Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevA.84.011601</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 22 15:23:44 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/67348</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Strongly interacting isotopic Bose-Fermi mixture immersed in a Fermi sea

Cheng-Hsun Wu, Ibon Santiago, Jee Woo Park, Peyman Ahmadi, and Martin W. Zwierlein

Department of Physics, MIT–Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 23 March 2011; revised manuscript received 29 April 2011; published 13 July 2011)

We have created a triply quantum-degenerate mixture of bosonic ^{41}K and two fermionic species ^{40}K and ^{6}Li. The boson is shown to be an efficient coolant for the two fermions, spurring hopes for the observation of fermionic superfluids with imbalanced masses. We observe multiple heteronuclear Feshbach resonances, in particular a wide s-wave resonance for the combination $^{41}\text{K}-^{40}\text{K}$, opening up studies of strongly interacting isotopic Bose-Fermi mixtures. For large imbalance in the local densities of different species, we enter the polaronic regime of dressed impurities immersed in a bosonic or fermionic bath.

DOI: 10.1103/PhysRevA.84.011601

PACS number(s): 03.75.Ss, 34.50.–s, 37.10.De, 67.60.Fp

Strongly interacting quantum mixtures of ultracold atoms provide an extremely rich platform for the study of many-body physics. They offer control over macroscopic quantum phenomena in and out of equilibrium, enabling a direct quantitative comparison to theoretical models [1]. Two-state mixtures of fermionic atoms near Feshbach resonances allow the creation of fermionic superfluids in the crossover between Bose-Einstein condensation and BCS superfluidity [2,3]. Combining different atomic species gives access to Bose-Bose [4,5], Bose-Fermi [6–12], Fermi-Fermi [13–15], and even triply degenerate Bose-Fermi-Fermi mixtures [16] that each connect to many different areas in condensed-matter, high-energy, or nuclear physics. Bose-Fermi mixtures may provide insight into, for example, boson-mediated Cooper pairing [16], QCD matter [17], and theoretical models of High-T_c superconductivity [18]. A mixture of two different fermions might allow access to a superfluid of unlike fermions. In contrast to superconductors or neutron stars, superfluid pairing will occur between particles that are not related via time-reversal symmetry. Very recently, Fermi-Fermi mixtures of unlike fermionic species have been brought into the strongly interacting regime [19], offering prospects to observe universal physics in imbalanced mixtures, such as universal transport [20,21].

An important class of many-body problems involves the interaction of impurities with a Fermi sea or a bosonic bath, dressing them into quasiparticles known as polarons. For the Fermi polaron, an impurity interacting with a fermionic environment, the resulting energy shift has been experimentally measured [22] and calculated [23–25]. Due to the fermionic nature of the environment, the effective mass is only weakly enhanced [25–27] even for resonant interactions. However, if the impurity swims in a bosonic bath, there is no limit to the number of bosons that interact at close distance with the impurity, and the mass enhancement can be enormous [28].

In this work we present a rather ideal system to study strongly interacting quantum mixtures of different atomic species: a heavy, isotopic Bose-Fermi mixture of $^{40}\text{K}-^{41}\text{K}$ with widely tunable interactions coexisting with a light Fermi sea of ^{6}Li. We show that ^{41}K is an efficient sympathetic coolant for both ^{6}Li and ^{40}K, allowing us to reach a triply quantum degenerate mixture. In comparison to experiments employing ^{87}Rb to cool the same fermionic species to triple degeneracy [13], we reach a significantly higher degree of degeneracy in ^{6}Li. In the quest for optimized cooling schemes of fermionic atoms, we thus establish ^{41}K as a superior coolant that is available in all current experiments on fermionic ^{40}K. For the potassium isotopes, we identify a strong p-wave Feshbach resonance, as well as a wide s-wave Feshbach resonance. There, at our lowest temperatures, the mixture is in a regime where theory predicts both Bose and Fermi polarons to exist [29,30]. The mass-imbalanced Bose-Fermi mixture $^{6}\text{Li}-^{41}\text{K}$ also allows for tunable interactions at several Feshbach resonances.

Predating our work, Feshbach resonances in nonisotopic Bose-Fermi mixtures were found in $^{23}\text{Na}-^{6}\text{Li}$, $^{87}\text{Rb}-^{40}\text{K}$, $^{85}\text{Rb}-^{6}\text{Li}$ [12], and $^{85}\text{Rb}-^{6}\text{Li}$ [31]. These systems are plagued by typically unequal trapping potentials and the large mass difference between unlike atoms, causing gravitational sag that has to be compensated. Predictions for Feshbach resonances in isotopic Bose-Fermi mixtures are available for $^{3}\text{He}-^{4}\text{He}$ [32] and for $^{6}\text{Li}-^{7}\text{Li}$ [33], with preliminary experimental findings reported in [34]. An atom-molecule mixture of $^{6}\text{Li}-^{2}\text{Li}_2$ allowed access to a part of the phase diagram of strongly interacting bosons and fermions [35]. However, for too strong an interaction the composite nature of the bosonic molecules becomes apparent. With $^{40}\text{K}-^{41}\text{K}$, we have a Bose-Fermi mixture at our disposal with identical external potentials and essentially equal mass for bosons and fermions, so that the only relevant difference lies in quantum statistics.

The experimental setup, shown in Fig. 1, consists of two independent Zeeman slowers for lithium and potassium, allowing us to simultaneously load large samples of each of the three atomic species directly into a UHV chamber. We trap 3×10^9 ^{41}K atoms in 2 s and 10^9 ^{6}Li atoms in 1 s. Although the natural abundance of ^{40}K is only 0.01%, the Zeeman slower with a typical flux of 10^{11} atoms/s for abundant species still yields 5×10^7 ^{40}K atoms loaded within 2 s into the magneto-optical trap.

To increase the initial atom density, a 40-ms compressed MOT phase and a 6-ms optical molasses stage compress and cool each gas before loading into the magnetic trap. For ^{41}K, we follow closely the procedure laid out in [36]. ^{40}K and ^{6}Li require less care, as we deliberately co-trap only a few 10^9 fermionic atoms with the coolant. The maximum number of fermions that can be brought into degeneracy by a given bosonic coolant is roughly given by the number of degenerate bosons the apparatus can provide. For ^{41}K, this limits the method to $\sim 5 \times 10^6$ ^{6}Li atoms.
fermion number to about 2×10^5, while for ^{23}Na, the number can be as large as 7×10^7 [37].

After the molasses stage, atoms are prepared in the stretched hyperfine states of $|F, m_F \rangle = |2, 2 \rangle$ for ^{41}K, $|9/2, 9/2 \rangle$ for ^{40}K, and $|3/2, 3/2 \rangle$ for ^{6}Li via optical pumping. Evaporative cooling of ^{41}K is performed in a quadrupole magnetic trap with a $B'_z = 220 \text{ G/cm}$ ($B'_z = 110 \text{ G/cm}$) magnetic field gradient along the vertical (horizontal) direction. To avoid Majorana spin flips, the magnetic field zero is “plugged” by a repulsive laser beam (power 15 W, wavelength 532 nm) focused to a waist of 20 μm [38]. Unwanted hyperfine states from imperfect optical pumping are removed by reducing B'_z for 200 ms to 15 G/cm, only supporting stretched states sufficiently against gravity. Without this cleaning procedure, spin-changing collisions would strongly reduce the atom number during evaporation. Evaporation is performed on ^{41}K by driving $|2, 2 \rangle \rightarrow |1, 1 \rangle$ rf transitions above the hyperfine transition of 254.0 MHz. For the last 2 s of evaporation, the trap is decompressed to $B'_z = 110 \text{ G/cm}$ to suppress three-body losses. A well-centered plugged trap allows for two trap minima on each side of the plug laser (see Fig. 1). To obtain only a single trap minimum, in the final 2 s of evaporation a horizontal bias field is applied in the y direction, perpendicular to the plug beam, thus displacing the center of the magnetic trap by 10 μm. The resulting trapping potential, shown in the inset of Fig. 1, is approximately harmonic for atoms at energies of $\lesssim 2 \mu\text{K}$. The effect of anharmonicities is strongest along the y direction, and most important for the light fermion ^6Li at a typical Fermi energy of $E_F = k_B \cdot 5 \mu\text{K}$ (^{40}K only has $E_F \approx k_B \cdot 1.5 \mu\text{K}$).

Even for anharmonic traps, long time-of-flight expansion reveals the momentum distribution of the gas [2]. Time-of-flight images of triply quantum degenerate mixtures are shown in Fig. 2. Condensation of ^{41}K is observed at $T_c = 1.2 \mu\text{K}$ with 3×10^5 atoms. In the harmonic approximation, this translates into a geometric mean of the trapping frequencies of $\omega_{0\text{K}} = 2\pi \cdot 380 \text{ Hz}$. Observing a ^{41}K Bose condensate in thermal contact with a cloud of ^{40}K and ^6Li fermions, each of

![FIG. 1. (Color online) Schematic of the experimental setup. Two Zeeman slowers yield optimized atom flux for ^6Li and K, allowing a no-compromise approach to simultaneous magneto-optical trapping of ^{41}K, ^{40}K, and ^6Li in the main chamber. All species are subsequently loaded into an optically plugged magnetic trap (inset). rf evaporation of ^{41}K sympathetically cools the fermionic species. The inset shows the trapping potential, essentially identical for all species, along the horizontal y axis perpendicular to the plug beam.](image)

![FIG. 2. (Color online) (a)–(c) Absorption images of triply degenerate quantum gases of ^{41}K, ^{40}K, and ^6Li, imaged after 8.12 ms, 4.06 ms, and 1 ms time-of-flight from the magnetic trap, respectively. The final rf-knife frequency was 500 kHz above the 254.0 MHz hyperfine transition of ^{41}K. The white circles indicate the Fermi radii. The arrows indicate the Fermi radii. (d)–(f) Azimuthally averaged column densities. Solid dots: Gaussian fit to the wings of the column density. Solid black and blue lines are Gaussian and Fermi-Dirac fits to the entire profile. The deviation of the Gaussian fit from the data is more pronounced for the more deeply degenerate ^6Li at $T/T_F = 0.16$ than for ^{40}K at $T/T_F = 0.51$. The arrows indicate the Fermi radii. The atom numbers for ^6Li, ^{41}K, and ^{40}K are 1.6×10^5, 1.1×10^5, and 2.0×10^5, respectively.](image)
fermions, in contrast, the release energy saturates due to Pauli exclusion. Open squares: Evaporation of 41K without 6Li and 40K gas. Dashed line: Boltzmann gas. The inset shows the evolution of the normalized release energy E/E_F vs the reduced temperature T/T_F.

Consistent with this expectation, Thomas-Fermi fits to the PSD show $T/T_F = 0.52$, causing a sudden reduction in release energy below T_c. For 40K, the performance is similar.

We observe a wide Feshbach resonance in collisions of 40K in state $|9/2, 9/2\rangle$ with 41K in state $|1, 1\rangle$ at 543 G. The width of the resonance, ΔB_{exp}, is determined by a phenomenological Gaussian fit to the observed loss feature (see, e.g., Fig. 4). For the p-wave resonance, the width was measured at $T = 8 \mu$K.

Table I. Observed interspecies Feshbach resonances between 6Li-41K and 40K-41K atoms.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>B_0 (G)</th>
<th>ΔB_{exp} (G)</th>
<th>Resonance Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6Li $</td>
<td>1/2, 1/2\rangle$ 41K $</td>
<td>1, 1\rangle$</td>
<td>31.9</td>
</tr>
<tr>
<td>6Li $</td>
<td>1/2, 1/2\rangle$ 41K $</td>
<td>1, 1\rangle$</td>
<td>335.8</td>
</tr>
<tr>
<td>40K $</td>
<td>9/2, 9/2\rangle$ 41K $</td>
<td>1, 1\rangle$</td>
<td>472.6</td>
</tr>
<tr>
<td>40K $</td>
<td>9/2, 9/2\rangle$ 41K $</td>
<td>1, 1\rangle$</td>
<td>432.9</td>
</tr>
<tr>
<td>40K $</td>
<td>9/2, 9/2\rangle$ 41K $</td>
<td>1, 1\rangle$</td>
<td>542.7</td>
</tr>
</tbody>
</table>

We now turn to the creation of strongly interacting fermion mixtures. For this, atoms are loaded after evaporation into an optical dipole trap formed by two crossed laser beams of wavelength 1064 nm, each focused to a waist of 100 µm at 7 W of power. For the study of 6Li-41K Feshbach resonances, atoms of both species are transferred into the hyperfine ground state via a Landau-Zener sweep of the bias magnetic field in the presence of 261.3 MHz and 234.2 MHz rf radiation. For 40K-41K, only 41K is transferred into the ground state. This mixture is stable against spin-changing collisions due to the inverted hyperfine structure and the large nuclear spin of 40K. Feshbach resonances are detected via atom loss from three-body collisions, after a fixed wait time, as a function of magnetic field. A list of observed resonances is given in Table I.

The inset in Fig. 3 shows the phase space density (PSD) of each atom cloud vs atom number N during sympathetic cooling. The efficiency of evaporation is measured by $\Gamma = \nu^{-1} (\text{d} \ln \text{PSD})/\text{d} \ln (N)$, where ν is the near-vertex slope of PSD vs N for the fermionic species. If roughly the same atom number, already implies degeneracy of the fermionic species. If $T = T_{\text{TF}}$, then $T/T_{\text{TF}} = 1$, approximately 0.51 and analogously, $T/T_{\text{SL}} = 0.2$. Taking into account anharmonicities along the y direction for 10^5 6Li atoms gives a small correction to the Fermi energy of -3.5%. With this expectation, Thomas-Fermi fits to the time-of-flight distributions in Fig. 2 reveal $T/T_{\text{TF}} = 0.16$ ($N_{\text{SL}} = 2.0 \times 10^5$) and $T/T_{\text{TF}} = 0.51$ ($N_{\text{TF}} = 1.1 \times 10^5$), while $T/T_{\text{TF}} = 0.9$. Evaporating further to obtain essentially pure condensates, we achieve $T/T_{\text{TF}} = 0.08$ for 87Rb and $T/T_{\text{TF}} = 0.35$ for 40K. The degree of degeneracy is about four times higher than what has been achieved in [13] with 87Rb as the coolant. For 40K, the performance is similar.

We observe a wide Feshbach resonance in collisions of 40K in state $|9/2, 9/2\rangle$ with 41K in state $|1, 1\rangle$ at 543 G. The insets illustrate the Bose-Fermi mixture of 41K-40K. Absorption images of the Bose and Fermi clouds after time of flight. The 40K image was scaled by the ratio of expansion factors of 40K and analogously, 41K. The inset shows the evolution of the normalized release energy E/E_F of each cloud vs atom number N during evaporation of 41K. Open squares: Evaporation of 41K without 6Li and 40K gas. Dashed line: Boltzmann gas. The inset shows the evolution of the normalized release energy E/E_F of each cloud vs atom number N during evaporation of 41K. Open squares: Evaporation of 41K without 6Li and 40K gas. Dashed line: Boltzmann gas. The inset shows the evolution of the normalized release energy E/E_F of each cloud vs atom number N during evaporation of 41K. Open squares: Evaporation of 41K without 6Li and 40K gas. Dashed line: Boltzmann gas. The inset shows the evolution of the normalized release energy E/E_F of each cloud vs atom number N during evaporation of 41K. Open squares: Evaporation of 41K without 6Li and 40K gas. Dashed line: Boltzmann gas.
In conclusion, we have observed triply degenerate quantum gases of 41K, 40K, and 6Li, through sympathetic cooling of the fermionic species by the boson 41K. In the Bose-Fermi mixtures of 6Li-41K and 41K-40K, five interspecies Feshbach resonances are detected, with s- and p-wave character. The isotopic potassium gas could become a pristine model system for strongly interacting Bose-Fermi mixtures, for example, for the study of polarons [22,27], observation of polaron condensation, and universal transport of mixtures with unlike statistics [20]. The doubly degenerate 6K-4Li Fermi-Fermi mixture holds promise for the observation of fermionic superfluidity and Cooper pairing between unlike fermions. Imposing species-dependent optical potentials on mixtures will allow the study of systems with mixed dimensionality [41] and impurity physics such as Anderson localization [42] and the interaction of localized impurities with fermionic superfluids [43].

We would like to acknowledge A. Simoni, T. Hanna, and E. Tiesinga for theoretical determinations of Feshbach resonances. We also thank S. Campbell, C. Clausen, C. Figgatt, K. Fisher, V. Ramasesh, and J. Sharpe for experimental assistance. This work was supported by NSF, AFOSR-MURI and VIP, ARO-MURI, ARO with funding from the DARPA OLE program, the Packard Foundation, and the Alfred P. Sloan Foundation.

[34] Y. Zhang et al., AIP Conf. Proc. 770, 228 (2005).
[40] A. Simoni (private communication).