Search for a Very Light CP-Odd Higgs Boson in Top Quark Decays from pp[over-bar] Collisions at [sqrt]s=1.96TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.107.031801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Feb 15 03:15:30 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/67367</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for a Very Light CP-Odd Higgs Boson in Top Quark Decays from $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV
We present the results of a search for a very light CP-odd Higgs boson a_1^0 originating from top quark decays $t \rightarrow H^\pm b \rightarrow W^\pm a_1^0 b$, and subsequently decaying into $\tau^+ \tau^-$. Using a data sample corresponding to an integrated luminosity of 2.7 fb$^{-1}$ collected by the CDF II detector in $p\bar{p}$ collisions at 1.96 TeV, we perform a search for events containing a lepton, three or more jets, and an additional isolated track with transverse momentum in the range 3 to 20 GeV/c. Observed events are consistent with background sources, and 95% C.L. limits are set on the branching ratio of $t \rightarrow H^\pm b$ for various masses of H^\pm and a_1^0.

DOI: 10.1103/PhysRevLett.107.031801 PACS numbers: 14.80.Da, 13.85.Rm, 14.65.Ha

The Higgs boson is the last unobserved particle of the standard model (SM) [1]. In the SM the Higgs boson mass is unstable to quantum corrections. This problem is naturally solved in supersymmetric models [2]. In these theories the Higgs boson sector is more complicated. The minimal supersymmetric extension of the standard model (MSSM) contains five Higgs bosons: a light and a heavy CP-even Higgs (h and H), a CP-odd Higgs (A), and a pair of charged bosons (H^\pm). The next-to-minimal supersymmetric model (NMSSM) [3] further extends the MSSM to include an additional CP-even and CP-odd neutral Higgs bosons. In the NMSSM the lightest CP-odd Higgs boson a_1^0 can be below the $b\bar{b}$ threshold, so that the a_1^0 boson decays only into $\tau^+ \tau^-$, $c\bar{c}$ or gg.

The existence of the very light a_1^0 boson has two important implications. First, the decay mode of the SM-like Higgs boson $h \rightarrow a_1^0 a_1^0$ becomes dominant and other SM decay rates are decreased, so that the SM-like Higgs boson avoids the LEP II direct limit [4]. The light SM-like Higgs boson helps to solve the naturalness and fine-tuning problems arising in the MSSM [3]. In addition, the charged Higgs boson must not be much heavier than the W boson, which helps to reconcile apparent discrepancies in the LEP lepton universality measurements [5]. Such a charged
Higgs boson could appear in top quark decays \(t \rightarrow H^\pm b \), escaping current limits [6] due to a new open decay mode \(H^\pm \rightarrow W^\pm a^0_1 \), which has not been investigated before. This motivates a search for \(a^0_1 \) bosons in decays of top quarks.

In the \(p \bar{p} \) collisions at the Fermilab Tevatron the top quarks are produced mainly in pairs, and within the SM almost always decay into a \(W \) boson and a \(b \) quark. The NMSSM scenario considered above differs from the SM process by the presence of one or two \(a^0_1 \) bosons in the final state. As the \(a^0_1 \) boson decay products are expected to have low momenta, these could remain undetected without affecting the measurements of the \(t\bar{t} \) cross section and properties of the top quark.

In this Letter we report on the first search for a light CP-odd Higgs boson \(a^0_1 \) in decays of top quarks through the intermediate charged Higgs boson \(t \rightarrow H^b \rightarrow W a^0_1 \) assuming \(a^0_1 \rightarrow \tau^+ \tau^- \). We analyze a data set corresponding to an integrated luminosity of 2.7 fb\(^{-1}\) of \(p \bar{p} \) collisions at \(\sqrt{s} = 1.96 \) TeV collected by the Collider Detector at Fermilab (CDF II) [7], searching in candidate \(t\bar{t} \) events for the presence of low-\(p_T \) tracks [8] that could be attributed to \(\tau \)-decay products.

We select candidate \(t\bar{t} \) events using criteria developed for a \(t\bar{t} \) cross section measurement [9]. The data events used in the analysis are collected by triggers that identify at least one high-\(p_T \) electron or muon candidate using the online data acquisition system. Subsequently, each event is required to have a single isolated \(e \) or \(\mu \) with \(p_T > 20 \) GeV/c and \(|\eta| < 2.0(1.0) \) for \(e(\mu) \) [10,11]. We require missing transverse energy \(E_T > 20 \) GeV [12], as evidence of a neutrino from the \(W \)-boson decay, and at least three jets with \(E_T > 20 \) GeV and \(|\eta| < 2.0 \), reconstructed using a fixed cone algorithm of radius \(R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4 \) [13]. Backgrounds to \(t\bar{t} \) production are reduced by requiring at least one of the jets to be identified as a \(b \)-quark candidate using the presence of a displaced secondary vertex [14], and by requiring the scalar sum of the transverse energy of the lepton, \(E_T \), and jets (\(H_T \)) to be above 250 GeV. We observe 1052 events passing these selection criteria, which define a presignal sample.

The main contribution to the selected sample of events comes from \(t\bar{t} \) production, which we model using the PYTHIA 6.216 Monte Carlo (MC) generator [15] for both SM and new physics top quark decays, assuming \(m_t = 172.5 \) GeV/c\(^2\). We use an ALPGEN 2.13 [16] matrix-element generator interfaced to PYTHIA 6.325 for modeling \(W + \) jets and \(Z/\gamma^* + \) jets production. Other sources of events in the presignal sample include diboson production (WW, WZ, ZZ) modeled with PYTHIA 6.216 MC generator, and multijet QCD events modeled using a data-driven approach described in [17]. The detector response in all MC samples is modeled by a GEANT3-based detector simulation [18].

We search for \(\tau \) leptons from \(a^0_1 \) boson decays in \(t\bar{t} \) candidate events by looking for at least one low-\(p_T \) (3 GeV/c < \(p_T < 20 \) GeV/c) track in the central detector region \(|\eta| < 1.1 \). The track must be well measured; i.e., it should have a sufficient number of hits in the tracking chamber. To ensure that the track is consistent with being produced in a \(p \bar{p} \) collision, the distance of closest approach of the track with respect to the beam axis is required to be small. The track must also originate from the same \(p \bar{p} \) interaction as the isolated lepton by requiring that \(|z_{\text{track}} - z_{\text{lepton}}| < 5 \) cm, where the \(z \) coordinate corresponds to the point of the closest approach to the nominal beam line. To suppress backgrounds from jets the candidate track is required to be isolated from other tracks in the event.

We sum the \(p_T \) of every well-measured track with \(p_T > 0.5 \) GeV/c, including the candidate track, within a cone of \(\Delta R < 0.4 \) around the candidate and with a \(z \) position of origin within 5 cm of the candidate track \(z \). We require that the ratio of the candidate track \(p_T \) to the sum \(p_T \) of tracks in the cone be at least 0.9. We also ensure that the track is not within \(\Delta R < 0.4 \) of the lepton (\(e \) or \(\mu \)) or a jet, used to define the \(t\bar{t} \) candidate.

The isolated tracks can arise from the hard parton-parton interaction producing the high-\(p_T \) lepton candidate as well as from the “underlying event” (UE). In what follows, we include in our UE definition contributions from additional simultaneous proton-antiproton collisions. Non-UE isolated tracks come from physics processes where more than one lepton is produced but only one is identified, such as from \(Z/\gamma^* \rightarrow \ell^+ \ell^- \) events where one lepton triggers the event, while the other one has a \(p_T \) below 20 GeV/c, or is a \(\tau \) that leaves a low-\(p_T \) track. We use simulated events to model the track \(p_T \) spectra corresponding to leptons from the vector boson decays.

We use data to model the characteristics of UE tracks. We analyze several different data samples to verify that the UE track \(p_T \) spectrum is independent of the data source. We select \(Z \) boson candidates by requiring events to have two leptons (“dilepton events”) with an invariant mass consistent with a \(Z \) boson. We also study “lepton + jets” events by requiring only one lepton candidate, significant missing transverse energy, plus one or two jets. This data sample is dominated by events from \(W \) boson plus associated jets production. We also analyze several data samples of QCD multijet events collected by triggers that identify at least one jet. Each sample requires a different jet \(E_T \) threshold.

The fraction of events in which UE tracks satisfy our selection criteria is about 7.5%, and is consistent between samples within 15% relative uncertainty. The \(p_T \) spectra of the isolated tracks for different data samples normalized to the same area are shown in Fig. 1. The track \(p_T \) spectrum for lepton + jets events is corrected by subtracting contributions from tracks corresponding to real leptons from \(Z/\gamma^* \), diboson, and \(t\bar{t} \) events. This is done by accounting...
for tracks originating from a W^\pm or Z boson in our MC samples, where the reconstructed track is traced back to the charged particle in the decay chain of the vector boson. In Fig. 1 both corrected and uncorrected track p_T spectra are shown. After the correction the p_T spectra agree with those from dilepton and QCD multijet events.

We tested the data to determine whether there are any correlations between the p_T spectra of isolated tracks and other parameters of the event. The only correlation we found was with the H_T of the event. We account for this correlation as described further in the text. A number of cross-checks that we performed include comparison of the UE track p_T spectra to model the UE contribution, and allow the rate of UE tracks to float freely.

We perform the search for $t \rightarrow H^- b \rightarrow W^{\pm(*)} a_0^0 b$ decays by fitting the observed isolated track p_T distribution to the combination of the UE, non-UE SM, and the new physics signal track p_T spectra. We use the UE track p_T distribution from QCD multijet data events to model the UE contribution, and allow the rate of UE tracks to float freely in the fit. For the MC-modeled background processes we consider isolated tracks only from the vector boson decays. In case an event has more than one track satisfying the isolation and the track quality criteria, we select the track with the highest p_T. We use the UE track p_T distribution measured in data to correct all MC track p_T spectra to account for the probability of the highest-p_T track to come from the underlying event.

Prior to performing the fit in the signal region, we test our procedure in the control region defined by events with one lepton plus one or two jets. In this region the dominant non-UE contribution is from $Z/\gamma^* \rightarrow \tau^+ \tau^-$ events where one τ decays leptonically and is identified as an electron or muon, and the other one is identified as an isolated track. The lepton track p_T spectra from Z/γ^* decays are on average more energetic than the UE track p_T, and assuming the UE-only hypothesis an excess of events is expected in the tails of the observed isolated track p_T distribution. We test whether we are able to observe the excess of events attributed to $Z/\gamma^* \rightarrow \ell^+ \ell^-$ events at the rate consistent with the expectation. The expected number of events from the Z/γ^* decay is obtained using the MC normalized to data under the Z mass peak.

We perform a log-likelihood fit to the observed isolated track p_T spectrum, with UE and Z/γ^* rates completely unconstrained, and other MC-based contributions (top and dibosons) constrained to be within their theoretical expectations. The fit is performed in the range $3 \leq p_T \leq 20 \text{ GeV}/c$ separately for events with one and two jets. The results of the fit are presented in Fig. 2. The extracted Z/γ^* contribution matches the expectations within the statistical uncertainties.

We then proceed to fit in the signal region, and employ the CL$_S$ likelihood ratio test statistic [19] to quantify the search results. The systematic uncertainties enter the CL$_S$ fit as Gaussian-constrained nuisance parameters.

The $t\bar{t}$ contribution is obtained from the data using the same technique as in the $t\bar{t}$ cross section measurement [9].

![Fig. 1](https://example.com/fig1.png)
FIG. 1 (color online). The isolated track p_T spectra from lepton + jets, dilepton, and QCD multijet data samples for events with exactly one jet.

![Fig. 2](https://example.com/fig2.png)
FIG. 2 (color online). The isolated track p_T spectrum fitted for $Z/\gamma^* + \text{jets}$ cross section in lepton + jets data events with one jet and two jets separately. In both cases the fit results are consistent with expected Z/γ^* contribution.
The uncertainty on the expected $t\bar{t}$ event yield is due to the lepton identification and triggering (2%), b-tagging efficiency (5%), the jet energy scale (5%), the uncertainty in the estimate of backgrounds to $t\bar{t}$ (3%), and limited data statistics (6%) accounting for the total $t\bar{t}$ normalization uncertainty of 10%.

The $Z/\gamma^* +$ heavy flavor contribution is normalized to data under the Z mass peak, with the dominant uncertainty due to limited statistics of $Z +$ tagged jet events in data (8%). The uncertainty on the diboson (VV) background is due to next-to-leading order calculations [20] and parton distribution functions, taken conservatively to be 10%, luminosity (6%), and the jet energy scale (20%).

Since we require the isolated track not to be within a reconstructed jet, the systematic uncertainty in the jet energy scale leads to events migrating to or from the signal region, which results in an additional 3% uncertainty for all MC-based backgrounds. The uncertainty on the isolated track efficiency is 3%, and is determined using Z/γ^* events.

The largest variations in the UE isolated track p_T spectrum come from varying the H_T requirement for the candidate sample. We use the shapes obtained from multijet data for very low and very high H_T, and interpolate these distributions to obtain an intermediate shape. The interpolation is parametrized with a Gaussian-constrained nuisance parameter and integrated into the fit. We allow the UE track p_T distribution to change in the fit according to the value of this nuisance parameter [21].

The expected event yields in the signal region are presented in Table I. The first row in the table represents the numbers of expected and observed events before the isolated track requirement. The second row shows the event yields after the isolated track requirement, where events are categorized based on the origin of the isolated track. The quoted event yield due to the UE corresponds to the expected rate, while the actual normalization is obtained from the fit to the isolated track p_T spectrum in data, as can be seen in Fig. 3.

Figure 3 shows that the data are well described by SM background sources. We set 95% confidence level (C.L.) upper limits on the branching ratio of $t \rightarrow H^+ b$ under the assumption that the branching ratios $\mathcal{B}(a_1^0 \rightarrow \tau^+ \tau^-) = 100\%$ and $\mathcal{B}(H^\pm \rightarrow W^\pm a_1^0) = 100\%$. The expected and observed 95% C.L. limits as a function of m_{H^+} and $m_{a_1^0}$ are shown in Fig. 4. For a given mass of CP-odd Higgs bosons a_1^0 we exclude the branching ratios of $\mathcal{B}(t \rightarrow H^+ b)$ above the respective curve shown in the plot. For an a_1^0 boson with mass of 9 GeV/c^2, we exclude a $\mathcal{B}(t \rightarrow H^+ b) > 0.20$ at 95% C.L. for H^+ masses between 90 and 160 GeV/c^2. These are the first limits on the branching ratio of $t \rightarrow H^+ b$ in this decay mode.

In conclusion, we have presented a search for non-SM top decays $t \rightarrow H^\pm b \rightarrow W^{\pm} v a_1^0 b$ within the NMSSM scenario using a data sample corresponding to 2.7 fb$^{-1}$ of integrated luminosity in 1.96 TeV $p \bar{p}$ collisions. We see no evidence of τ’s from light Higgs a_1^0 decays, and set the world’s first limits on the branching ratio of $t \rightarrow H^+ b$ in

<table>
<thead>
<tr>
<th>$t\bar{t}$</th>
<th>QCD, W</th>
<th>VV</th>
<th>Z/γ^*</th>
<th>UE</th>
<th>Total</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>805</td>
<td>215</td>
<td>11</td>
<td>19</td>
<td>...</td>
<td>1049</td>
<td>1052</td>
</tr>
<tr>
<td>2.6 ± 0.3</td>
<td>...</td>
<td>0.1 ± 0.0</td>
<td>0.7 ± 0.1</td>
<td>79 ± 12</td>
<td>83 ± 12</td>
<td>70</td>
</tr>
</tbody>
</table>

TABLE I. Expected event yields in 2.7 fb$^{-1}$ before the track requirement (first row), and with at least one isolated track (second row) with 3 GeV/$c < p_T < 20$ GeV/c. In the second row events are categorized based on the origin of the isolated track. The number of UE events is the expected number of events before the fit to the track p_T spectrum.
this mode, assuming \(\mathcal{B}(a^0 \to \tau^+ \tau^-) = 100\% \) and \(\mathcal{B}(H^0 \to W^\pm a^0) = 100\% \).

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the participating institutions for their vital contributions.

031801-7