimate (ff)</td>
<td>0.49 ± 0.37</td>
<td>0.36</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>QCD background estimate (ee)</td>
<td>1.67 ± 0.64</td>
<td>0.46</td>
<td>0.38</td>
<td>0.23</td>
</tr>
<tr>
<td>Total background (using ff)</td>
<td>0.53 ± 0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total background (using ee)</td>
<td>1.71 ± 0.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined total background</td>
<td>1.2 ± 0.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected from GGM sample point</td>
<td>8.0 ± 1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1 (color online). E_T^{miss} distribution for $\gamma\gamma$ data, including the jet requirement, compared with backgrounds and a possible GGM SUSY signal. The solid circles with error bars represent the data. The double-hatched blue band represents the contribution of the electroweak background. The single-hatched red band shows the sum of the electroweak background with the QCD E_T^{miss} prediction obtained from the $Z \rightarrow ee$ sample. The widths of the bands correspond to the sum of the statistical and systematic uncertainties on the backgrounds. The prediction of the GGM SUSY sample point described in the text is shown in the plot as the solid line histogram.

then weighted by $f_{e-\gamma}/(1-f_{e-\gamma})$ in order to estimate the contribution of this background to the signal sample.

Finally, high-energy muons from cosmic rays or beam halo can deposit a large amount of energy in the ECAL, leading to events with two photon candidates and E_T^{miss}. These events are suppressed to a negligible level by the jet requirement described above.

The E_T^{miss} distribution in the $\gamma\gamma$ sample is shown in Fig. 1, together with the estimates of the electroweak background and the total background using the QCD prediction from $Z \rightarrow ee$ and their uncertainties. Events with $E_T^{\text{miss}} \leq 20$ GeV have negligible SUSY signal contribution (0.022 \pm 0.009 event for the GGM SUSY sample point described below). The E_T^{miss} distributions for the ff and ee
Fig. 2 and exhibits a clear deviation from the predicted QCD and QCD background alone but agrees well with the sum of the method described in Ref. [30]. Both the log-normal and squark production cross sections, employing a Bayesian efficiency are used to set upper limits on the gluino and \((C.L.)\) cross section limits, shown in Fig. 3, vary between 0.3 and 1.1 pb for a neutralino mass of 150 GeV as a function of squark and gluino masses. The variation in the limits is due to the dependence of the photon isolation efficiency on the number of jets in the event.

To illustrate the limit-setting procedure, a particular signal point, with a squark mass of 720 GeV, gluino mass of 720 GeV, and neutralino mass of 150 GeV, is considered. The next-to-leading order signal cross section for this point is 1.04 pb, the efficiency times acceptance is 0.203 ± 0.004(stat) ± 0.008(syst), and the parton distribution function and scale uncertainties are each 13%. The upper limit obtained from this measurement is 0.585 pb, while the expected cross section upper limit at the 95% C.L. is 0.628 pb. The expected number of events for this SUSY sample point for an integrated luminosity of 36 pb\(^{-1}\) is 8.0 ± 1.7 events. For comparison, the total next-to-leading order SUSY production cross section at the Tevatron for the same model point is 0.3 fb, leading to an expectation of less than half of an event for analysis [9].

The benchmark GGM model used in this Letter can be used to interpret these cross section limits as lower limits on squark and gluino masses. For each mass point we compare the predicted cross section with the measured upper limit and claim exclusion if the former is greater than the latter. The exclusion contours for three different choices of neutralino mass are shown in Fig. 4, together with the expected exclusion limit for a 150 GeV neutralino mass. The predicted cross section has uncertainties due to the choice of parton distribution function and scale. We varied the predicted cross section by 1 standard deviation of its uncertainty to ascertain the impact on the exclusion region. The results for 150 GeV neutralino mass are presented as a shaded band around the central value of the exclusion contour.

In summary, a search for evidence of GGM SUSY production in events that contain two or more high transverse energy isolated photons, one or more jets, and large...
FIG. 4 (color online). Lower 95% C.L. exclusion limits on the squark (\tilde{q}) and gluino (\tilde{g}) masses in the GGM benchmark model for 50, 150, and 500 GeV neutralino (χ^0_1) masses. The areas below and to the left of the lines are excluded. The expected exclusion limit for 150 GeV neutralino mass is shown by the dashed line. The shaded band represents ± 1 standard deviation of theoretical uncertainty on the GGM cross section.

E_T^{miss} is presented. No such evidence is observed, leading to upper limits on the GGM SUSY cross section between 0.3 and 1.1 pb at the 95% C.L. across the parameter space of squark and gluino masses.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); CONICET (Argentina); CRPP (Switzerland); CSIC (Spain); Swiss Funding Agencies (Switzerland); NSC and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

PRL 106, 211802 (2011) PHYSICAL REVIEW LETTERS week ending 27 MAY 2011

97 CERN, European Organization for Nuclear Research, Geneva, Switzerland
98 Paul Scherrer Institut, Villigen, Switzerland
99 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
100 Universitäät Zürich, Zurich, Switzerland
101 National Central University, Chung-Li, Taiwan
102 National Taiwan University (NTU), Taipei, Taiwan
103 Cukurova University, Adana, Turkey
104 Middle East Technical University, Physics Department, Ankara, Turkey
105 Bogazici University, Istanbul, Turkey
106 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
107 University of Bristol, Bristol, United Kingdom
108 Rutherford Appleton Laboratory, Didcot, United Kingdom
109 Imperial College, London, United Kingdom
110 Brunel University, Uxbridge, United Kingdom
111 Baylor University, Waco, Texas, USA
112 Boston University, Boston, Massachusetts, USA
113 Brown University, Providence, Rhode Island, USA
114 University of California, Davis, Davis, California, USA
115 University of California, Los Angeles, Los Angeles, California, USA
116 University of California, Riverside, Riverside, California, USA
117 University of California, San Diego, La Jolla, California, USA
118 University of California, Santa Barbara, Santa Barbara, California, USA
119 California Institute of Technology, Pasadena, California, USA
120 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
121 University of Colorado at Boulder, Boulder, Colorado, USA
122 Cornell University, Ithaca, New York, USA
123 Fairfield University, Fairfield, Connecticut, USA
124 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
125 University of Florida, Gainesville, Florida, USA
126 Florida International University, Miami, Florida, USA
127 Florida State University, Tallahassee, Florida, USA
128 Florida Institute of Technology, Melbourne, Florida, USA
129 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
130 The University of Iowa, Iowa City, Iowa, USA
131 Johns Hopkins University, Baltimore, Maryland, USA
132 The University of Kansas, Lawrence, Kansas, USA
133 Kansas State University, Manhattan, Kansas, USA
134 Lawrence Livermore National Laboratory, Livermore, California, USA
135 University of Maryland, College Park, Maryland, USA
136 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
137 University of Minnesota, Minneapolis, Minnesota, USA
138 University of Mississippi, University, Mississippi, USA
139 University of Nebraska–Lincoln, Lincoln, Nebraska, USA
140 State University of New York at Buffalo, Buffalo, New York, USA
141 Northeastern University, Boston, Massachusetts, USA
142 Northwestern University, Evanston, Illinois, USA
143 University of Notre Dame, Notre Dame, Indiana, USA
144 The Ohio State University, Columbus, Ohio, USA
145 Princeton University, Princeton, New Jersey, USA
146 University of Puerto Rico, Mayaguez, Puerto Rico, USA
147 Purdue University, West Lafayette, Indiana, USA
148 Purdue University Calumet, Hammond, Indiana, USA
149 Rice University, Houston, Texas, USA
150 University of Rochester, Rochester, New York, USA
151 The Rockefeller University, New York, New York, USA
152 Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA
153 University of Tennessee, Knoxville, Tennessee, USA
154 Texas A&M University, College Station, Texas, USA
155 Texas Tech University, Lubbock, Texas, USA
156 Vanderbilt University, Nashville, Tennessee, USA
157 University of Virginia, Charlottesville, Virginia, USA
aDeceased.
bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
cAlso at Universidade Federal do ABC, Santo Andre, Brazil.
dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
eAlso at Suez Canal University, Suez, Egypt.
fAlso at British University, Cairo, Egypt.
gAlso at Fayoum University, El-Fayoum, Egypt.
hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.
iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA.
jAlso at Université de Haute-Alsace, Mulhouse, France.
kAlso at Brandenburg University of Technology, Cottbus, Germany.
lAlso at Moscow State University, Moscow, Russia.
mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
nAlso at Eötvös Loránd University, Budapest, Hungary.
oAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India.
pAlso at University of Visva-Bharati, Santiniketan, India.
qAlso at Sharif University of Technology, Tehran, Iran.
rAlso at Shiraz University, Shiraz, Iran.
sAlso at Isfahan University of Technology, Isfahan, Iran.
tAlso at Facoltà Ingegneria Università di Roma “La Sapienza,” Roma, Italy.
uAlso at Università della Basilicata, Potenza, Italy.
vAlso at Università degli studi di Siena, Siena, Italy.
wAlso at California Institute of Technology, Pasadena, CA, USA.
xAlso at University of Athens, Athens, Greece.
yAlso at The University of Kansas, Lawrence, KS, USA.
zAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
aaAlso at Paul Scherrer Institut, Villigen, Switzerland.
abAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
acAlso at Gaziosmanpasa University, Tokat, Turkey.
adAlso at Adiyaman University, Adiyaman, Turkey.
aeAlso at Mersin University, Mersin, Turkey.
afAlso at Izmir Institute of Technology, Izmir, Turkey.
agAlso at Kafkas University, Kars, Turkey.
ahAlso at Suleyman Demirel University, Isparta, Turkey.
aiAlso at Ege University, Izmir, Turkey.
ajAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
akAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
alAlso at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
amAlso at Utah Valley University, Orem, UT, USA.
anAlso at Institute for Nuclear Research, Moscow, Russia.
aoAlso at Erzincan University, Erzincan, Turkey.