Search for $b\to u$ transitions in $B^{\pm}[K^{\pm}0]DK^{\pm}$ decays

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Lees, J. et al. “Search for $b\to u$ transitions in $B^{\pm}[K^{\pm}0]DK^{\pm}$ decays.” Physical Review D 84 (2011): n. pag. Web. 8 Nov. 2011. © 2011 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.84.012002</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 25 06:12:33 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/66969</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>.permissions</td>
</tr>
</tbody>
</table>
Search for $b \rightarrow u$ transitions in $B^{\pm} \rightarrow [K^{\pm} \pi^{\pm}\pi^{0}]D K^{\pm}$ decays

A. M. Ruland, 70 C. J. Schilling, 70 R. F. Schwitters, 70 B. C. Wray, 70 J. M. Izen, 71 X. C. Lou, 71 F. Bianchi, 72a, 72b D. Gamba, 72a, 72b L. Lanceri, 73a, 73b L. Vitale, 73a, 73b N. Lopez-March, 74 F. Martinez-Vidal, 74 A. Oyanguren, 74 H. Ahmed, 75 J. Albert, 75 Sw. Banerjee, 75 H. H. F. Choi, 75
(The BABAR Collaboration)

1 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a INFN Sezione di Bari, I-70126 Bari, Italy
3b Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
8 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
9 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
10 University of California at Irvine, Irvine, California 92697, USA
11 University of California at Riverside, Riverside, California 92521, USA
12 University of California at Santa Barbara, Santa Barbara, California 93106, USA
13 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
14 California Institute of Technology, Pasadena, California 91125, USA
15 University of Cincinnati, Cincinnati, Ohio 45221, USA
16 University of Colorado, Boulder, Colorado 80309, USA
17 Colorado State University, Fort Collins, Colorado 80523, USA
18 Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
19 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
20 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France
21 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
22a INFN Sezione di Ferrara, I-44100 Ferrara, Italy
22b Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
23 INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
24a INFN Sezione di Genova, I-16146 Genova, Italy
24b Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
25 Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
26 Harvard University, Cambridge, Massachusetts 02138, USA
27 Harvey Mudd College, Claremont, California 91711
28 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29 Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
30 Imperial College London, London, SW7 2AZ, United Kingdom
31 University of Iowa, Iowa City, Iowa 52242, USA
32 Iowa State University, Ames, Iowa 50011-3160, USA
33 Johns Hopkins University, Baltimore, Maryland 21218, USA
34 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
35 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36 University of Liverpool, Liverpool L69 7EZ, United Kingdom
37 Queen Mary, University of London, London, E1 4NS, United Kingdom
38 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39 University of Louisville, Louisville, Kentucky 40292, USA
40 Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
41 University of Manchester, Manchester M13 9PL, United Kingdom
42 University of Maryland, College Park, Maryland 20742, USA
43 University of Massachusetts, Amherst, Massachusetts 01003, USA
We present a study of the decays $B^+ \rightarrow D K^+$ with D mesons reconstructed in the $K^+ \pi^- \pi^0$ or $K^- \pi^+ \pi^0$ final states, where D indicates a D^0 or a \bar{D}^0 meson. Using a sample of 474×10^6 $B \bar{B}$ pairs collected with the BABAR detector at the PEP-II asymmetric-energy $e^+ e^-$ collider at SLAC, ...
I. INTRODUCTION

CP violation effects are described in the standard model of elementary particles with a single phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix V_{ij} [1]. One of the unitarity conditions for this matrix can be interpreted as a triangle in the plane of Wolfenstein parameters [2], where one of the angles is $\gamma = \arg\{-V_{ub}V_{ud}/V_{cb}V_{cd}\}$. Various methods to determine γ using $B^+ \to DK^+$ decays have been proposed [3–5]. In this paper, we consider the decay channel $B^+ \to DK^+$ with $D \to K^- \pi^+ \pi^0$ [6] studied through the Atwood-Dunietz-Soni (ADS) method [4]. In this method, the final state under consideration can be reached through $b \to c$ and $b \to u$ processes as indicated in Fig. 1 that are followed by either Cabibbo-favored or Cabibbo-suppressed D^0 decays. The interplay between different decay channels leads to a possibility to extract the angle γ alongside with other parameters for these decays.

Following the ADS method, we search for $B^+ \to [K^- \pi^+ \pi^0]_D K^+$ events, where the favored $B^+ \to D^0 K^+$ decay, followed by the doubly-Cabibbo-suppressed $D^0 \to K^- \pi^+ \pi^0$ decay, interferes with the suppressed $B^+ \to D^0 K^+$ decay, followed by the Cabibbo-favored $D^0 \to K^- \pi^+ \pi^0$ decay. These are called “opposite-sign” events because the two kaons in the final state have opposite charges. We also reconstruct a larger sample of “same-sign” events, which mainly arise from the favored $B^+ \to D^0 K^+$ decays followed by the Cabibbo-favored $D^0 \to K^- \pi^+ \pi^0$ decays. We define $f \equiv K^+ \pi^- \pi^0$ and $\bar{f} \equiv K^- \pi^+ \pi^0$. We extract

$$R^+ = \frac{\Gamma(B^+ \to [f]_D K^+)}{\Gamma(B^+ \to [\bar{f}]_D K^+)},$$

from the selected B^+ and B^- samples, respectively. While our previous analysis [7] used another set of observables:

$$R_{\text{ADS}} = \frac{\Gamma(B^+ \to [f]_D K^+)}{\Gamma(B^+ \to [f]_D K^+)} + \frac{\Gamma(B^- \to [f]_D K^-)}{\Gamma(B^- \to [f]_D K^-)},$$

and

$$A_{\text{ADS}} = \frac{\Gamma(B^+ \to [f]_D K^+)}{\Gamma(B^+ \to [f]_D K^+)} - \frac{\Gamma(B^- \to [f]_D K^-)}{\Gamma(B^- \to [f]_D K^-)},$$

we prefer to use observables defined in Eqs. (1) and (2) since their statistical uncertainties, which dominate in the final error of this measurement, are uncorrelated.

The amplitude of the two-body D decay can be written as

$$A(B^+ \to D^0 K^+) = |A(B^+ \to D^0 K^+)| r_D e^{i\delta_D},$$

where $r_D = |A(B^- \to D^- K^-)|/|A(B^- \to D^- K^-)|$ is the ratio of the magnitudes of the $b \to u$ and $b \to c$ amplitudes, δ_D is the CP conserving strong phase, and γ is the CP violating weak phase. For the three-body D decay we use similarly defined variables:

$$r_D^2 = \frac{\int \tilde{m} A_{\text{DCS}}^2(\tilde{m})}{\int \tilde{m} A_{\text{DCS}}^2(\tilde{m})} = \frac{\Gamma(D^0 \to f)}{\Gamma(D^0 \to f)},$$

and

$$k_D e^{i\delta_D} = \frac{\int \tilde{m} A_{\text{DCS}}^2(\tilde{m}) A_{\text{CF}}(\tilde{m}) e^{i\delta(\tilde{m})}}{\sqrt{\int \tilde{m} A_{\text{DCS}}^2(\tilde{m}) \int \tilde{m} A_{\text{CF}}^2(\tilde{m})}}.$$
\[\delta_D = (47^{+14}_{-13})^\circ, \] are used in the signal yield estimation and \(r_B \) extraction. The ratio \(r_D \) has been measured in different experiments and we take the average value \(r_D = (2.2 \pm 0.1) \times 10^{-3} \) [9]. Its value is small compared to the present determination of \(r_B \), which is taken to be \((0.106 \pm 0.016)\) [10]. According to Eqs. (8) and (9), this implies that the measurements of ratios \(R^\pm \) are mainly sensitive to \(r_B \).

For the same reason, the sensitivity to \(\gamma \) is reduced, and therefore the main aim of this analysis is to measure \(R^0 \), \(R^- \), and \(r_B \). The current high precision on \(r_B \) is based on several earlier analyses by the BABAR [7,11–13], BELLE [14–16], and CDF [17] Collaborations. This paper is an update of our previous analysis [7] based on \(226 \times 10^6 \) \(B\bar{B} \) pairs and resulting in a measurement of \(R_{ADS} = (13^{+12}_{-10}) \times 10^{-3} \), which was translated into the 95\% confidence level limit \(r_B < 0.19 \).

The results presented in this paper are obtained with 431 fb\(^{-1} \) of data collected at the \(Y(4S) \) resonance with the BABAR detector at the PEP-II \(e^+e^- \) collider at SLAC, corresponding to \(474 \times 10^6 \) \(B\bar{B} \) pairs. An additional “off-resonance” data sample of 45 fb\(^{-1} \), collected at a center-of-mass (CM) energy 40 MeV below the \(Y(4S) \) resonance, is used to study backgrounds from “continuum” events, \(e^+e^- \to q\bar{q} \) (\(q = u, d, s, \) or \(c \)).

II. EVENT RECONSTRUCTION AND SELECTION

The BABAR detector is described in detail elsewhere [18]. Charged-particle tracking is performed by a five-layer silicon vertex tracker and a 40-layer drift chamber. In addition to providing precise position information for tracking, the silicon vertex tracker and drift chamber measure the specific ionization, which is used for identification of low-momentum charged particles. At higher momenta, pions and kaons are distinguished by Cherenkov radiation detected in a ring-imaging device. The positions and energies of photons are measured with an electromagnetic calorimeter consisting of 6580 thallium-doped CsI crystals. These systems are mounted inside a 1.5 T solenoidal superconducting magnet. Muons are identified by the instrumented flux return, which is located outside the magnet.

The event selection is based on studies of off-resonance data and Monte Carlo (MC) simulations of continuum and \(e^+e^- \to Y(4S) \to B\bar{B} \) events. The BABAR detector response is modeled with GEANT4 [19]. We also use EVTGEN [20] to model the kinematics of \(B \) meson decays and JETSET [21] to model continuum background processes. All selection criteria are optimized by maximizing the \(S/\sqrt{S+B} \) ratio, where \(S \) and \(B \) are the expected numbers of the opposite-sign signal and background events, respectively. In the optimization, we assume an opposite-sign branching fraction of \(4 \times 10^{-6} \) [9].

The charged kaon and pion identification criteria are based on a likelihood technique. These criteria are typically 85\% efficient, depending on the momentum and polar angle, with misidentification rates at the 2\% level. The \(\pi^0 \) candidates are reconstructed from pairs of photon candidates with an invariant mass in the interval [119, 146] MeV/c\(^2 \) and with total energy greater than 200 MeV. Each photon should have energy greater than 70 MeV.

The neutral \(D \) meson candidates are reconstructed from a charged kaon, a charged pion, and a neutral pion. The correlation between the tails in the distribution of the \(K\pi\pi^0 \) invariant mass, \(m_D \), and the \(\pi^0 \) candidate mass, \(m_{\pi^0} \), is taken into account by requiring \(|m_D - m_{\pi^0}| \) to be within 24 MeV/c\(^2 \) of its nominal value [9], which is 1.5 times the experimental resolution.

The \(B^+ \) candidates are reconstructed by combining \(D \) and \(K^+ \) candidates, and constraining them to originate from a common vertex. The probability distribution of the cosine of the \(B \) polar angle with respect to the beam axis in the CM frame, \(\cos \theta_B \), is expected to be proportional to \((1 - \cos^2 \theta_B) \). We require \(|\cos \theta_B| < 0.8 \).

We measure two almost independent kinematic variables: the beam-energy substituted (ES) mass \(m_{ES} = \sqrt{(s/2 + \vec{p}_0 \cdot \vec{p}_B)^2/E_0^2 - p_B^2} \), and the energy difference \(\Delta E = E_B - \sqrt{s}/2 \), where \(E \) and \(\vec{p} \) are the energy and momentum, the subscripts \(B \) and \(0 \) refer to the candidate \(B \) meson and \(e^+e^- \) system, respectively, \(\sqrt{s} \) is the center-of-mass energy, and \(E_B \) is measured in the CM frame. For correctly reconstructed \(B \) mesons, the distribution of \(m_{ES} \) peaks at the \(B \) mass, and the distribution of \(\Delta E \) peaks at zero. The \(B \) candidates are required to have \(\Delta E \) in the range \([-23, 23]\) MeV (± 1.3 standard deviations). We consider only events with \(m_{ES} \) in the range \([5.20, 5.29]\) GeV/c\(^2 \).

In less than 2\% of the events, multiple \(B^+ \) candidates are present, and in these cases we choose that with a reconstructed \(D \) mass closest to the nominal mass value [9]. If more than one \(B^+ \) candidate share the same \(D \) candidate, we select that with the smallest \(|\Delta E| \). In the following, we refer to the selected candidate as \(B_{sig} \). All charged and neutral reconstructed particles not associated with \(B_{sig} \), but with the other \(B \) decay in the event, \(B_{other} \), are called the rest of the event.

III. BACKGROUND CHARACTERIZATION

After applying the selection criteria described above, the remaining background is composed of nonsignal \(B\bar{B} \) events and continuum events. Continuum background events, in contrast to \(B\bar{B} \) events, are characterized by a jetlike topology. This difference can be exploited to discriminate between the two categories of events by means of a Fisher discriminant \(\mathcal{F} \), which is a linear combination of six variables. The coefficients of the linear combination are chosen to maximize the separation between signal and continuum background so that \(\mathcal{F} \) peaks at 1 for signal and at \(-1 \) for continuum background. They are determined with samples of simulated signal and continuum events,
null
to the B^- sample (consisting of 15057 events) to
determine R^-. The PDFs for R^+ and R^- fits are identical. The R_{ADS} ratio is fitted to the same likelihood ansatz, but to the combined B^+ and B^- data sample.

Since the correlations among the variables are negligible, we write the PDFs as products of the one-dimensional distributions of m_{ES} and F. The absence of correlation between these distributions is checked using MC samples. The signal m_{ES} distributions are modeled with the same asymmetric Gaussian function for both same-sign and opposite-sign events, while the F distribution is taken as a sum of two Gaussians. The continuum background m_{ES} distributions for the same and opposite-sign events are modeled with two different threshold ARGUS functions [23] defined as follows:

$$A(x) = x_0 \sqrt{1 - \left(\frac{x}{x_0}\right)^2} \cdot e^{(1-(x)/(x_0))^2},$$

where x_0 represents the maximum allowed value for the variable x, and c determines the shape of the distribution. The m_{ES} distribution of the nonpeaking $\bar{B}\bar{B}$ background components are modeled with crystal ball functions that are different for same-sign and opposite-sign events [24]. The crystal ball function is a Gaussian modified to include a power-law tail on the low side of the peak. The F distributions for the $\bar{B}\bar{B}$ background are approximated with sums of two asymmetric Gaussians. For the peaking $\bar{B}\bar{B}$ background, we conservatively use the same parameter set as for the signal.

The PDF parameters are derived from data when possible. The parameters for continuum events are determined from the off-resonance data sample. The parameters for the m_{ES} distribution of signal events are extracted from the sample of $B^+ \rightarrow D\pi^+$ with $D \rightarrow K^+\pi^-\pi^0$, while for the parameters of the signal Fisher PDF we use the MC sample. The parameters of nonpeaking $\bar{B}\bar{B}$ distributions are determined from the MC sample. From each fit, we extract the ratios R^+, R^-, or R_{ADS}, the total number of signal events in the sample ($N_{B^+,ss}$) along with the nonpeaking background yields and threshold function slope for the continuum background. We fix the number of peaking $\bar{B}\bar{B}$ background events.

To test the fitting procedure, we generated 10000 pseudoexperiments based on the PDFs described above. The fitting procedure is then tested on these samples. We find no bias in the number of fitted events for any component of the fit. Tests of the fit procedure performed on the full MC samples give values for the yields compatible with those expected.

The main results of the fit to the data are summarized in Table II.

The fits to the m_{ES} for $F > 0.5$ and the F distribution with $m_{ES} > 5.27$ GeV/c^2 are shown in Fig. 2, for the

![FIG. 2 (color online). Distribution of (a,b) m_{ES} (with $F > 0.5$) and (c,d) F (with $m_{ES} > 5.27$ GeV/c^2) and the results of the maximum-likelihood fits for the combined B^+ and B^- samples (extracting R_{ADS}), for (a,c) opposite-sign and (b,d) same-sign decays. The data are well described by the overall fit result (solid blue line) which is the sum of the signal, continuum, nonpeaking, and peaking $\bar{B}\bar{B}$ backgrounds.]

Table II. Results of fits to the B^+, B^-, and the combined B^+ and B^- samples, including the extracted number of signal and background events and their statistical errors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>B^+</th>
<th>B^-</th>
<th>B^+ and B^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, 10^{-3}</td>
<td>5_{-10}^{+12}</td>
<td>12_{-10}^{+12}</td>
<td>$9.1_{-7.6}^{+8.2}$</td>
</tr>
<tr>
<td>$N_{B^+,ss}$</td>
<td>1032 ± 41</td>
<td>946 ± 39</td>
<td>1981 ± 57</td>
</tr>
<tr>
<td>$N_{B^+,bkg}$</td>
<td>305 ± 52</td>
<td>120 ± 36</td>
<td>402 ± 65</td>
</tr>
<tr>
<td>$N_{B^+,cont.Bkg}$</td>
<td>315 ± 44</td>
<td>329 ± 44</td>
<td>644 ± 62</td>
</tr>
<tr>
<td>$N_{B^+,nonpeak}$</td>
<td>10290 ± 111</td>
<td>10017 ± 105</td>
<td>20320 ± 154</td>
</tr>
<tr>
<td>$N_{B^+,cont.Bkg}$</td>
<td>3660 ± 69</td>
<td>3539 ± 68</td>
<td>7203 ± 76</td>
</tr>
</tbody>
</table>
the contributions related to the uncertainties on the PDF parameters. To evaluate these, we repeat the fit varying the PDF parameters for each fit species within their statistical errors, taking into account correlations among the parameters (labeled as “PDF error” in Table III).

To evaluate the uncertainties arising from peaking background contributions, we repeat the fit varying the peaking $B\bar{B}$ background contribution within its statistical uncertainties and the errors of branching fractions, \mathcal{B}, used to estimate the contribution. For the opposite-sign events, only the positive part of the probability distribution is used in the evaluation.

Differences between data and MC (labeled as “Simulation” in Table III) in the shape of the \mathcal{F} distribution are studied for signal components using the data control samples of $B^+ \rightarrow D\pi^+$ with $D \rightarrow K^+\pi^-\pi^0$, $B^- \rightarrow D\pi^-$, and $B^- \rightarrow DK$ samples. We conservatively take the systematic uncertainty as the difference in the fit results from the nominal parameters set (using MC events) and the parameters set obtained using the $B \rightarrow D\pi$ data sample.

The systematic uncertainty attributed to the cross feed between opposite-sign and same-sign events has been evaluated from the MC samples. The number of same-sign events passing the selection of the opposite-sign events is taken as a systematic uncertainty. The efficiencies for same-sign and opposite-sign events were verified to be the same within a precision of 3% [25]. We hence assign a systematic uncertainty on R^\pm based on variations due to changes in the efficiency ratio by $\pm 3\%$.

The systematic uncertainties for the ratios R^+, R^-, and R_{ADS} are summarized in Table III. The overall systematic errors represent the sum in quadrature of the individual uncertainties.

TABLE III. Systematic errors for R^\pm and R_{ADS} in units of 10^{-3}.

<table>
<thead>
<tr>
<th>Source</th>
<th>R^+</th>
<th>R^-</th>
<th>R_{ADS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF error</td>
<td>$+1.1$</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Same-sign peaking background</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Opposite-sign peaking background</td>
<td>-0.3</td>
<td>-0.6</td>
<td>-0.4</td>
</tr>
<tr>
<td>Simulation</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>\mathcal{B} errors</td>
<td>0.2</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Cross feed contribution</td>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Efficiency ratio</td>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Combined uncertainty</td>
<td>$+1.2$</td>
<td>$+1.6$</td>
<td>$+1.4$</td>
</tr>
</tbody>
</table>

FIG. 4 (color online). Bayesian posterior probability density function for r_B from our measurement of R^+ and R^- and the hadronic D decay parameters r_D, δ_D, and k_D taken from [8,9]. The dark and light shaded zones represent the 68% and 90% probability regions, respectively.
are translated into a probability distribution for \(r_B \) using Eqs. (8) and (9) simultaneously. We assume the following prior probability distributions: for \(r_D \) a Gaussian with mean \(4.7 \times 10^{-2} \) and standard deviation \(3 \times 10^{-3} \) \cite{9}; for \(k_D \) and \(\delta_D \), we use the likelihood obtained in Ref. \cite{8}, taking into account a 180 degree difference in the phase convention for \(\delta_D \); for \(\gamma \) and \(\delta_B \) we assume a uniform distribution between 0 and 360 degrees, while for \(r_B \) a uniform distribution in the range \([0, 1]\) is used. We obtain the posterior probability distribution shown in Fig. 4. Since the measurements are not statistically significant, we integrate over the positive portion of that distribution and obtain the upper limit \(r_B < 0.13 \) at 90% probability, and the range

\[
\frac{r_B}{0.10, 0.11] \quad \text{at 68\% probability, (11)}
\]

and 0.078 as the most probable value.

VII. SUMMARY

We have presented a study of the decays \(B^+ \to D^0 K^\pm \) and \(B^\pm \to D^\mp K^\pm \), in which the \(D^0 \) and \(\bar{D}^0 \) mesons decay to the \(K^\pm \pi^\pm \pi^0 \) final state using the ADS method. The analysis is performed using \(474 \times 10^6 \) \(B\bar{B} \) pairs, the full \(BABAR \) data set. Previous results \cite{7} are improved and superseded by improved event reconstruction algorithms and analysis strategies employed on a larger data sample.

The final results are

\[
R^+ = (5_{-1}^{+12}(\text{stat})_{-4}^{+4}(\text{syst})) \times 10^{-3},
\]

\[
R^- = (12_{-10}^{+12}(\text{stat})_{-2}^{+2}(\text{syst})) \times 10^{-3},
\]

\[
R_{\text{ADS}} = (9.1_{-7.5}^{+8.2}(\text{stat})_{-3.5}^{+1.4}(\text{syst})) \times 10^{-3},
\]

from which we obtain 90% probability limits

\[
R^+ < 23 \times 10^{-3},
\]

(15)

From our measurements, we derive the limit

\[
r_B < 0.13 \quad \text{at 90\% probability. (18)}
\]

ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support \textit{BABAR}. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel).