Charge Friedel oscillations in a Mott insulator

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevB.84.041102</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Jan 09 04:42:14 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/67061</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Charge Friedel oscillations in a Mott insulator

David F. Mross and T. Senthil
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 13 June 2011; published 18 July 2011)

When a metal undergoes a transition to an insulator it will lose its electronic Fermi surface. Interestingly, in some situations a “ghost” Fermi surface of electrically neutral spin carrying fermions may survive into the insulator. Such a novel ghost Fermi surface has been proposed to underlie the properties of a few different materials but its direct detection has proven elusive. In this paper, we show that the ghost Fermi surface leads to slowly decaying spatial oscillations of the electron density near impurities or other defects. These and related oscillations stem from the sharpness of the ghost Fermi surface and are direct analogs of the familiar Friedel oscillations in metals. The oscillation period contains geometric information about the shape of the ghost Fermi surface, which can be potentially exploited to detect its existence.

In this paper, we identify surprising aspects of such a SL Mott insulator that may offer a simpler route to detecting the spinon FS. First, we show that the electrical charge density induced by an external potential has Friedel oscillations at the “2K_F” wave vectors that connect tangential antipodal portions of the spinon FS. Friedel oscillations in the charge density are well known properties of metals with a sharp electron Fermi surface. Remarkably these oscillations survive the transition into the SL Mott insulating state. The spinons that form the FS in this SL carry spin, and hence there are 2K_F singularities in the spin response. Although spinons are electrically neutral, the 2K_F singularities also show up in the charge response.

A closely related effect is the existence of a Kohn anomaly in the phonon spectrum arising from the coupling of the phonons to the spinon density. A similar signature will appear in scanning-tunneling microscopy (STM) spectra above the threshold bias for tunneling into the Mott insulator, which will show spatial modulation near impurities with wavelength set by the 2K_F wave vectors of the spinon Fermi surface. These related effects are more directly measurable in experiments and can serve to detect the spinon FS.

We provide an estimate of the oscillation amplitude of the charge density and show that it is essentially unchanged as the material undergoes the metal-insulator transition. However, its magnitude is small compared to the free Fermi gas so that its direct measurement may be even more challenging than in a metal. In contrast, the Kohn anomaly is not weakened and survives even in the strong Mott insulator limit. Just as in a normal metal, it is thus easier to detect the Friedel oscillations through their effects on the phonon and STM spectra.

Spinon Fermi surfaces and 2K_F singularities in a weak Mott insulator: A precise characterization of the ghost Fermi surface of spinons in an insulator is the presence of sharp singularities in the spin correlations at the 2K_F wave vectors. In this paper, we explore the consequences of similar sharp singularities in the spinon density response. Specifically in the presence of a FS the spinon density response \(\chi_f \) will have a singularity of the form

\[
\chi_f\Phi(q) \equiv \chi_f(Q + q) - \chi_f(Q) \sim |q|^\beta F\left(\frac{q^2}{|q|}\right),
\]
where \(Q \) is any \(2K_F \) vector, \(q_f = q - \hat{Q}, q_L = q \times \hat{Q}, F(x) \) is a universal nonsingular function, and the exponent \(\phi \) is given by an imaginary time path integral with action:

\[
Q = \int dt \mathcal{L}_F(f,a_{\mu}) + \mathcal{L}_b(b,a_{\mu}),
\]

where \(c_{ra} \) destroys an electron with spin \(a = \uparrow, \downarrow \) at site \(r \), \(n_r = c_r^\dagger c_r \) is the electron number at site \(r \), and \(U > 0 \) is an on-site repulsion. As the ratio \(t/U \) decreases the system undergoes a Mott transition from a FL metal to a Mott insulator. We are interested in situations in which this Mott insulator is a nonmagnetic SL with gapless excitations. The Mott transition and the SL phase are conveniently discussed using the slave rotor representation of Ref. 18. We write \(c_{ra} = b_{r\uparrow} f_{r\uparrow} \) with \(b_{r\uparrow} \equiv e^{i\phi} a_\uparrow \) a spin-0 charge-\(e \) boson, and \(f_{ra} \) a spin-1/2 charge-0 fermionic spinon. The electrical charge at a site \(n_i \) is identified with the boson number and is conjugate to the boson phase \(\phi \).

The physical electronic operator is manifestly invariant under local opposite phase rotations of \(b_{r\uparrow} \) and \(f_{ra} \). Thus a proper reformulation of the Hubbard model will include an emergent \(U(1) \) gauge field.

An effective theory \(^9\) for the phases of the Hubbard model is given by an imaginary time path integral with action:

\[
S = \int d\tau \mathcal{L}_b(b,a_{\mu}) + \mathcal{L}_f(f,a_{\mu}),
\]

where \(\mathcal{L}_b = \sum_r \frac{1}{2U}(\partial_\tau + ia_\alpha + \lambda)b_\alpha^2 - \sum_{<rr'>} t_{bb}(b_{r\alpha}^\dagger b_{r'\alpha} e^{ia_{\alpha'}} + c.c.) \)

\[
\mathcal{L}_f = \sum_r \bar{f}_\alpha(\partial_\tau - ia_\alpha + \lambda)f_\alpha - \sum_{<rr'>} t_f(\bar{f}_{r\alpha} f_{r'\alpha} e^{-ia_{\alpha'}} + c.c.)
\]

Here, \(a_\alpha \) and \(a_{\alpha'} \) are the temporal and spatial components of the emergent \(U(1) \) gauge field, \(\lambda \) is adjusted to ensure that \(\langle n_b - n_f \rangle = 0 \).

In a mean field approximation, which ignores the gauge but not other interactions, the charge sector is mapped to a boson Hubbard model with hopping \(t_b \) and repulsion \(U \) while the spin sector is described by free fermionic spinons that form a FS. When \(t/U \) is large, the boson hopping \(t_b \) dominates, leading to a state with \(\langle b_{r\uparrow} \rangle \neq 0 \). Terms of the original electrons, this is a Fermi liquid phase. As \(t/U \) is decreased, the bosons form a Mott insulating state with a charge gap. This corresponds to a SL electronic Mott insulating state, which retains a FS of gapless neutral spin-1/2 spinons. To go beyond mean field, in the Mott insulating phase the bosons may be integrated out, resulting in an effective low-energy theory of a spinon FS coupled to a \(U(1) \) gauge field. Based on this theory, an estimate for the \(2K_F \) exponent \(\phi \) was given in an early work.\(^{19}\) Controlled calculations\(^{20}\) of \(2K_F \) singularities in the spinon number \(n_{f,r} = f_{r\uparrow}^\dagger f_{r\uparrow} \) have been performed for the two-dimensional system and found \(\phi \approx 0.4 \). Exactly the same exponent \(\phi \) and scaling function \(F \) also describe the \(2K_F \) singularities in the spin density \(\tilde{S}_r = \frac{\delta \rho_r}{\delta \lambda} \) due to an emergent symmetry of the spinon FS state.\(^{20}\) In three dimensions, the gauge field plays a more innocuous role and the exponent is the same as in the three dimensional Fermi liquid.

Charge density correlations. The spinon number \(n_{f,r} \) is a spin-singlet operator that transforms under lattice and time reversal symmetries in the same way as the electrical charge \(n_r = c_r^\dagger c_r \), thus we might expect a linear coupling between \(n_{f,r} \) and \(n_r \). For long wavelength, external perturbations that couple to the charge density, the boson system is gapped and the response is that of an incompressible insulator. However, for short wavelength perturbations, the boson density has a nonzero response, which, in turn, induces a response of the spinon density. At a \(2K_F \) wave vector of the spinon FS, there are long range oscillations of the fermion density that couple back to the physical charge density, which will therefore show Friedel oscillations

An approximate self-consistent calculation of the magnitude of this effect may be done within the slave-particle mean-field theory\(^23\). An external potential with Fourier components \(V(p) \) induces some change \(\delta \lambda \) in the mean-field parameter \(\lambda \). In general, the hopping parameters \(t_b \) and \(t_f \) will also change, for a rough estimate we ignore these below. The resulting change in the boson and fermion densities in linear response theory is

\[
\delta \langle n \rangle(p) = \chi_b(p)[V(p) + \delta \lambda(p)] - \chi_f(p)\lambda(p).
\]

Here, \(\chi_{b,f} \) are the density response functions of the boson and fermion, respectively. The condition \(\delta \langle n \rangle(p) = \delta \langle n_f \rangle(p) \) determines \(\delta \lambda \). The charge density response function defined through \(\delta \langle n \rangle(p) = \chi(p)V(p) \) is then

\[
\chi = \frac{\chi_b\chi_f}{\chi_b + \chi_f}.
\]

This is the well-known Ioffe-Larkin composition rule, which we now use to evaluate the \(2K_F \) response.

Near a \(2K_F \) wave vector we write the fermion response \(\chi_f(2K_F + q) = \chi_f(2K_F) + \chi_f'_{2K_F}(q) \), where \(\chi_f'_{2K_F} \) is the smooth background response at \(2K_F \) and \(\chi_f'_{2K_F}(q) \) is the singular part. Denoting the (nonsingular) boson response \(\chi_b(2K_F + q) = \chi_b_{2K_F} \), we see that the singular part \(\chi_f'_{2K_F} \) of the \(2K_F \) electrical density response is reduced from that of the spin density \(\chi_f'_{2K_F} \) by a factor

\[
R = \left(1 + \frac{\chi_b_{2K_F}}{\chi_b_{2K_F}}\right)^{-2}.
\]

As \(t/U \) is varied across the Mott transition, both \(\chi_b_{2K_F} \) and \(\chi_f'_{2K_F} \) will be essentially unchanged so that the factor \(R \) and hence the magnitude of the charge Friedel oscillations is more or less the same on either side of the transition. The factor \(R \) may be estimated within the slave-rotor mean-field theory combined with a large-\(N \) approximation to the quantum rotor model that describes the bosons.\(^{21}\) Near the Mott transition, we find \(R = 0.0024 \). Though the magnitude of the charge Friedel oscillations is very small it is interesting conceptually that it is...
nonzero. Deep in the Mott insulator, R decreases further and vanishes in the extreme limit where $\chi_{\ell}(q) = 0$ for all q.

Actually, as discussed above, the detailed nature of the $2K_F$ singularity for the spinons is modified and even potentially enhanced in the Mott insulator as compared to the Fermi liquid due to the gapless $U(1)$ gauge field. Thus we reach the remarkable conclusion that there are charge Friedel oscillations in the insulator. In fact, they may even be more slowly decaying than in the metal.

Detection of spinon density Friedel oscillations. The presence of the $2K_F$ singularities in the charge density response relies on the $2K_F$ singularities in the spinon density response. We now argue that this latter singularity directly affects the phonon and STM spectra which could be more useful to detect the spinon FS.

In the SL, the charge of the electron gets pinned to the ions that make up the underlying lattice, while the spin continues to be mobile and forms a FS. Thus the oscillating entity in a phonon mode is the electrically neutral ion-boson composite (see Figs. 1 and 2). While electrically neutral, this object carries gauge charge of the boson b_ℓ, and hence there will be long range interactions between different ion-boson composites. To properly describe the phonon spectrum, we must take into account the screening of the gauge interaction by the spinon fluid. Specifically, there will be an emergent “Coulomb” interaction between the ion-boson composites that will be screened by the mobile spinons. As in the usual discussions of the Kohn anomaly the ability of the spinon fluid to screen the gauge interaction is sharply changed as the phonon wave vector passes through any $2K_F$ wave vector. Consequently, the Kohn anomaly survives deep in the Mott insulator so long as the system retains a spinon FS. It is not weakened by the suppression of electric charge fluctuations, and remains similar to a weakly interacting metal.

Alternatively, strong Mott insulators are well described by simple spin-only models with dominant nearest neighbor exchange. Here, the $2K_F$ singularities in the spinon density should be interpreted as slow power correlations of incommensurate valence-bond solid order. Such correlations have been found in a spin-1/2 system on triangular two-leg\(^{21}\) and four-leg\(^{22}\) ladders that realize quasi-1-dimensional versions of the spinon FS state. The above argument shows that phonons couple to these incommensurate valence-bond fluctuations, and consequently, there is a Kohn anomaly in the phonon spectrum.

In metals, Friedel-like oscillations have been imaged through STM. The most common strategy is to measure the spatial modulation of the tunneling spectrum at fixed bias. In the Mott insulator, we are faced with the immediate problem that (at $T = 0$) there is a gap in the single electron spectrum. However, if the bias exceeds the gap it is possible to tunnel into the sample. The tunneling spectrum near the threshold is readily calculated within the slave-rotor mean-field theory. We find $N(\omega) = 0$ for $\omega < \Delta$\(^{23}\) and

$$N(\omega > \Delta) \sim (\omega - \Delta)N_f(0). \quad (10)$$

In the presence of a defect such as a step edge or an impurity, the local spinon density of states $N_f(\omega \to 0; x)$ oscillates as a function of spatial location x at the $2K_F$ wave vectors of the spinon FS. Thus the electron tunneling spectrum at a bias voltage close to the gap acquires spatial modulations at the $2K_F$ wave vectors of the spinon Fermi surface.

We emphasize that the suppression factor (9) for the oscillations in the charge density response plays no role in the Kohn anomaly or the STM oscillations. For the Kohn anomaly, our discussion of the strong Mott insulator, where charge oscillations are completely absent, shows that it is not

FIG. 2. Screening in a spin liquid. In the spin liquid Mott insulator, the charge of the electron is bound to the ions while the spins stay mobile. The electrically neutral ion-chargon composite carry internal gauge charge and their displacement is screened by the (oppositely) gauge-charged spinon fluid.

TABLE I. Smallest wave vectors connecting antipodal tangential portions of the Fermi surface in the spin-liquid candidates.

<table>
<thead>
<tr>
<th>Material</th>
<th>Wave Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa (ET)_2Cu_2(CN)_3$</td>
<td>$0.56a/\pi \approx 0.22 \text{ Å}^{-1}$</td>
</tr>
<tr>
<td>ZnCu$_3$(OH)$_6$Cl$_2$</td>
<td>$0.56a/\pi \approx 0.265 \text{ Å}^{-1}$</td>
</tr>
<tr>
<td>Na$_2$I$_3$O$_8$</td>
<td>hole: $0.625a/\pi \approx 0.18 \text{ Å}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>el: $0.625a/\pi \approx 0.21 \text{ Å}^{-1}$</td>
</tr>
</tbody>
</table>

FIG. 1. Screening in a Fermi liquid. In a regular metal, charge (represented by white half-spheres) and spin (black half-spheres with arrows) of the electrons are confined, and the electrons move to screen any displaced positively charge ions (big spheres).
weakened. For the STM spectrum, we note that the ratio of the oscillatory signal, N_{osc}, to the background, N_{bg}, is given by,

$$\frac{N_{osc}(\omega > \Delta)}{N_{bg}(\omega > \Delta)} = \frac{N_{osc}}{N_{bg}}_{free \, fermions}$$

(11)

as is clear from Eq. (10) (see also Ref. 23).

The effects we describe will only be visible at temperature much lower than the Fermi temperature (estimated to be $\approx 300 \, K$ for the organic spin liquids). The spinon Fermi surface may be unstable at very low-T ($\approx 5 \, K$ in organics) so that experiments are best performed at low-T just above this instability. In both the organic spin liquids $\kappa-(ET)_2Cu_2(CN)_3$ and EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ and in Na$_4$Ir$_3$O$_8$, determination of the phonon spectrum through neutron scattering is challenging but may possibly be done through inelastic x-ray scattering techniques. The smallest $2K_F$ wave vectors for the Kohn anomaly are given in Table I. The hyper-kagome material Na$_4$Ir$_3$O$_8$ has a rather complicated band structure in its metallic state, which will be inherited by the spinons in the proposed SL Mott insulator. Some representative $2K_F$ wave vectors for this material are listed for completeness in Table I. Previous STM studies of the κ-ET organics have focused on a superconducting material. STM studies of the insulating SL will be useful in both determining the single particle gap and detecting the possible spinon FS. In this context, we note that, in $\kappa-(ET)_2Cu_2(CN)_3$, the charge gap as measured by optical conductivity and dc transport is small (in the 15–100 meV range) though it is hard to extract a precise number. This range should be readily accessible in STM experiments.

Finally we briefly turn to strong Mott insulators with negligible virtual charge fluctuations but which nevertheless are in SL phases. This is the situation, for instance, in the Kagome materials ZnCu$_3$(OH)$_6$Cl$_2$ and Cu$_3$V$_2$O$_7$(OH)$_2$·2H$_2$O. Indeed, a SL with a spinon FS has been proposed for ZnCu$_3$(OH)$_6$Cl$_2$ in Ref. 25. From the arguments presented above, it follows that there will again be a Kohn anomaly at the $2K_F$ wave vectors. Detecting such an anomaly will then be a nontrivial proof of the proposal that a spinon FS exists in this material.

We thank J. Hoffman, P.A. Lee, and Young Lee for useful discussions. T.S. was supported by NSF Grant DMR-0705255.

5H. Takagi (unpublished).