The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>V. Khachatryan et al. (CMS Collaboration). "Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at (\sqrt{s})=7TeV." Phys. Rev. Lett. 106, 201804 (2011) [14 pages].</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.106.201804</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Feb 26 04:12:02 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/67303</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at √s = 7 TeV

V. Khachatryan et al.*
(CMS Collaboration)
(Received 10 February 2011; published 18 May 2011)

Dijet angular distributions are measured over a wide range of dijet invariant masses in pp collisions at √s = 7 TeV, at the CERN LHC. The event sample, recorded with the CMS detector, corresponds to an integrated luminosity of 36 pb⁻¹. The data are found to be in good agreement with the predictions of perturbative QCD, and yield no evidence of quark compositeness. With a modified frequentist approach, a lower limit on the contact interaction scale for left-handed quarks of Λ⁺ = 5.6 TeV (Λ⁻ = 6.7 TeV) for destructive (constructive) interference is obtained at the 95% confidence level.

DOI: 10.1103/PhysRevLett.106.201804
PACS numbers: 13.85.Rm, 12.38.Bx, 12.38.Qk, 12.60.Rc

In the standard model, pointlike parton-parton scatterings in high energy proton-proton collisions can give rise to final states with energetic jets. At large momentum transfers, events with at least two energetic jets (dijets) may be used to confront the predictions of perturbative quantum chromodynamics (pQCD) and to search for signatures of new physics. In parton-parton scattering, the angular distribution of the outgoing partons, dσ/d cosθ*, is directly sensitive to the spin of the exchanged particle, where θ* is the parton-level cross section and θ* is the polar scattering angle in the parton-parton center-of-mass (c.m.) frame. While QCD predicts a noticeable deviation of the dijet angular distribution from Rutherford scattering, at small c.m. scattering angles the angular distribution is proportional to the Rutherford cross section, dσ/d cosθ* ∼ 1/(1 − cosθ*)², characteristic of spin-1 particle exchange. The dijet angular distributions do not strongly depend on the details of the parton distribution functions (PDFs), since the angular distributions for the underlying processes, qg → qg, gg → qg, and gg → gg, are similar.

For the scattering of massless partons, which are assumed to be collinear with the beam protons, the longitudinal boost of the parton-parton c.m. frame with respect to the proton-proton c.m. frame, y boost, and θ* are obtained from the rapidities y₁ and y₂ of the jets from the two scattered partons by y boost = ½(y₁ + y₂) and | cosθ* | = tanh y*, where y* = ½[y₁ − y₂] and where ±y* are the rapidities of the two jets in the parton-parton c.m. frame. The rapidity is related to the jet energy E and the projection of the jet momentum on the beam axis p_z = 1/2 ln[(E + p_z)/(E − p_z)]. The variable χ dijet = exp(2y*) is used to measure the dijet angular distribution, which for collinear massless-parton scattering takes the form

χ dijet = (1 + | cosθ* |)/(1 − | cosθ* |). This choice of χ dijet, rather than θ*, is motivated by the fact that dσ dijet/dχ dijet is flat for Rutherford scattering. It also allows signatures of new physics that might have a more isotropic angular distribution than QCD (e.g., quark compositeness) to be more easily examined as they would produce an excess at low values of χ dijet. The quantity studied in this analysis is (1/σ dijet)(dσ dijet/dχ dijet), for several ranges of the dijet invariant mass M_jj. Previous searches for quark compositeness using the dijet angular distribution or related observables in pp and pp collisions have been reported at the SppS by the UA1 Collaboration [1], at the Fermilab Tevatron Collider by the D0 [2,3] and CDF Collaborations [4], and at the Large Hadron Collider (LHC) by the ATLAS Collaboration [5]. The CMS Collaboration has also published a search on quark compositeness with a smaller data sample using the dijet centrality ratio [6]. In this Letter, we present the first measurement of dijet angular distributions from CMS in pp collisions at √s = 7 TeV.

The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing an axial field of 3.8 T. Within the field volume are the silicon pixel and silicon strip tracker, the electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL). The ECAL is made up of lead-tungstate crystals, while the HCAL is made of layers of plates of brass and plastic scintillator. These calorimeters provide coverage in pseudorapidity up to |η| ≤ 3, where η = − ln tan(θ/2) and θ is the polar angle relative to the counterclockwise proton beam direction. An iron or quartz-fiber Čerenkov hadron calorimeter (HF) covers pseudorapidities 3 < |η| < 5. In addition, a preshower detector made of silicon sensor planes and lead absorbers is located in front of the ECAL at 1.653 < |η| < 2.6. The calorimeter cells are grouped in projective towers of granularity in pseudorapidity and azimuthal angle of 0.087 × 0.087 at central

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
pseudorapidities, with coarser granularity at forward pseudorapidities. Muons are measured in gas-ionization detectors embedded in the steel magnetic field return yoke. A detailed description of the CMS detector can be found elsewhere [7].

Events were collected online with a two-tiered trigger system: level-1 (L1) and the high level trigger (HLT). For this study, events were selected with five inclusive single-jet triggers, with the following jet transverse momentum p_T thresholds at L1 (HLT): 20 GeV (30 GeV), 30 GeV (50 GeV), 40 GeV (70 GeV), 60 GeV (100 GeV), and 60 GeV (140 GeV). The jets at L1 and HLT were reconstructed using energies measured by the ECAL, HCAL, and HF, and were not corrected for the jet energy response of the calorimeters. All except the highest-threshold jet trigger were prescaled as the LHC instantaneous luminosity increased during the course of data taking. In each case, the trigger efficiency was measured as a function of dijet invariant mass M_{jj} using events selected by a lower-threshold trigger. For the analysis, M_{jj} and χ_{dijet} regions were chosen such that the trigger efficiencies exceeded 99%.

Jets were reconstructed offline from energies measured in the calorimeter towers using the anti-k_T clustering algorithm [8] with a distance parameter $R = 0.5$. Spurious jets from noise and noncollision backgrounds were eliminated by loose quality criteria on the jet properties [9]. The jet four-momenta were corrected for the nonlinear response of the calorimeters [10]. The performance of the CMS detector with respect to jet reconstruction is described in detail elsewhere [11].

Events were required to have a primary vertex reconstructed within 24 cm of the detector center along the beam line [12]. Events having at least two jets were selected and the two highest-p_T jets were used to measure the dijet angular distributions for different ranges in M_{jj}. We required $\chi_{\text{dijet}} < 16$ and $|y_{\text{boost}}| < 1.11$, thus restricting the rapidities y_1 and y_2 of the two highest-p_T jets to be less than 2.5. Nine analysis ranges were defined with the boundaries $0.25 < M_{jj} < 0.35$ TeV, $0.35 < M_{jj} < 0.5$ TeV, $0.5 < M_{jj} < 0.65$ TeV, $0.65 < M_{jj} < 0.85$ TeV, $0.85 < M_{jj} < 1.1$ TeV, $1.1 < M_{jj} < 1.4$ TeV, $1.4 < M_{jj} < 1.8$ TeV, $1.8 < M_{jj} < 2.2$ TeV, and $M_{jj} > 2.2$ TeV. The data correspond to integrated luminosities of 0.4, 3.5, 9.2, and 19.8 pb$^{-1}$ for the lowest four M_{jj} ranges and 36 pb$^{-1}$ for the remaining ones. The uncertainty on the integrated luminosity has been estimated to be 11% [13].

The dijet angular distributions are corrected for migration effects in χ_{dijet} and M_{jj} due to the finite jet energy and position resolutions of the detector. The correction factors were determined using two independent Monte Carlo (MC) samples: PYTHIA 6.422 [14] with tune D6T [15] and HERWIG++ 2.4.2 [16]. The four-momentum, rapidity, and azimuthal angle of each generated jet were smeared to reproduce the measured resolutions. The ratio of the two dijet angular distributions (the generated distribution and the smeared one) determined the unfolding correction factors for a given MC sample and for each M_{jj} range. The average of the correction factors for each M_{jj} range from the two MC samples formed the final unfolding correction applied to the data. The correction factors change the normalized dijet angular distributions for all M_{jj} ranges by less than 3%. For each M_{jj} range, the systematic uncertainty associated with each correction factor was set at 50% of its value. This approach covers the variations of the unfolding correction factors determined from HERWIG++ and different PYTHIA tunes (D6T and Z2 [17]) that vary on their modeling of the jet kinematic distributions. The use of a parametrized model to simulate the finite jet p_T and position resolutions of the detector, to determine the unfolding correction factors, resulted in a systematic uncertainty. This was estimated to be less than 1% for all M_{jj} ranges and was added in quadrature to the unfolding uncertainties.

The normalized dijet angular distributions are relatively insensitive to many systematic effects; in particular, they show little dependence on the overall jet energy scale. However, since χ_{dijet} depends on y, they are sensitive to the rapidity dependence of the jet energy calibration. Typical values for the jet energy scale uncertainties for the considered phase space in the variables of jet p_T and η covered in this analysis are between 3% and 4% [10]. The uncertainty on the χ_{dijet} distributions due to the jet energy calibration uncertainties was found to be less than 2.5%. The uncertainty on the dijet angular distributions from the jet p_T resolution uncertainty, estimated to be 10% [11], was found to be less than 1%. The total systematic uncertainty on the χ_{dijet} distributions, calculated as the quadratic sum of the contributions due to the uncertainties in the jet energy calibration, the jet p_T resolution, and the unfolding correction, is less than 3% for all M_{jj} ranges.

The corrected differential dijet angular distributions for different M_{jj} ranges, normalized to their respective integrals, are shown in Fig. 1. The data are compared to pQCD predictions at next-to-leading order (NLO) calculated with NLOJET++ [18] in the FASTNLO [19] framework. The calculations were performed with the CTEQ6.6 PDFs [20]. The factorization (μ_f) and renormalization (μ_r) scales were set to $\langle p_T \rangle$, the average dijet p_T. Nonperturbative corrections due to hadronization and multiple parton interactions, determined using the average correction from PYTHIA (D6T tune) and HERWIG++, were applied to the prediction. The uncertainties on the pQCD predictions, indicated by the shaded band in Fig. 1, are less than 6% (9%) at low (high) M_{jj}. These uncertainties include contributions due to scale variations and PDF uncertainties, as well as the uncertainties from the non-perturbative corrections. The uncertainty due to the choice of μ_f and μ_r scales was evaluated by varying the default
uncertainty, and was found to be less than 4% (0.1%) at low compositeness scale and with the predictions including a contact interaction term of compared with the predictions of pQCD at NLO (shaded band) include statistical and systematic uncertainties. The results are normalized These scale variations modify the predictions of the h effect on the NLO pQCD predictions due to /C22 r/C25 where the QCD terms are corrected to NLO while the CI term: A color- and isospin-singlet contact interaction (CI) of four-fermion contact interaction term in addition to the QCD Lagrangian. The value of the mass scale Λ characterizes the strengths of the quark substructure binding interactions and the physical size of the composite states. A color- and isospin-singlet contact interaction (CI) of left-handed quarks gives rise to an effective Lagrangian term: \[\mathcal{L}_{gq} = \eta_0(2\pi/\Lambda^2)\bar{q}_L Y^\mu q_L \bar{q}_L Y_\mu q_L \] [21,22], where \(\eta_0 = +1 \) corresponds to destructive interference between the QCD and the new physics term, and \(\eta_0 = -1 \) to constructive interference. We investigate a model in which all quarks are considered composite as implemented in the PYTHIA event generator.

The contributions of the CI term in PYTHIA are calculated to leading order (LO), whereas the QCD predictions for the dijet angular distributions are known up to NLO. In order to account for this difference in the QCD plus CI prediction, the cross-section difference \(\sigma_{QCD,NLO} - \sigma_{QCD,LO} \) was added to the LO QCD+CI prediction in each \(M_{jj} \) and \(\chi_{dijet} \) bin. With this procedure, we obtain a QCD+CI prediction where the QCD terms are corrected to NLO while the CI terms are calculated at LO. Nonperturbative corrections due to hadronization and multiple parton interactions were also applied to the prediction. The prediction for QCD+CI at the scale of \(\Lambda^+ = 5 \text{ TeV} \) (\(\eta_0 = +1 \)) and \(\Lambda^- = 5 \text{ TeV} \) (\(\eta_0 = -1 \)) is shown in Fig. 1, for the four highest \(M_{jj} \) ranges.

We perform a statistical test discriminating between the QCD-only hypothesis and the QCD+CI hypothesis as a function of the scale Λ based on the log-likelihood-ratio \(Q = -2 \log\left(\frac{L_{QCD}\times CI}{L_{QCD}}\right) \). The likelihood functions \(L_{QCD\times CI} \) and \(L_{QCD} \) are modeled as a product of Poisson likelihood functions for each bin in \(\chi_{dijet} \) and \(M_{jj} \) in the four highest \(M_{jj} \) ranges. The prediction for each \(M_{jj} \) range is normalized to the number of data events in that range. The \(p \) values, \(P_{QCD\times CI}(Q \geq Q_{obs}) \) and \(P_{QCD}(Q \leq Q_{obs}) \), are obtained from ensembles of pseudoexperiments. A modified frequentist approach [23–25] based on the quantity

\[CL_s = \frac{P_{QCD\times CI}(Q \geq Q_{obs})}{1 - P_{QCD}(Q \leq Q_{obs})} \]

is used to set limits on Λ. This approach is more conservative than a pure frequentist approach (Neyman construction) and prevents an exclusion claim when the data may have little sensitivity to new physics [26]. Systematic uncertainties were introduced via Bayesian integration [27] by varying them as nuisance parameters in the ensembles of pseudoexperiments according to a Gaussian distribution convoluted with the shape variation induced to the \(\chi_{dijet} \) distributions. We consider the QCD+CI model to be excluded at the 95% confidence level if \(CL_s < 0.05 \). Figure 2 shows the observed and expected \(CL_s \) as a function of the

![FIG. 1 (color online). Normalized dijet angular distributions in several \(M_{jj} \) ranges, shifted vertically by the additive amounts given in parentheses in the figure for clarity. The data points include statistical and systematic uncertainties. The results are compared with the predictions of pQCD at NLO (shaded band) and with the predictions including a contact interaction term of compositeness scale \(\Lambda^+ = 5 \text{ TeV} \) (dashed histogram) and \(\Lambda^- = 5 \text{ TeV} \) (dotted histogram). The shaded band shows the effect on the NLO pQCD predictions due to \(\mu_L \) and \(\mu_f \) scale variations and PDF uncertainties, as well as the uncertainties from the nonperturbative corrections added in quadrature.](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.022004)
became available \cite{28}. This calculation indicates that the NLO calculation of QCD effects to quark compositeness 6.7 and 5.8 TeV, respectively. The limit on \(\Lambda^+ \) is lower than, although statistically compatible with, the QCD prediction. The limit for the CI scale was evaluated at the median of the test statistics distribution of the QCD model. The observed limit is slightly higher than the expected one because, for the range \(M_{jj} > 2.2 \) TeV, the measured dijet angular distribution at low \(\chi_{dijet} \) is lower than, although statistically compatible with, the QCD prediction. The limit for the CI scale was also extracted using an alternate procedure in which the data were not corrected for detector effects and instead the MC predictions were resolution smeared. The limit obtained was found to agree with the quoted one within 0.4%. The corresponding observed and expected limits on \(\Lambda^- \) are 6.7 and 5.8 TeV, respectively.

Shortly before the completion of this Letter, an exact NLO calculation of QCD effects to quark compositeness became available \cite{28}. This calculation indicates that the limit on \(\Lambda^- \) obtained in the present analysis, which only takes into account the LO prediction for the contribution of the contact interaction, might be overestimated by up to 10% compared to the value obtained if the NLO calculation were used.

In summary, CMS has measured the dijet angular distributions over a wide range of dijet invariant masses. The \(\chi_{dijet} \) distributions are found to be in good agreement with NLO pQCD predictions, and are used to exclude a range of a color- and isospin-singlet contact interaction scale \(\Lambda \) for a left-handed quark compositeness model. With a modified frequentist approach, a lower limit on the contact interaction scale of \(\Lambda^+ = 5.6 \) TeV (\(\Lambda^- = 6.7 \) TeV) for destructive (constructive) interference at the 95% confidence level is obtained, which may be compared with a limit of 5.0 TeV (5.8 TeV) expected for the number of events recorded. These are the most stringent limits on the contact interaction scale of left-handed quarks to date.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); OTKA and NKTH (Hungary); DAE and DST (India); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2}
\caption{Observed CL\(_s\) (solid line) and expected CL\(_s\) (dashed line) with one (two) standard deviation(s) indicated by the dark (light) band as a function of the contact interaction scale \(\Lambda^+ \). The 95\% confidence level limits on \(\Lambda^+ \) are extracted from the intersections of the observed and expected CL\(_s\) lines with the horizontal line at CL\(_s\) = 0.05.}
\end{figure}

\begin{thebibliography}{14}
\bibitem{1} G. Amison et al. (UA1 Collaboration), Phys. Lett. B \textbf{177}, 244 (1986).
\bibitem{3} B. Abbott et al. (D0 Collaboration), Phys. Rev. D \textbf{64}, 032003 (2001).
\bibitem{7} S. Chatrchyan et al. (CMS Collaboration), JINST \textbf{3}, S08004 (2008).
\bibitem{9} CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-09-008, 2009.
\bibitem{11} CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-10-003, 2010.
\bibitem{12} CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-TRK-10-005, 2010.
\bibitem{13} CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-EWK-10-004, 2010.
\end{thebibliography}
The PYTHIA6 Z2 tune is identical to the Z1 tune described in [15] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.

[17] The PYTHIA6 Z2 tune is identical to the Z1 tune described in [15] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade de São Paulo, São Paulo, Brazil
12Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
13Institute of High Energy Physics, Beijing, China
14State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
15Universidad de Los Andes, Bogota, Colombia
16Technical University of Split, Split, Croatia
17University of Split, Split, Croatia
18Institut Rudjer Boskovic, Zagreb, Croatia
19University of Cyprus, Nicosia, Cyprus
20University of Sofia, Sofia, Bulgaria
21Charles University, Prague, Czech Republic
22Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
23National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
24Technical University of Vienna, Vienna, Austria
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
31Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
33Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
34E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
35Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
36RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
37RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
38RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
39Deutsches Elektronen-Synchrotron, Hamburg, Germany
40University of Hamburg, Hamburg, Germany
41Institut für Experimentelle Kernphysik, Karlsruhe, Germany
42Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
43University of Athens, Athens, Greece
44University of Ioannina, Ioannina, Greece
45KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
46Institute of Nuclear Research ATOMKI, Debrecen, Hungary
47University of Debrecen, Debrecen, Hungary
48Panjab University, Chandigarh, India

201804-11
Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

54a INFN Sezione di Bari, Bari, Italy
54b Università di Bari, Bari, Italy
54c Politecnico di Bari, Bari, Italy

55a INFN Sezione di Bologna, Bologna, Italy
55b Università di Bologna, Bologna, Italy

56a INFN Sezione di Catania, Catania, Italy
56b Università di Catania, Catania, Italy

57a INFN Sezione di Firenze, Firenze, Italy
57b Università di Firenze, Firenze, Italy

58 INFN Laboratori Nazionali di Frascati, Frascati, Italy

59 INFN Sezione di Genova, Genova, Italy
60a INFN Sezione di Milano-Bicocca, Milano, Italy
60b Università di Milano-Bicocca, Milano, Italy
61a INFN Sezione di Napoli, Napoli, Italy
61b Università di Napoli “Federico II,” Napoli, Italy
62a INFN Sezione di Padova, Padova, Italy
62b Università di Padova, Padova, Italy

63a INFN Sezione di Pavia, Pavia, Italy
63b Università di Pavia, Pavia, Italy

64a INFN Sezione di Perugia, Perugia, Italy
64b Università di Perugia, Perugia, Italy

65a INFN Sezione di Pisa, Pisa, Italy
65b Università di Pisa, Pisa, Italy

66a Scuola Normale Superiore di Pisa, Pisa, Italy
66b Università di Roma “La Sapienza,” Roma, Italy

67a INFN Sezione di Torino, Torino, Italy
67b Università di Torino, Torino, Italy
67c Università del Piemonte Orientale (Novara), Torino, Italy

68a INFN Sezione di Trieste, Trieste, Italy
68b Università di Trieste, Trieste, Italy

69 Kangwon National University, Chunchon, Korea
70 Kyungpook National University, Daegu, Korea

71 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
72 Korea University, Seoul, Korea
73 University of Seoul, Seoul, Korea
74 Sungkyunkwan University, Suwon, Korea
75 Vilnius University, Vilnius, Lithuania

76 Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
77 Universidad Iberoamericana, Mexico City, Mexico
78 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
79 Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
80 University of Auckland, Auckland, New Zealand
81 University of Canterbury, Christchurch, New Zealand
82 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
83 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
84 Soltan Institute for Nuclear Studies, Warsaw, Poland
85 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
86 Joint Institute for Nuclear Research, Dubna, Russia
87 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
88 Institute for Nuclear Research, Moscow, Russia
89 Institute for Theoretical and Experimental Physics, Moscow, Russia
90 Moscow State University, Moscow, Russia
91 P. N. Lebedev Physical Institute, Moscow, Russia
92 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas 76706, USA
Boston University, Boston, Massachusetts 02215, USA
Brown University, Providence, Rhode Island 02912, USA
University of California, Davis, Davis, California 95616, USA
University of California, Los Angeles, Los Angeles, California 90095, USA
University of California, Riverside, Riverside, California 92521, USA
University of California, San Diego, La Jolla, California 92093, USA
University of California, Santa Barbara, Santa Barbara, California 93106, USA
California Institute of Technology, Pasadena, California 91125, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
University of Colorado at Boulder, Boulder, Colorado 80309, USA
Cornell University, Ithaca, New York 14853-5001, USA
Fairfield University, Fairfield, Connecticut 06824, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA
University of Florida, Gainesville, Florida 32611-8440, USA
Florida International University, Miami, Florida 33199, USA
Florida State University, Tallahassee, Florida 32306-4350, USA
Florida Institute of Technology, Melbourne, Florida 32901, USA
University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA
The University of Iowa, Iowa City, Iowa 52242-1479, USA
Johns Hopkins University, Baltimore, Maryland 21218, USA
The University of Kansas, Lawrence, Kansas 66045, USA
Kansas State University, Manhattan, Kansas 66506, USA
Lawrence Livermore National Laboratory, Livermore, California 94720, USA
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Minnesota, Minneapolis, Minnesota 55455, USA
University of Mississippi, University, Mississippi 38677, USA
University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA
State University of New York at Buffalo, Buffalo, New York 14260-1500, USA
Northeastern University, Boston, Massachusetts 02115, USA
Northwestern University, Evanston, Illinois 60208-3112, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
The Ohio State University, Columbus, Ohio 43210, USA
Princeton University, Princeton, New Jersey 08544-0708, USA
University of Puerto Rico, Mayaguez, Puerto Rico 00680
Purdue University, West Lafayette, Indiana 47907-1396, USA
Purdue University Calumet, Hammond, Indiana 46323, USA
Rice University, Houston, Texas 77251-1892, USA
University of Rochester, Rochester, New York 14627-0171, USA
The Rockefeller University, New York, New York 10021-6399, USA
Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854-8019, USA
a Deceased.
b Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
c Also at Universidade Federal do ABC, Santo Andre, Brazil.
d Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
e Also at Suez Canal University, Suez, Egypt.
f Also at Fayoum University, El-Fayoum, Egypt.
g Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
h Also at Massachusetts Institute of Technology, Cambridge, MA, USA.
i Also at Université de Haute-Alsace, Mulhouse, France.
j Also at Brandenburg University of Technology, Cottbus, Germany.
k Also at Moscow State University, Moscow, Russia.
l Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
m Also at Eötvös Loránd University, Budapest, Hungary.
n Also at Tata Institute of Fundamental Research—HECR, Mumbai, India.
o Also at University of Visva-Bharati, Santiniketan, India.
p Also at Facoltà Ingegneria Università di Roma “La Sapienza,” Roma, Italy.
q Also at Università della Basilicata, Potenza, Italy.
r Also at Università degli studi di Siena, Siena, Italy.
s Also at California Institute of Technology, Pasadena, CA, USA.
t Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia.
u Also at University of California, Los Angeles, Los Angeles, CA, USA.

Also at University of Florida, Gainesville, FL, USA.
w Also at Université de Genève, Geneva, Switzerland.
x Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
y Also at University of Athens, Athens, Greece.
z Also at The University of Kansas, Lawrence, KS, USA.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
bb Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

d Also at Gaziosmanpasa University, Tokat, Turkey.
e Also at Adiyaman University, Adiyaman, Turkey.
f Also at Mersin University, Mersin, Turkey.
g Also at Izmir Institute of Technology, Izmir, Turkey.
h Also at Kaftaks University, Kars, Turkey.
i Also at Suleyman Demirel University, Isparta, Turkey.
j Also at Ege University, Izmir, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
k Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania.
Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.
Also at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.
Also at Istanbul Technical University, Istanbul, Turkey.