Measurement of the B_0 Production Cross Section in pp Collisions at $s=7$TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.106.252001</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 25 01:06:36 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/67059</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of the B^0 Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)

(Received 14 April 2011; published 20 June 2011)

Measurements of the differential production cross sections $d\sigma/dp_T^B$ and $d\sigma/dy^B$ for B^0 mesons produced in pp collisions at $\sqrt{s} = 7$ TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb$^{-1}$. The production cross section is measured from B^0 meson decays reconstructed in the exclusive final state $J/\psi K_S^0$, with the subsequent decays $J/\psi \rightarrow \mu^+\mu^-$ and $K_S^0 \rightarrow \pi^+\pi^-$. The total cross section for $p_T^B > 5$ GeV and $|y^B| < 2.2$ is measured to be $33.2 \pm 2.5 \pm 3.5$ μb, where the first uncertainty is statistical and the second is systematic.

DOI: 10.1103/PhysRevLett.106.252001
PACS numbers: 13.85.Rm, 12.38.Bx, 14.40.Nd

Cross sections for heavy quark production in hard scattering interactions have been studied at $p\bar{p}$ colliders at center-of-mass energies from 630 GeV [1] to 1.96 TeV [2–4] and in p-nucleus collisions with beam energies from 800 to 920 GeV [5]. The expected cross sections can be calculated in perturbative quantum chromodynamics. The comparison between data and predictions provides a critical test of next-to-leading order (NLO) calculations [6]. Considerable progress has been achieved in understanding heavy quark production at Tevatron energies, largely resolving earlier discrepancies [7], but substantial theoretical uncertainties remain due to the dependence on the renormalization and factorization scales. Measurements of b-hadron production at 7 TeV provided by the Large Hadron Collider (LHC) [8–10] represent a test at a new center-of-mass energy of theoretical approaches that aim to describe heavy flavor production [11,12].

This Letter presents the first measurement of the B^0 cross section in pp collisions at $\sqrt{s} = 7$ TeV. Events with B^0 mesons reconstructed from their decays to the final state $J/\psi K_S^0$, with $J/\psi \rightarrow \mu^+\mu^-$ and $K_S^0 \rightarrow \pi^+\pi^-$, are used to measure $d\sigma/dp_T^B$, $d\sigma/dy^B$, and the integrated cross section for transverse momentum $p_T^B > 5$ GeV and rapidity $|y^B| < 2.2$, where y is defined as $\frac{1}{2} \ln \frac{E + p_L}{E - p_L}$, E is the particle energy, and p_L is the particle momentum along the counterclockwise beam direction. As the B^0 and \bar{B}^0 are indistinguishable in this analysis, both mesons are referred to as B^0 for the purposes of reconstruction and the final results are divided by two to obtain an average.

The data sample collected by the Compact Muon Solenoid (CMS) detector at the LHC corresponds to an integrated luminosity of 39.6 \pm 1.6 pb$^{-1}$ and represents the entire 2010 data set. A detailed description of the detector may be found elsewhere [13]. The main detector components used in this analysis are the silicon tracker and the muon systems.

The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.5$, where $\eta = -\ln \tan(\theta/2)$ and θ is the polar angle of the track relative to the counterclockwise beam direction. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T field of the superconducting solenoid. It provides an impact parameter resolution of $\sim 15 \mu$m and a p_T resolution of about 1.5% for particles with transverse momenta up to 100 GeV. Muons are measured in the pseudorapidity range $|\eta| < 2.4$, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers.

Events are selected by a trigger requiring two muons without any explicit requirement on the muon momentum. The muon candidates are fully reconstructed offline, combining information from the silicon tracker and muon detectors, and are required to be within the following kinematic acceptance region: $p_T^\mu > 3.3$ GeV for $|\eta^\mu| < 1.3$; total momentum $p^\mu > 2.9$ GeV for $1.3 < |\eta^\mu| < 2.2$; and $p_T^\mu > 0.8$ GeV for $2.2 < |\eta^\mu| < 2.4$. Opposite-sign muon pairs are fit to a common vertex to form J/ψ candidates, which are required to be within 150 MeV of the world-average J/ψ mass [14].

The K_S^0 candidates are formed by fitting oppositely charged tracks reconstructed with the CMS tracking algorithm [15] to a common vertex. Each track is required to have at least 6 hits in the silicon tracker, a normalized $\chi^2 < 5$, and a transverse impact parameter with respect to the luminous region greater than 0.5 times its uncertainty. The reconstructed K_S^0 decay vertex must have a normalized $\chi^2 < 7$ and a transverse separation from the luminous region at least 5 times larger than the uncertainty on the separation. The $\pi^+\pi^-$ invariant mass $m_{K_S^0}$ is required to satisfy $478 < m_{K_S^0} < 518$ MeV, and the reconstructed
mass distribution is found to be in good agreement with the world-average value [14].

The B^0 candidates are formed by combining a J/ψ candidate with a K_S^0 candidate. A kinematic fit is performed with the two muons and the K_S^0 candidate, in which the invariant masses of the J/ψ and K_S^0 candidates are constrained to their world-average values [14]. The B^0 vertex fit confidence level is required to be greater than 1% and the reconstructed B^0 mass m_B must satisfy $4.9 < m_B < 5.7$ GeV. When more than one candidate in a single event passes all the selection criteria, only the candidate with the highest B^0 vertex fit confidence level is retained, which results in the correct choice 99% of the time in simulated events containing a true signal candidate. A total of 23,174 B^0 candidates pass all selection criteria.

The efficiency of the B^0 reconstruction is computed with a combination of techniques using the data and large samples of fully simulated signal events generated by PYTHIA 6.422 [16], decayed by EVTGEN [17], and simulated by GEANT4 [18]. The trigger and muon-reconstruction efficiencies are obtained from a large sample of inclusive $J/\psi \rightarrow \mu^+ \mu^-$ decays in data using a technique similar to that described in Ref. [19], where one muon is identified with stringent quality requirements, and the second muon is identified using information either exclusively from the tracker (to measure the trigger and muon-identification efficiencies), or from the muon system (to measure the silicon tracking efficiency). Since the dimuon efficiencies are calculated as the product of the measured single muon efficiencies, a correction (1%–6%), obtained from the muon system (to measure the trigger and muon-identification efficiencies), or from the muon system (to measure the silicon tracking efficiency). Since the dimuon efficiencies are calculated as the product of the measured single muon efficiencies, a correction (1%–6%), obtained from the simulation, is applied to take into account efficiency correlations between the two muons. The probabilities for the muons to lie within the kinematic acceptance region and for the B^0 and K_S^0 candidates to pass the selection requirements are determined from the simulated events. To minimize the effect of the PYTHIA modeling of the p_T^B and $|y^B|$ distributions on the efficiency calculation, the simulated events are reweighted to match the kinematic distributions observed in the data. The efficiencies for hadron-track reconstruction [20], K_S^0 reconstruction [21], and for fulfilling the vertex quality requirement are found to be consistent between data and simulation within the available precision (up to 5%).

The proper decay length of each selected B^0 candidate is calculated as $ct = (m_B/p_T^B)L_{xy}$, where the transverse decay length L_{xy} is the vector \vec{s} pointing from the primary vertex [15] to the B^0 transverse momentum vector: $L_{xy} = (\vec{s} \cdot \vec{p}_T^B)/|p_T^B|$.

Backgrounds are dominated by prompt and nonprompt J/ψ production, with nonprompt contributions from sources peaking and nonpeaking in m_B, as shown in Fig. 1. In particular, misreconstructed b-hadron decays to final states with a J/ψ, such as $B \rightarrow J/\psi K^*(892)$, produce a broadly peaking structure in the region $m_B < 5.2$ GeV. A study of the dimuon invariant mass distribution confirms that the contamination from events containing a misidentified J/ψ is negligible after all selection criteria have been applied.

The signal yields in each p_T^B and $|y^B|$ bin are obtained using an unbinned extended maximum-likelihood fit to m_B and ct. The likelihood for event j is obtained by summing the product of yield n_i and probability density P_i for each of the signal and background hypotheses i. Four individual components are considered: signal events, prompt J/ψ events, nonprompt $b \rightarrow J/\psi$ events that peak in m_B (peaking), and nonprompt $b \rightarrow J/\psi$ events that do not peak in m_B (nonpeaking). The extended likelihood function is the product of likelihoods for all events:

$$\mathcal{L} = \exp\left(-\sum_{i=1}^{4} n_i \right) \prod_{j=1}^{4} \left[\sum_{i=1}^{4} n_i P_i(m_B; \tilde{\alpha}_i) P_i(ct; \tilde{\beta}_i) \right].$$

The probability density functions (PDFs), P_i, with shape parameters $\tilde{\alpha}_i$ for m_B and $\tilde{\beta}_i$ for ct, are evaluated.
The PDF shapes are described below with the parameters obtained from data when possible. The m_B PDFs are as follows: the sum of two Gaussian functions for the signal; exponential functions for the prompt and nonpeaking backgrounds; and a sum of three Gaussian functions for the peaking background. The resolution on m_B for correctly reconstructed signal events from simulation is approximately 20 MeV. The ct PDFs are as follows: a single exponential function convolved with the resolution function for the prompt J/ψ and nonpeaking component. The resolution function, a sum of two Gaussian functions, is common for signal and background and is measured in data to have an average resolution of 71 µm.

The fit proceeds in several steps such that all background shapes are obtained directly from data, except for the peaking component which is taken from simulation, as the signal m_B shapes. This technique relies on the assumption that in the region $5.4 < m_B < 5.7$ GeV (sideband) there are only two contributions: prompt J/ψ and nonpeaking background. To obtain the effective lifetime distribution of the nonpeaking background, the m_B and ct distributions in the m_B sideband region are fit simultaneously for events in the inclusive B^0 sample defined by $p_T^B > 5$ GeV and $|y^B| < 2.2$. The accuracy and robustness of the fit strategy were demonstrated by performing a large set of pseudoexperiments, with each one corresponding to the yields observed in data, where signal and background events were generated randomly from the PDFs in each bin. No significant biases were observed on the yields, and the statistical precision of the test was taken as the systematic uncertainty due to potential biases in the fit method. The fit uncertainties were also observed to be estimated properly.

The fitted signal yields in each bin of p_T^B and $|y^B|$ are summarized in Table I. Figure 1 shows the fit projections for m_B and ct from the inclusive sample with $p_T^B > 5$ GeV and $|y^B| < 2.2$. The total number of signal events is 809 ± 39, where the uncertainty is statistical only.

The differential cross section is calculated in bins of p_T^B as
\[
d\sigma(pp \to B^0X) = \frac{n_{\text{sig}}}{2eBL\Delta p_T^B},
\]
and similarly for $|y^B|$, where n_{sig} is the fitted number of signal events in the given bin, ϵ is the efficiency for a B^0 meson to pass all the selection criteria, L is the integrated luminosity, Δp_T^B is the bin size, and B is the product of branching fractions $B(B^0 \to J/\psi K^0) = (4.36 \pm 0.16) \times 10^{-4}$, $B(J/\psi \to \mu^+\mu^-) = (5.93 \pm 0.06) \times 10^{-2}$, and $B(K^0_S \to \pi^+\pi^-) = 0.6920 \pm 0.0005$ [14]. The additional factor of 2 in the denominator accounts for our choice of quoting the cross section for B^0 production only, while n_{sig} includes both B^0 and \bar{B}^0. The efficiencies are calculated separately for each bin, always considering only mesons produced with $|y^B| < 2.2$ ($p_T^B > 5$ GeV) for p_T^B ($|y^B|$) bins, and take into account bin-to-bin migrations ($< 1\%$) due to the resolution on the measured p_T^B and $|y^B|$.

<table>
<thead>
<tr>
<th>p_T^B (GeV)</th>
<th>n_{sig}</th>
<th>ϵ (%)</th>
<th>$d\sigma/dp_T^B$ (µb/GeV)</th>
<th>MC@NLO</th>
<th>PYTHIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5–10</td>
<td>240 ± 23</td>
<td>0.65 ± 0.05</td>
<td>5.20 ± 0.50 ± 0.59</td>
<td>3.66</td>
<td>7.42</td>
</tr>
<tr>
<td>10–13</td>
<td>169 ± 17</td>
<td>3.32 ± 0.28</td>
<td>1.196 ± 0.121 ± 0.117</td>
<td>1.13</td>
<td>2.14</td>
</tr>
<tr>
<td>13–17</td>
<td>193 ± 16</td>
<td>6.37 ± 0.51</td>
<td>0.535 ± 0.045 ± 0.051</td>
<td>0.49</td>
<td>0.83</td>
</tr>
<tr>
<td>17–24</td>
<td>138 ± 13</td>
<td>9.60 ± 0.76</td>
<td>0.145 ± 0.014 ± 0.014</td>
<td>0.15</td>
<td>0.24</td>
</tr>
<tr>
<td>24–40</td>
<td>70 ± 9</td>
<td>11.40 ± 1.04</td>
<td>0.027 ± 0.003 ± 0.003</td>
<td>0.025</td>
<td>0.035</td>
</tr>
</tbody>
</table>

| $|y^B|$ | n_{sig} | ϵ (%) | $d\sigma/d|y^B|$ (µb) | MC@NLO | PYTHIA |
|--------|-----------|------------|-----------------|--------|--------|
| 0.0–0.5| 145 ± 14 | 1.34 ± 0.10| 7.63 ± 0.74 ± 0.76 | 6.21 | 12.41 |
| 0.5–1.0| 141 ± 15 | 1.38 ± 0.10| 7.20 ± 0.75 ± 0.71 | 6.14 | 12.01 |
| 1.0–1.4| 167 ± 17 | 1.93 ± 0.15| 7.61 ± 0.77 ± 0.83 | 5.81 | 11.24 |
| 1.4–1.8| 229 ± 21 | 2.51 ± 0.21| 8.06 ± 0.74 ± 0.89 | 5.38 | 10.36 |
| 1.8–2.2| 128 ± 17 | 1.69 ± 0.14| 6.71 ± 0.87 ± 0.80 | 4.81 | 9.26 |

TABLE I. Signal yield n_{sig}, efficiency ϵ, and measured differential cross sections $d\sigma/dp_T^B$ and $d\sigma/d|y^B|$, compared to the MC@NLO [22] and PYTHIA [16] predictions. The uncertainties in the measured cross sections are statistical and systematic, respectively, excluding the common luminosity (4%) and branching fraction (3.8%) uncertainties. The uncertainties on the signal yields are statistical only, while those on the efficiencies are systematic.
The cross section is affected by systematic uncertainties on the signal yield and efficiencies, which are uncorrelated bin-to-bin and can affect the shapes of the distributions, and by uncertainties on the branching fractions and luminosity, which are common to all bins and only affect the overall normalization. The uncertainty on the signal yield arises from potential fit biases and imperfect knowledge of the PDF parameters (4%–7%), and from effects of final-state radiation and mismasured track momenta on the signal shape in \(m_B \) (1%). Uncertainties on the efficiencies arise from the trigger (2%–3%), muon identification (1%), muon tracking (1%), \(K_0^0 \) (5%) and \(B^0 \) (3%) candidate selection requirements, acceptance (2%–3%), dimuon correlations (1%–5%) and \(p_T^B \) and \(|y| \) mismeasurement (1%). The first five efficiency uncertainties are determined directly from data, while the last three are determined by simulation. The largest uncertainties on the efficiency arise from the \(K_0^0 \) reconstruction, which is dominated by the displaced hadronic track efficiency and is measured by comparing the reconstructed \(K_0^0 \) lifetime with the known value, and the dimuon correlation uncertainty, which is taken as 100% of the correction applied to account for the correlations. The difference between the kinematically reweighted and unweighted results (3%–5%) is taken as an additional systematic uncertainty. The bin-to-bin systematic uncertainty is computed as the sum in quadrature of the individual uncertainties, and is summarized in Table I. In addition, there are normalization uncertainties of 4% from the luminosity measurement and of 3.8% from the branching fractions [14].

The differential cross sections as functions of \(p_T^B \) and \(|y| \) are shown in Fig. 2 and Table I. They are compared to the predictions of \(\text{MC@NLO} \) [22] using a \(b \)-quark mass \(m_b \) of 4.75 GeV, renormalization and factorization scales \(\mu = \sqrt{m_b^2 + p_T^2} \), and the CTEQ6M parton distribution functions [23]. The uncertainty on the predicted cross section is calculated by independently varying the renormalization and factorization scales by factors of two, \(m_b \) by \(\pm 0.25 \) GeV, and by using the CTEQ6.6 parton distribution functions. For reference, the prediction of \(\text{PYTHIA} \) [16] is also included, using a \(b \)-quark mass of 4.80 GeV, CTEQ6L1 parton distribution functions [23], and the Z2 tune [24] to simulate the underlying event. The measured \(p_T^f \) spectrum falls slightly faster than predicted by \(\text{MC@NLO} \), while the \(y \) spectrum is measured to be flatter than the \(\text{PYTHIA} \) prediction and in agreement with the \(\text{MC@NLO} \) prediction within uncertainties. The integrated cross section for \(p_T^B > 5 \) GeV and \(|y| < 2.2 \) is calculated as the sum over all \(p_T^f \) bins, without an upper limit for the highest \(p_T^f \) bin, to be 33.2 \(\pm 2.5 \pm 3.5 \) \(\mu b \), where the first uncertainty is statistical and the second is systematic. The result is compatible with the prediction from \(\text{MC@NLO} \) (25.2 \(\pm 9.9 \) \(\mu b \)) and below the prediction from \(\text{PYTHIA} \) (49.1 \(\mu b \)).

In summary, the first measurements of the differential cross sections \(d\sigma/dp_T^B \) and \(d\sigma/dy^B \) for \(B^0 \) mesons produced in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV have been presented using the decay \(B^0 \rightarrow J/\psi K_0^0 \). The measurements cover a range in \(p_T^B \) from 5 GeV to more than 30 GeV, and the rapidity range \(|y| < 2.2 \). The total cross section in this kinematic region lies between the central values of the \(\text{MC@NLO} \) and \(\text{PYTHIA} \) predictions, with a rapidity distribution that is flatter than \(\text{PYTHIA} \). It is also in agreement with uncertainties with the measured \(B^+ \) cross section [9].

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and

Table I. In addition, there are normalization uncertainties of the individual uncertainties, and is summarized in Table I. In addition, there are normalization uncertainties of 4% from the luminosity measurement and of 3.8% from the branching fractions [14].

The differential cross sections as functions of \(p_T^B \) and \(|y| \) are shown in Fig. 2 and Table I. They are compared to the predictions of \(\text{MC@NLO} \) [22] using a \(b \)-quark mass \(m_b \) of 4.75 GeV, renormalization and factorization scales \(\mu = \sqrt{m_b^2 + p_T^2} \), and the CTEQ6M parton distribution functions [23]. The uncertainty on the predicted cross section is calculated by independently varying the renormalization and factorization scales by factors of two, \(m_b \) by \(\pm 0.25 \) GeV, and by using the CTEQ6.6 parton distribution functions. For reference, the prediction of \(\text{PYTHIA} \) [16] is also included, using a \(b \)-quark mass of 4.80 GeV, CTEQ6L1 parton distribution functions [23], and the Z2 tune [24] to simulate the underlying event. The measured \(p_T^f \) spectrum falls slightly faster than predicted by \(\text{MC@NLO} \), while the \(y \) spectrum is measured to be flatter than the \(\text{PYTHIA} \) prediction and in agreement with the \(\text{MC@NLO} \) prediction within uncertainties. The integrated cross section for \(p_T^B > 5 \) GeV and \(|y| < 2.2 \) is calculated as the sum over all \(p_T^f \) bins, without an upper limit for the highest \(p_T^f \) bin, to be 33.2 \(\pm 2.5 \pm 3.5 \) \(\mu b \), where the first uncertainty is statistical and the second is systematic. The result is compatible with the prediction from \(\text{MC@NLO} \) (25.2 \(\pm 9.9 \) \(\mu b \)) and below the prediction from \(\text{PYTHIA} \) (49.1 \(\mu b \)).

In summary, the first measurements of the differential cross sections \(d\sigma/dp_T^B \) and \(d\sigma/dy^B \) for \(B^0 \) mesons produced in \(pp \) collisions at \(\sqrt{s} = 7 \) TeV have been presented using the decay \(B^0 \rightarrow J/\psi K_0^0 \). The measurements cover a range in \(p_T^B \) from 5 GeV to more than 30 GeV, and the rapidity range \(|y| < 2.2 \). The total cross section in this kinematic region lies between the central values of the \(\text{MC@NLO} \) and \(\text{PYTHIA} \) predictions, with a rapidity distribution that is flatter than \(\text{PYTHIA} \). It is also in agreement with uncertainties with the measured \(B^+ \) cross section [9].

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and
NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NCPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

73 Sungkyunkwan University, Suwon, Korea
74 Vilnius University, Vilnius, Lithuania

75 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
76 Universidad Iberoamericana, Mexico City, Mexico
77 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
78 Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
79 University of Auckland, Auckland, New Zealand
80 University of Canterbury, Christchurch, New Zealand

81 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
82 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
83 Soltan Institute for Nuclear Studies, Warsaw, Poland

84 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
85 Joint Institute for Nuclear Research, Dubna, Russia
86 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
87 Institute for Nuclear Research, Moscow, Russia
88 Institute for Theoretical and Experimental Physics, Moscow, Russia
89 Moscow State University, Moscow, Russia
90 P.N. Lebedev Physical Institute, Moscow, Russia

91 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
92 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
93 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
94 Universidad Autónoma de Madrid, Madrid, Spain
95 Universidad de Oviedo, Oviedo, Spain
96 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
97 CERN, European Organization for Nuclear Research, Geneva, Switzerland
98 Paul Scherrer Institut, Villigen, Switzerland
99 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
100 Universität Zürich, Zurich, Switzerland
101 National Central University, Chung-Li, Taiwan
102 National Taiwan University (NTU), Taipei, Taiwan
103 Çukurova University, Adana, Turkey
104 Middle East Technical University, Physics Department, Ankara, Turkey
105 Bogaziçi University, Istanbul, Turkey

106 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
107 University of Bristol, Bristol, United Kingdom
108 Rutherford Appleton Laboratory, Didcot, United Kingdom
109 Imperial College, London, United Kingdom
110 Brunel University, Uxbridge, United Kingdom
111 Baylor University, Waco, Texas 76706, USA
112 Boston University, Boston, Massachusetts 02215, USA
113 Brown University, Providence, Rhode Island 02912, USA
114 University of California, Davis, Davis, California 95616, USA
115 University of California, Los Angeles, Los Angeles, California 90095, USA
116 University of California, Riverside, Riverside, California 92521, USA
117 University of California, San Diego, La Jolla, California 92093, USA
118 University of California, Santa Barbara, Santa Barbara, California 93106, USA
119 California Institute of Technology, Pasadena, California 91125, USA
120 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
121 University of Colorado at Boulder, Boulder, Colorado 80309, USA
122 Cornell University, Ithaca, New York 14853-6001, USA
123 Fairfield University, Fairfield, Connecticut 06824, USA
124 Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA
125 University of Florida, Gainesville, Florida 32611-8440, USA
126 Florida International University, Miami, Florida 33199, USA
127 Florida State University, Tallahassee, Florida 32306-4305, USA
128 Florida Institute of Technology, Melbourne, Florida 32901, USA
129 University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA
130 The University of Iowa, Iowa City, Iowa 52242-1479, USA
131 Johns Hopkins University, Baltimore, Maryland 21218, USA
132 The University of Kansas, Lawrence, Kansas 66045, USA
133 Kansas State University, Manhattan, Kansas 66506, USA
Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

Also at Utah Valley University, Orem, UT, USA.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at Erzincan University, Erzincan, Turkey.