Communication in a Poisson Field of Interferers-Part II: Channel Capacity and Interference Spectrum

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/twc.2010.07.071283</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Apr 06 00:23:08 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/66094</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

Communication in a Poisson Field of Interferers–Part II:
Channel Capacity and Interference Spectrum

Pedro C. Pinto, Student Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—In Part I of this paper, we presented a mathematical model for communication subject to both network interference and noise, where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. We determined the distribution of the aggregate interference and the error performance of the link. In this second part, we characterize the capacity of the link subject to both network interference and noise. Then, we put forth the concept of spectral outage probability (SOP), a new characterization of the aggregate radio-frequency emission generated by communicating nodes in a wireless network. We present some applications of the SOP, namely the establishment of spectral regulations and the design of covert military networks. The proposed framework captures all the essential physical parameters that affect the aggregate network emission, yet is simple enough to provide insights that may be of value in the design and deployment of wireless networks.

Index Terms—Stochastic geometry, Poisson field, aggregate network emission, channel capacity, spectral outage, stable laws.

I. INTRODUCTION

The application of the spatial Poisson process to cellular networks was investigated in [1], and later advanced in [2]–[4]. However, these studies focus mostly on error performance metrics, and do not attempt a characterization of the channel capacity and interference spectrum. Furthermore, they often ignore random propagation effects (e.g., shadowing and fading) [1]; assume perfect synchronization between different interferers at the symbol or slot level [3]; or restrict the node locations to a disk in the two-dimensional plane [4], [5], which complicates the analysis and provides limited insights into the effect of network interference. In [6], [7], the authors analyze coexistence issues in narrowband and ultrawideband networks, but consider only a small, fixed number of interferers.

In Part I of this paper [8], we introduced a framework where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. Under this scenario, we determined the statistical distribution of the aggregate interference, and the corresponding error performance of the link. In this second part, we characterize the capacity of the link subject to both network interference and noise. Then, we put forth the concept of spectral outage probability (SOP), a new characterization of the aggregate radio-frequency (RF) emission generated by communicating nodes in a wireless network. Lastly, we quantify these metrics as a function of important system parameters, such as the signal-to-noise ratio (SNR), interference-to-noise ratio (INR), path loss exponent of the channel, and spatial density of the interferers. Our analysis easily accounts for all the essential physical parameters that affect the aggregate network emission. Furthermore, the concept of SOP can be used (e.g., in commercial or military applications) to evaluate and limit the impact of network interference on any given receiver operating in the same frequency band.

This paper is organized as follows. Section II briefly reviews the system model introduced in Part I. Section III analyzes the channel capacity of the system, and presents numerical examples to illustrate its dependence on important network parameters. Section IV derives the power spectral density (PSD) of the aggregate interference, introduces the concept of spectral outage probability, and provides numerical examples of both metrics. Section V summarizes important findings.

II. MODEL SUMMARY

We briefly review the model introduced in Part I. As shown in [8, Fig. 1], we consider the interfering nodes to be spatially scattered in the two-dimensional infinite plane, according to a homogeneous Poisson process with density λ (in nodes per unit area) [9]. The random distance of interfering node i to the origin is denoted by \(R_i \). For analytical purposes, we introduce a probe link which is composed of two nodes: the probe receiver (located at the origin), and the probe transmitter (node \(i = 0 \)).

In terms of transmission characteristics, we consider that all interfering nodes employ the same two-dimensional modulation and transmit at the same power \(P \). For generality, however, we allow the probe transmitter to employ an arbitrary two-dimensional modulation and arbitrary power \(P_i \), not
necessarily equal to that used by the interfering nodes. We consider that all nodes employ the same symbol rate $1/T$, but the signal received from node i is shifted by a random delay D_i, where $D_i \sim \mathcal{U}(0, T)$. The probe receiver performs coherent demodulation of the desired signal using a conventional in-phase/quadrature (IQ) detector.

The wireless propagation channel introduces path loss, log-normal shadowing, and multipath fading. Specifically, the overall effect of the channel on node i is accounted for by the random phase $\phi_i \sim \mathcal{U}(0, 2\pi)$, and the amplitude factor $\sqrt{\frac{G_{ri}}{G_0}}$. The term $\sqrt{\frac{G_{ri}}{G_0}}$ accounts for the path loss; α_i is due to the multipath fading, and has an arbitrary distribution with $\mathbb{E}\{\alpha_i^2\} = 1$; and $e^{j\alpha_i G_{ri}}$ is due to the log-normal shadowing, with $G_{ri} \sim \mathcal{N}(0, 1)$.\footnote{We use $\mathcal{U}(a, b)$ to denote a real uniform distribution in the interval $[a, b]$.}

In the rest of the paper, we consider the scenario where the location $\{R_i\}_{i=1}^{\infty}$ and shadowing $\{G_{ri}\}_{i=1}^{\infty}$ of the interferers (succinctly denoted by \mathcal{P}), as well as the shadowing G_0, affecting the probe transmitter, remain approximately constant during the interval of interest. This models a quasi-static scenario where the movement of the nodes during the interval of interest is negligible. In such condition, we condition the analysis on \mathcal{P} in order to derive a capacity outage probability and a spectral outage probability, which are more meaningful than the corresponding \mathcal{P}-averaged metrics.\footnote{We use $\mathbb{E}\{\cdot\}$ and $\mathcal{V}\{\cdot\}$ to denote the expectation and variance operators, respectively. In addition, we use $\mathcal{N}(\mu, \sigma^2)$ to denote a real Gaussian distribution with mean μ and variance σ^2.}

Other fast-varying propagation effects, such as multipath fading due to local scattering, are averaged out in the analysis.

III. Channel Capacity

In Part I of this paper, we focused on error performance metrics. We now build on the results of Part I and analyze the capacity of the link between the probe transmitter and probe receiver in [8, Fig. 1], subject to aggregate network interference and additive white Gaussian noise (AWGN). Unlike the simple AWGN channel, here the capacity depends on the information available about the channel at the probe receiver in [8, Fig. 1], subject to aggregate network interference and thermal noise, given by

$$W = \sum_{i=1}^{\infty} e^{\sigma G_i} X_i R_i^{-b} + W,$$

with $W \sim \mathcal{N}(0, N_0)$.\footnote{We use $\mathcal{N}(0, \sigma^2)$ to denote a circularly symmetric (CS) complex Gaussian distribution, where the real and imaginary parts are independent identically distributed (i.i.d.) $\mathcal{N}(0, \sigma^2/2)$.} These are essentially the same baseband equations as those given in Part I, except that the transmitted constellation symbol $a_0 e^{j\theta_0}$ has been replaced by a generic input symbol S, with an arbitrary distribution $f_S(s)$. This emphasizes the fact that to analyze the channel capacity, we need to maximize the mutual information over all possible input distributions $f_S(s)$, and thus cannot restrict S to belong to a specific constellation, such as M-PSK or M-QAM. In addition, we impose an average energy constraint on the input symbol by requiring that $\mathbb{E}\{|S|^2\} \leq E_S$.

Considering that the interfering nodes are coded and operating close to capacity, then the signal transmitted by each interferer is Gaussian, such that $X_i \sim \mathcal{N}(0, 2V_X)$.\footnote{Alternatively, we can follow the same approach as in Part I and argue that $X_i \sim \mathcal{N}(0, 2V_X)$ in a scenario where the interferers employ an arbitrary two-dimensional modulation (this is the Gaussian approximation introduced in [8, Eq. (11)])}. The resulting aggregate interference is thus Gaussian when conditioned on \mathcal{P}, and the distribution of \widetilde{W} in (2) is given by

$$\widetilde{W} \overset{d}{\sim} \mathcal{N}(0, 2AV_X + N_0),$$

where

$$A = \sum_{i=1}^{\infty} e^{2\sigma G_i} R_i^{-b}.$$\footnote{We use $X \overset{d}{\sim}$ to denote the distribution of X on Y.}

Note that since A in (4) depends on \mathcal{P} (i.e., $\{R_i\}_{i=1}^{\infty}$ and $\{G_{ri}\}_{i=1}^{\infty}$), it can be seen as a random variable (r.v.) whose value is different for each realization of \mathcal{P}. It was shown in Part I that the r.v. A has a skewed stable distribution \footnote{We use $\mathcal{N}(\mu, \sigma^2)$ to denote a real stable distribution with characteristic exponent $\alpha \in (0, 2]$, skewness $\beta \in [-1, 1]$, and dispersion $\gamma \in [0, \infty)$. The corresponding characteristic function is $\phi(u) = \begin{cases} \exp[-|\gamma|u^\alpha (1 - j\beta \text{sign}(u) \tan \frac{\alpha \pi}{2})], & \alpha \neq 1, \\ \exp[-|\gamma|u^\alpha (1 + j\beta \text{sign}(u) \ln |u|)], & \alpha = 1. \end{cases}$} given by

$$A \sim S \left(\alpha_A = \frac{1}{b}, \beta_A = 1, \gamma_A = \lambda \pi C_x^{-1} e^{2\sigma^2/|b|^2}\right),$$

where $b > 1$, and C_x is defined as

$$C_x = \begin{cases} \Gamma(2-x) \cos(\pi x/2), & x \neq 1, \\ 2, & x = 1, \end{cases}$$

with $\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} dt$ denoting the gamma function. Because of the conditioning on G_0 and \mathcal{P}, equations (1)-(4) describe a simple Gaussian channel depicted schematically in Fig. 1. The capacity of this energy-constrained, fast fading channel with receiver CSI can be written as \footnote{We use $\mathcal{S}(\alpha, \beta, \gamma)$ to denote a real stable distribution with characteristic exponent $\alpha \in (0, 2]$, skewness $\beta \in [-1, 1]$, and dispersion $\gamma \in [0, \infty)$. The corresponding characteristic function is $\phi(u) = \begin{cases} \exp[-|\gamma|u^\alpha (1 - j\beta \text{sign}(u) \tan \frac{\alpha \pi}{2})], & \alpha \neq 1, \\ \exp[-|\gamma|u^\alpha (1 + j\beta \text{sign}(u) \ln |u|)], & \alpha = 1. \end{cases}$} [12]

$$C = \max_{f_S: \mathbb{E}|S|^2 \leq E_S} I(S; Z|\alpha_0),$$

where S is the complex channel input, and \widetilde{W} is the combined aggregate interference and thermal noise, given by

$$\widetilde{W} = \sum_{i=1}^{\infty} e^{\sigma G_i} X_i R_i^{-b} + W,$$
Fig. 1. Channel model for capacity analysis.

\[I(S; Z|\alpha_0) = \log_2 \left(1 + \frac{\tilde{\alpha}_0^2 e^{2rG_0}E_S}{r_0^2(2AV_X + N_0)} \right) \]

in bits per complex symbol, and thus we obtain the capacity of the channel as

\[C(G_0, P) = E_{\alpha_0} \left\{ \log_2 \left(1 + \frac{\alpha_0^2 e^{2rG_0}E_S}{r_0^2(2AV_X + N_0)} \right) \right\} \]

in bits per complex symbol, where we have explicitly indicated the conditioning of \(C \) on the random interferer positions and shadowing. For a Rayleigh fading channel, \(\alpha_0^2 \) is exponentially distributed with mean 1 and we can further express (7) in terms of the exponential integral function \(\text{Ei}(x) = -\int_{-x}^{\infty} e^{-t} \frac{dt}{t} \) as

\[C(G_0, P) = -\frac{\exp\left(\frac{\sqrt{2}}{\eta}\right)}{\ln(2)} \text{Ei}\left(\frac{-\sqrt{2}}{\eta}\right) \]

in bits per complex symbol, where

\[\eta = \frac{e^{2rG_0}E_S}{r_0^2(2AV_X + N_0)} \]

is the received signal-to-interference-plus-noise ratio (SNIR), averaged over the fast fading.

In the proposed quasi-static model, the maximum rate of reliable communication for a given realization of \(G_0 \) and \(P \) is given by (8)-(9). Such quantity is a function of the random user positions and shadowing, and is therefore random. Then, with some probability, \(G_0 \) and \(P \) are such that the capacity is below the desired transmission rate \(\varrho \), thus making the channel unusable for communication at that rate with arbitrarily low error probability. The system is said to be in outage, and the capacity outage probability is

\[P^c_{\text{out}} = P_{G_0, P}\{ C(G_0, P) < \varrho \} \]

or, substituting (8) into (10),

\[P^c_{\text{out}} = P_{\eta} \left\{ \exp\left(\frac{\sqrt{2}}{\eta}\right) \text{Ei}\left(\frac{-\sqrt{2}}{\eta}\right) < \varrho \right\} \]

B. Numerical Results

Figures 2 and 3 quantify the capacity outage probability and illustrate its dependence on the various parameters, such as the signal-to-noise ratio \(\text{SNR} = E_S/N_0 \), the interference-to-noise ratio \(\text{INR} = E/N_0 \), and spatial density \(\lambda \) of the interferers. For simplicity, we consider a case study where all interfering nodes transmit equiprobable symbols, belonging to a constellation that is symmetric with respect to the origin of the IQ-plane (e.g., M-PSK and M-QAM). In this particular case, it is shown in [8, Eq. (14)] that \(V_X = E/3 \), and thus (9) reduces to

\[\eta = \frac{e^{2rG_0}\text{SNR}}{r_0^2(2\lambda \text{INR} + 1)} \]

To evaluate the corresponding \(P^c_{\text{out}} \), we resort to a hybrid approach where we employ the analytical result given in (11)-(12), but perform a Monte Carlo simulation of the stable r.v. \(A \) according to [13]. Nevertheless, we emphasize that the expressions derived in this paper completely eliminate the need for simulation of the interferers’ positions and waveforms in the network, in order to obtain the capacity.

IV. SPECTRAL CHARACTERIZATION OF THE AGGREGATE NETWORK EMISSION

The spectral properties of the aggregate RF emission generated by all the nodes in a network is an important consideration in the design of wireless systems. This is useful in military applications, for example, where the communication designer must ensure that the presence of the deployed network is not detected by the enemy. If, for example, a sensor network is to be deployed in enemy territory, then the characterization of the aggregate network emission is essential for the design of a covert system. In commercial applications, on the other hand, the goal is to ensure that the RF emission of the network does not cause interference to other systems operating in overlapping frequency bands. To prevent interference, many commercial networks operate under restrictions which often take the form of spectral masks, imposed by a regulatory...
agency such as the US Federal Communications Commission (FCC).

In the previous sections, we have so far derived the error probability and capacity of a link subject to both network interference and thermal noise. We now determine the PSD of the aggregate interference process $Y(t)$, measured at the origin of the two-dimensional plane in [8, Fig. 1]. The spectral characteristics of $Y(t)$ can be inferred from the knowledge of its PSD.

A. Power Spectral Density of the Aggregate Network Emission

The aggregate network emission at the probe receiver can be characterized by the complex baseband random process $Y(t)$, defined as

$$Y(t) = \sum_{i=1}^{\infty} Y_i(t),$$

where $Y_i(t)$ is the received process associated with each emitting node i. The signal $Y_i(t)$ can in turn be expressed for all time t as

$$Y_i(t) = \frac{e^{\alpha G_i}}{R_i^b} \int h_i(t, \tau) X_i(t - \tau) d\tau,$$

where $X_i(t)$ is the complex baseband transmitted signal, and $h_i(t, \tau)$ is time-varying complex baseband impulse response of the multipath channel associated with node i. The system model described by (14) is depicted in Fig. 4. It corresponds to a generalization of the model introduced in Part I of this paper, where we considered a two-dimensional modulation and a flat Rayleigh fading channel. Since now we are interested in analyzing the spectral properties of $Y(t)$, we incorporate in the model a generic transmitted waveform $X_i(t)$, not necessarily associated with a two-dimensional modulation, as well as a generic multipath channel $h_i(t, \tau)$, not necessarily associated with flat Rayleigh fading. Also, since in this section we are only interested in the aggregate emission of the network, we can ignore the existence of the probe link depicted in [8, Fig. 1]. In the remainder of this paper, we carry the analysis in complex baseband, although it can be trivially translated to passband frequencies.

In what follows, we consider that the transmitted signal $X_i(t)$ is a wide-sense stationary (WSS) process, such that its autocorrelation function has the form $R_{XX}(t_1, t_2) = \mathbb{E}\{X_i^*(t_1) X_i(t_2)\} = R_X(\Delta t)$, where $\Delta t = t_2 - t_1$. We define the PSD of the process $X_i(t)$ as $S_X(f) = \mathbb{F}_{\Delta t \to f}\{R_X(\Delta t)\}$. Since different nodes operate independently, the processes $X_i(t)$ are also independent for different i, but the underlying second-order statistics are the same (i.e., the autocorrelation function and the PSD of $X_i(t)$ do not depend on i). As we will show in the case study of Section IV-C, if $X_i(t)$ is a train of pulses with a uniformly distributed random delay (which models the asynchronism between emitting nodes), then it is a WSS process.

To model the multipath effect, we consider a wide-sense stationary uncorrelated scattering (WSSUS) channel [14]–[18], so that the autocorrelation function of $h_i(t, \tau)$ can be expressed as

$$R_{hh}(t_1, t_2, \tau_1, \tau_2) = \mathbb{E}\{h_i^*(t_1, \tau_1) h_i(t_2, \tau_2)\} = P_h(\Delta t, \tau_2) \delta(\tau_2 - \tau_1),$$

for some function $P_h(\Delta t, \tau)$. Such channel can be represented in the form of a densely-tapped delay line, as a continuum of uncorrelated, randomly-scintillating scatterers having WSS statistics. The functions $h_i(t, \tau)$ are considered to be independent for different nodes i, but the underlying second-order statistics are the same (i.e., the autocorrelation function of $h_i(t, \tau)$ does not depend on i). WSSUS channels are an important class of practical channels which simultaneously exhibit wide-sense stationarity in the time variable t and uncorrelated scattering in the delay variable τ. They are the simplest non-degenerate channels which exhibit both time and frequency fading, and also serve as a good model for many radio channels.

We are now interested in determining the PSD of the aggregate RF emission $Y(t)$ of the network. The result is given in the following theorem.

Theorem 4.1 (WSS and WSSUS Channels): Let $h(t, \tau)$ denote the time-varying complex baseband impulse response of a multipath channel, whose autocorrelation function is given by $R_h(t_1, t_2, \tau_1, \tau_2)$. Let $u(t)$ denote the complex baseband WSS process which is applied as input to the channel, and $z(t)$ denote the corresponding output process of the channel.

1) If the channel $h(t, \tau)$ is WSS, i.e., $R_h(t_1, t_2, \tau_1, \tau_2) = R_h(\Delta t, \tau_1, \tau_2)$, then the output $z(t)$ is WSS and its PSD

$$P_{zz}(f) = \mathbb{F}_{\Delta t \to f}\{R_h(\Delta t, \tau_1, \tau_2)\}.$$
is given by
\[
S_z(f) = \int \int P_z(\nu, \tau_1, \tau_2)_{\nu=f} \left[S_u(f)e^{2\pi if(\tau_1-\tau_2)} \right] d\tau_1 d\tau_2,
\]
where \(P_z(\nu, \tau_1, \tau_2) \triangleq \mathcal{F}_{\Delta t \rightarrow \nu} \{ R_h(\Delta t, \tau_1, \tau_2) \} \), and \(S_u(f) \) is the PSD of \(u(t) \).

2) If the channel \(h(t, \tau) \) is WSSUS, i.e.,
\[
R_h(t_1, t_2, \tau_1, \tau_2) = P_h(\Delta t, \tau_2) \delta(\tau_2 - \tau_1)
\]
for some function \(P_h(\Delta t, \tau) \), then the output \(z(t) \) is WSS and its PSD is given by
\[
S_z(f) = D_h(\nu)|_{\nu=f} \cdot S_u(f),
\]
where \(D_h(\nu) \) is the Doppler power spectrum of the channel \(h(t, \tau) \), and \(P_s(\nu, \tau) \triangleq \mathcal{F}_{\Delta t \rightarrow \nu} \{ P_h(\Delta t, \tau) \} \) is the scattering function of the channel \(h(t, \tau) \).

Proof: See Appendix A for a proof and an intuitive interpretation of the theorem.

The theorem implies that the signal \(Y_i(t) \) in (14) is WSS and thus the aggregate network emission \(Y(t) \) is also WSS. Furthermore, the PSD of \(Y_i(t) \) is given by
\[
S_Y(f) = \sum_{i=1}^{\infty} S_{Y_i}(f),
\]
Combining (17) and (18), we obtain the desired conditional PSD of the aggregate network emission \(Y(t) \) as
\[
S_Y(f, P) = A \cdot \left(D_h(f) \cdot S_X(f) \right),
\]
where \(A \) was defined in (4). Note that in (19) we explicitly indicated the conditioning of \(S_Y(\nu) \) on the random node positions and shadowing, \(P \). Then, with some probability, \(P \) is such that the spectrum of the aggregate emission is too high in some frequency band of interest, thus causing an outage in that frequency band. This leads to the concept of spectral outage probability (SOP), which we denote by \(P_{\text{out}}(f) \) and generally define as
\[
P_{\text{out}}(f) \triangleq P_{\{S_Y(f, P) > m(f)\}},
\]
where \(S_Y(f, P) \) is the random PSD of the aggregate network emission \(Y(t) \), and \(m(f) \) is some spectral mask determining the outage (or detection) threshold at the receiver. The SOP is a frequency-dependent quantity and, in the case of slow-varying positions \(P \), is a more insightful metric than the PSD averaged over \(P \). Note that this definition is applicable in general to any emission model: the spectral outage probability \(P_{\text{out}}(f) \) represents the probability that the PSD of the aggregate network emission, measured at an arbitrary location in the plane and at a particular frequency \(f \), exceeds some predetermined mask [19].

In commercial applications, the concept of SOP can provide a radically different way to establish spectral regulations. Current regulations and standards (e.g., FCC Part 15 or IEEE 802.11) impose a spectral mask on the PSD at the transmitter, and the type of mask often depends on the environment in which the devices are operated (e.g., indoor or outdoor). The purpose of this mask is to limit RF emissions generated by a terminal, and to protect other services that operate in dedicated bands (e.g., Global Positioning System, public safety, and cellular systems). However, the transmitted PSD is usually not representative of the aggregate PSD at the victim receiver, due to the random propagation effects (multipath fading and shadowing) and the random position of the emitting nodes. Thus, spectral regulations that are based only on the transmitted PSD do not necessarily protect a victim receiver against interference.

In the proposed framework, we follow a radically different approach, in the sense that the spectral mask is defined at the victim receiver, not at the transmitter. In effect, the mask \(m(f) \) introduced in (20) represents the outage threshold with respect to the accumulated PSD at the receiver, not the individual PSD at the transmitter (this follows from the fact that \(S_Y(f, P) \) is measured at an arbitrary location in the plane, where a probe receiver could be located). Therefore, the received aggregate spectrum \(S_Y(f, P) \) and the corresponding \(P_{\text{out}}(f) \) can be used to characterize and control the network’s RF emissions more effectively, since they not only consider the aggregate effect of all emitting nodes at an arbitrary receiver location, but also incorporate the random propagation effects and random node positions. Furthermore, the use of different masks for indoor or outdoor environments is no longer necessary, since the environment is already accounted for in our model by parameters such as the amplitude loss exponent \(b \), the spatial density \(\lambda \) of the emitting nodes, and the shadowing coefficient \(\sigma \).

In military applications, on the other hand, the goal is to ensure that the presence of the deployed network is not detected by the enemy. If, for example, a surveillance network is to be deployed in enemy territory, then the characterization of its aggregate emission is essential for the design of a covert network with low probability of detection. In such application, the function \(m(f) \) in (20) can be interpreted as the frequency-dependent mask which determines the detection threshold (not the outage threshold as before). In other words, if the aggregate spectral density \(S_Y(f, P) \) measured at a given location exceeds the mask \(m(f) \), then the presence of the deployed network could be detected by the enemy.

For the signal model considered in this paper, \(P_{\text{out}}(f) \) can be derived by substituting (19) into the general definition of
Fig. 5. Effect of the transmitted baseband pulse shape $P_i(t)$ on the stable r.v. $\mathcal{X}_i(t)$ can be written for all t as

$$X_i(t) = \sum_{n=-\infty}^{+\infty} a_{i,n} g(t - nT - D_i),$$

where the sequence $\{a_{i,n}\}_{n=-\infty}^{+\infty}$ represents the stream of complex symbols transmitted by node i, assumed to be i.i.d. in n and zero-mean, for simplicity; $g(t)$ is a real, baseband, unit-energy shaping pulse, defined for all values of t; T is the symbol period; and $D_i \sim \mathcal{U}(0, T)$ is a random delay representing the asynchronism between different emitting nodes. The type of constellation employed by the emitting nodes is captured by the statistics of the symbols $\{a_{i,n}\}$.\(^\text{11}\) Note that the process $X_i(t)$ in (22) is WSS, as required by Theorem 4.1.\(^\text{12}\) The PSD of $X_i(t)$ is then given by \cite{21}–\cite{23}

$$S_X(f) = P(G(f))^2,$$

where $P = \mathbb{E}\{a_{i,n}^2\}/T$ is the power transmitted by each emitting node, and $G(f) = \mathcal{F}\{g(t)\}$.

To model the multipath effect, we consider for simplicity that $h(t, \tau)$ is time-invariant such that it does not introduce any Doppler shifts, i.e., $D_h(\nu) = \delta(\nu)$.\(^\text{13}\) Substituting the expressions for $S_X(f)$ and $D_h(\nu)$ in (21), we obtain the SOP as

$$P_{out}^\text{PS}(f) = 1 - F_A\left(\frac{m(f)}{P(G(f))^2}\right).$$

Figure 5 shows that for a fixed spectral mask $m(f)$, the SOP can be highly dependent on the pulse shape $g(t)$, such as square or root raised-cosine (RRC) pulse. In fact, $P_{out}^\text{PS}(f)$ is a nonlinear function of $|G(f)|$, where the nonlinearity is determined in part by the c.d.f. $F_A(\cdot)$ of the stable r.v. A, as shown in (24). The SOP can be used as a criterion for designing the pulse shape; for example, we may wish to determine the baseband pulse $g(t)$ and transmitted power P such that $\max_f P_{out}^\text{PS}(f) \leq \rho^\ast$, where ρ^\ast is some target outage probability which must be satisfied at all frequencies.

Figure 6 shows that for a fixed pulse shape $g(t)$, $P_{out}^\text{PS}(f)$ can significantly depend on the spectral mask $m(f)$ (e.g., piecewise-linear, Gaussian, or constant mask). Since $P_{out}^\text{PS}(f)$ accounts for both $G(f)$ and $m(f)$, it quantifies the compatibility of the transmitted pulse shape with the spectral restrictions imposed through $m(f)$.

Figures 7 and 8 illustrate, respectively, the dependence of the outage probability $P_{out}^\text{PS}(f)$ on the transmitted power P and spatial density λ of the emitting nodes. Specifically, as P or λ increase, the aggregate network emission becomes stronger, and thus $P_{out}^\text{PS}(f)$ deteriorates at all frequencies, approaching the maximum value of 1.

\(^\text{11}\)Note that each complex symbol $a_{i,n} = a_{i,n} e^{\jmath \theta_{i,n}}$ can be represented in the IQ plane by a constellation point with amplitude $a_{i,n}$ and phase $\theta_{i,n}$.

\(^\text{12}\)This can be shown in the following way; first, if we deterministically set D_i to zero in (22), the resulting process $X_i(t)$ is wide-sense cyclostationary (WSCS) with period T; then, since $X_i(t) = X_i(t - D_i)$, with $D_i \sim \mathcal{U}(0, T)$ and independent of everything else, it follows that $X_i(t)$ is WSS.

\(^\text{13}\)For typical node speeds or channel fluctuations, the frequencies of the Doppler shifts are on the order of few kHz. As a consequence, when the considered $X_i(t)$ is an ultrawideband signal, $D_h(\nu)$ can be well approximated by a Dirac-delta function.
(a) Plot of various spectral masks $m(f)$ which define the outage threshold at the receiver (top curves). Also shown is the PSD of the individual transmitted signal versus frequency (bottom curve).

(b) Spectral outage probability $P_{\text{out}}(f)$ versus frequency, for the various masks $m(f)$ shown in (a).

Fig. 6. Effect of the spectral mask shape $m(f)$ on the outage probability $P_{\text{out}}(f)$ (square $g(t)$, $P = 10\text{dBm}$, $T = 10^{-6}\text{s}$, $\lambda = 0.1\text{m}^{-2}$, $b = 2$, $\sigma_{\text{dB}} = 10$).

Fig. 7. Spectral outage probability $P_{\text{out}}(f)$ versus frequency, for various transmitted powers P (square $g(t)$, $T = 10^{-6}\text{s}$, $\lambda = 0.1\text{m}^{-2}$, $b = 2$, $\sigma_{\text{dB}} = 10$, $m(f) = -60\text{dBm/Hz}$).

Fig. 8. Spectral outage probability $P_{\text{out}}^0(f)$, evaluated at $f = 0$, versus transmitted power P, for various spatial densities λ of the emitting nodes (square $g(t)$, $T = 10^{-6}\text{s}$, $b = 2$, $\sigma_{\text{dB}} = 10$, $m(f) = -60\text{dBm/Hz}$).

D. Generalizations

We now extend the results to an heterogeneous scenario with K different networks, where a given emitting node belongs to the network $k \in \{1 \ldots K\}$ with probability p_k, independently of everything else. Using the splitting property of Poisson processes [24], we know the emitting nodes from each network k form a spatial Poisson process, which is independent of the processes of other networks and has spatial density $\lambda_k = \lambda p_k$. Therefore, we can write the aggregate emission from all nodes in all networks as

$$Y(t) = \sum_{k=1}^{K} Y^{(k)}(t),$$

where $Y^{(k)}(t) = \sum_{i=1}^{\infty} Y_{k,i}(t)$ is the aggregate emission from the individual network k, and

$$Y_{k,i}(t) = e^{\sigma G_{k,i}} \frac{R_{h_{k,i}}^b}{R_{k,i}^b} \int h_{k,i}(t,\tau)X_{k,i}(t-\tau)d\tau, \quad k \in \{1 \ldots K\},$$

where $X_{k,i}(t)$ and $h_{k,i}(t,\tau)$ are, respectively, the transmitted signal and the impulse response of the multipath channel associated with node i from network k. We consider that $X_{k,i}(t)$ and $h_{k,i}(t,\tau)$ are independent in both k and i. Then, the aggregate emission $Y^{(k)}(t)$ is also independent for different networks k when conditioned on the positions \mathcal{P}, and thus $S_Y(f) = \sum_{k=1}^{K} S_{Y^{(k)}}(f)$. We can generalize (19) and write the conditional PSD of the aggregate emission $Y(t)$ in this heterogeneous scenario as

$$S_Y(f,\mathcal{P}) = \sum_{k=1}^{K} A_k \left[D_{h_k}(f) * S_{X_k}(f)\right],$$

where $D_{h_k}(f)$ and $S_{X_k}(f)$ are, respectively, the Doppler power spectrum and the PSD of the transmitted signal associated with network k; and the r.v.’s $\{A_k\}$ are i.i.d. in k and given by

$$A_k = \sum_{i=1}^{\infty} e^{2\pi G_{k,i}} \frac{R_{h_{k,i}}^b}{R_{k,i}^b}.$$
with distribution
\[A_k \sim S\left(\alpha_A = \frac{1}{b}, \beta_A = 1, \gamma_A = \pi\lambda_b g_1/\beta_{2\sigma^2/b^2}\right). \]

\[\text{V. Conclusions} \]

This two-part paper investigates a mathematical model for communication subject to both network interference and AWGN, where the spatial distribution of the nodes is captured by a Poisson field in the two-dimensional plane. We specifically address the cases of slow and fast-varying node positions, as well as homogeneous and heterogeneous networks, in a realistic wireless environment subject to path loss, multipath fading and shadowing. In Part I, we determined the statistical distribution of the aggregate interference at the output of a conventional linear receiver, which leads directly to the characterization of the error performance (in terms of outage and average probabilities).

In this second part, we characterized the capacity of the link when subject to both network interference and noise, and derived the PSD of the aggregate RF emission of the network. Then, we put forth the concept of spectral outage probability, and described some possible applications, namely the establishment of spectral regulations and the design of covert military networks. In particular, the SOP can be used as a criterion for designing pulse shapes or controlling interference in wireless networks, and as a measure of the network’s coarness. Our framework clearly shows how the aggregate network emission can be characterized in terms of important network parameters, thereby providing insights that may be of value to the network designer.

\[\text{APPENDIX A} \]

\[\text{DERIVATION OF THEOREM 4.1} \]

The derivation of Theorem 4.1 relies on the general theory of linear time-varying systems and Bello system functions [14]–[17]. Let \(h(t, \tau) \) denote a time-varying complex baseband impulse response of a multipath channel. When the complex baseband process \(u(t) \) is applied as input to the channel, the output process \(z(t) \) is given by the integral
\[z(t) = \int h(t, \tau) u(t-\tau) d\tau. \]

We define the autocorrelation function of the input \(u(t) \) as \(R_u(t_1,t_2) \triangleq \mathbb{E}\{u^*(t_1)u(t_2)\} \), and the autocorrelation function of the channel \(h(t, \tau) \) as \(R_h(t_1,t_2,\tau_1,\tau_2) \triangleq \mathbb{E}\{h^*(t_1,\tau_1)h(t_2,\tau_2)\} \). The autocorrelation of the output \(z(t) \) is generally given by
\[R_z(t_1,t_2) = \int R_h(t_1,t_2,\tau_1,\tau_2)R_u(t_1-\tau_1,t_2-\tau_2)d\tau_1d\tau_2. \]

Since the input process \(u(t) \) is WSS, \(R_u(t_1,t_2) = R_u(\Delta t) \), where \(\Delta t = t_2 - t_1 \).

We first consider a WSS channel \(h(t, \tau) \) such that \(R_h(t_1,t_2,\tau_1,\tau_2) = R_h(\Delta t, \tau_1, \tau_2) \). Then, we can rewrite \(R_z(t_1,t_2) \) in (25) as
\[R_z(t_1,t_2) = \int R_h(\Delta t, \tau_1, \tau_2)R_u(\Delta t + \tau_1 - \tau_2)d\tau_1d\tau_2 \triangleq R_z(\Delta t). \]

Since \(R_u(t_1,t_2) \) is a function only of \(\Delta t \), the output \(z(t) \) is also WSS. The PSD of \(z(t) \) can be written as
\[S_z(f) = \mathcal{F}_{\Delta t \to f} \{ R_z(\Delta t) \} = \int \int R_h(\Delta t, \tau_1, \tau_2)R_u(\Delta t + \tau_1 - \tau_2)d\tau_1d\tau_2 \]
\[\times e^{-j2\pi f \Delta t} d\tau_1d\tau_2 = \int \int P_u(\nu, \tau_1, \tau_2)_{\nu=f} \{ \mathcal{S}_u(f)e^{j2\pi f (\tau_1-\tau_2)} \} d\tau_1d\tau_2, \]

where \(P_u(\nu, \tau_1, \tau_2) \triangleq \mathcal{F}_{\Delta t \to \nu} \{ R_h(\Delta t, \tau_1, \tau_2) \} \), and \(\mathcal{S}_u(f) \) is the PSD of \(u(t) \). This is the result in Theorem 4.1, eq. (15).

We now further constrain the channel \(h(t, \tau) \) to be WSSUS such that \(R_h(t_1,t_2,\tau_1,\tau_2) = P_h(\Delta t, \tau_2)\delta(\tau_2 - \tau_1) \), for some function \(P_h(\Delta t, \tau) \). Then, \(R_u(t_1,t_2) \) in (26) can be further simplified as follows:
\[R_z(t_1,t_2) = \int \int P_h(\Delta t, \tau_2)\delta(\tau_2 - \tau_1)R_u(\Delta t + \tau_1 - \tau_2)d\tau_1d\tau_2 \]
\[= \int P_h(\Delta t, \tau)R_u(\Delta t)d\tau \]
\[= R_u(\Delta t) \int P_h(\Delta t, \tau)d\tau \triangleq R_u(\Delta t). \]

The output \(z(t) \) is therefore WSS, and its PSD can be written as
\[S_z(f) = \mathcal{F}_{\Delta t \to f} \{ R_u(\Delta t) \} \]
\[= \mathcal{F}_{\Delta t \to \nu} \{ P_h(\Delta t, \tau) \} \mathcal{F}_{\Delta t \to f} \{ \int P_h(\Delta t, \tau)d\tau \} \]
\[= \mathcal{S}_u(f) \frac{1}{2} \int P_u(\nu, \tau)_{\nu=f} d\tau, \]

where \(P_u(\nu, \tau) \triangleq \mathcal{F}_{\Delta t \to \nu} \{ P_h(\Delta t, \tau) \} \) is known as the scattering function of the channel \(h(t, \tau) \). It provides a measure of the average power output of the channel as a function of the delay \(\tau \) and the Doppler shift \(\nu \). Furthermore, if we define the Doppler power spectrum of the channel as \(\mathcal{P}_h(\nu) \triangleq \int P_u(\nu, \tau)d\tau \), then (29) can be succinctly written as
\[S_z(f) = \mathcal{S}_u(f) \frac{1}{2} \mathcal{D}_h(\nu)_{\nu=f}, \]

which is the result in Theorem 4.1, eq. (16).

From (30), we conclude that \(\mathcal{S}_u(f) \) depends on the Doppler power spectrum of the channel, \(\int P_u(\nu, \tau)d\tau \), but not on its power delay profile \(\int P_u(\nu, \tau)d\tau/d\nu \). This is intuitively satisfying since all delayed replicas of the WSS process \(u(t) \) have the same PSD. Furthermore, if the channel \(h(t, \tau) \) is time-invariant, then \(\mathcal{D}_h(\nu) = \delta(\nu) \) and thus \(\mathcal{S}_u(f) = \mathcal{S}_u(f - f_0) \), i.e., the channel does not affect the PSD of the input. On the other hand, if the channel is time-varying in such a way that it introduces a Doppler shift of \(f_0 \) Hz, then \(\mathcal{D}_h(\nu) = \delta(\nu - f_0) \) and thus \(\mathcal{S}_u(f) = \mathcal{S}_u(f - f_0) \), i.e., the output PSD is simply the input PSD shifted by \(f_0 \) Hz, as expected.

\[\text{ACKNOWLEDGEMENTS} \]

The authors would like to thank L. A. Shepp, R. A. Scholtz, L. Greenstein, J. H. Winters, G. J. Foschini, M. Chiani, A. Giorgetti, and W. Suwansantisuk for their helpful suggestions.
REFERENCES

