Top quark mass measurement using the template method at CDF

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.83.111101</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Feb 14 08:11:44 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/67502</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Top quark mass measurement using the template method at CDF

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6bIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7University of California, Davis, Davis, California 95616, USA
8University of California, Los Angeles, Los Angeles, California 90024, USA
9Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14Duke University, Durham, North Carolina 27708, USA
15Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16University of Florida, Gainesville, Florida 32611, USA
17Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18University of Geneva, CH-1211 Geneva 4, Switzerland
19Glasgow University, Glasgow G12 8QQ, United Kingdom
20Harvard University, Cambridge, Massachusetts 02138, USA
21Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland, USA
22University of Illinois, Urbana, Illinois 61801, USA
23The Johns Hopkins University, Baltimore, Maryland 21218, USA
24Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 350-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
26Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27University of Liverpool, Liverpool L69 7ZE, United Kingdom
28University College London, London WC1E 6BT, United Kingdom
29Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31Institute of Particle Physics: McGill University, Montreal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7;
and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3, USA

32 University of Michigan, Ann Arbor, Michigan 48109, USA

33 Michigan State University, East Lansing, Michigan 48824, USA

34 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

35 University of New Mexico, Albuquerque, New Mexico 87131, USA

36 Northwestern University, Evanston, Illinois 60208, USA

37 The Ohio State University, Columbus, Ohio 43210, USA

38 Okayama University, Okayama 700-8530, Japan

39 Osaka City University, Osaka 588, Japan

40 University of Oxford, Oxford OX1 3RH, United Kingdom

41a Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

41b University of Padova, I-35131 Padova, Italy

42 LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France, USA

43 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

44a Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

44b University of Pisa, I-56127 Pisa, Italy

44c University of Siena, I-56127 Pisa, Italy

44d Scuola Normale Superiore, I-56127 Pisa, Italy

45 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

46 Purdue University, West Lafayette, Indiana 47907, USA

47 University of Rochester, Rochester, New York 14627, USA

48 The Rockefeller University, New York, New York 10065, USA

49a Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy

49b Sapienza Universita` di Roma, I-00185 Roma, Italy

50 Rutgers University, Piscataway, New Jersey 08855, USA

51 Texas A&M University, College Station, Texas 77843, USA

52a Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, I-33100 Udine, Italy

52b University of Trieste/Udine, I-33100 Udine, Italy

53 University of Tsukuba, Tsukuba, Ibaraki 305, Japan

54 Tufts University, Medford, Massachusetts 02155, USA

55 University of Virginia, Charlottesville, Virginia 22906, USA

56 Waseda University, Tokyo 169, Japan

\^Deceased.
\^With visitors from University of Massachusetts Amherst, Amherst, MA 01003, USA.
\^With visitors from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
\^With visitors from University of California Irvine, Irvine, CA 92697, USA.
\^With visitors from University of California Santa Barbara, Santa Barbara, CA 93106, USA.
\^With visitors from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
\^With visitors from CERN, CH-1211 Geneva, Switzerland.
\^With visitors from Cornell University, Ithaca, NY 14853, USA.
\^With visitors from University of Cyprus, Nicosia CY-1678, Cyprus.
\^With visitors from University College Dublin, Dublin 4, Ireland.
\^With visitors from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
\^With visitors from Universidad Iberoamericana, Mexico D.F., Mexico.
\^With visitors from Iowa State University, Ames, IA 50011, USA.
\^With visitors from University of Iowa, Iowa City, IA 52242, USA.
\^With visitors from Kinki University, Higashi-Osaka City, Japan 577-8502.
\^With visitors from Kansas State University, Manhattan, KS 66506, USA.
\^With visitors from University of Manchester, Manchester M13 9PL, England.
\^With visitors from Queen Mary, University of London, London, E1 4NS, England.
\^With visitors from Muons, Inc., Batavia, IL 60510, USA.
\^With visitors from Nagasaki Institute of Applied Science, Nagasaki, Japan.
\^With visitors from National Research Nuclear University, Moscow, Russia.
\^With visitors from University of Notre Dame, Notre Dame, IN 46556, USA.
\^With visitors from Universidad de Oviedo, E-33007 Oviedo, Spain.
\^With visitors from Texas Tech University, Lubbock, TX 79609, USA.
\^With visitors from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.
\^With visitors from Yarmouk University, Irbid 211-63, Jordan.
\^On leave from J. Stefan Institute, Ljubljana, Slovenia.
We present a measurement of the top quark mass in the lepton + jets and dilepton channels of $t\bar{t}$ decays using the data sample corresponding to an integrated luminosity of 5.6 fb$^{-1}$ of $p\bar{p}$ collisions at Tevatron with $\sqrt{s} = 1.96$ TeV, collected with the CDF II detector. We construct templates of two reconstructed top quark masses from different jets-to-quarks combinations and the invariant mass of two jets from the W decays in the lepton + jets channel, and a reconstructed top quark mass and m_{T2}, a variable related to the transverse mass in events with two missing particles, in the dilepton channel. The simultaneous fit of the templates from signal and background events in the lepton + jets and dilepton channels to the data yields a measured top quark mass of $M_{top} = 172.1 \pm 1.1$ (stat) ± 0.9 (syst) GeV/c^2.

The top quark (t) is by far the heaviest known elementary particle [1]. The top quark contributes significantly to electroweak radiative corrections relating the top quark mass to the mass of the predicted Higgs boson [2,3]. Precision measurements of M_{top} provide therefore important constraints on the Higgs boson mass. Since the discovery of the top quark in 1995 [4] at the Fermilab Tevatron $p\bar{p}$ Collider, both the CDF and D0 experiments have been improving the precision of the M_{top} measurement [5]. However it is important to measure M_{top} using different techniques and independent data samples in different decay channels. Significant differences in the measurements of M_{top} in different decay channels could indicate contributions from new physics beyond the SM [6].

This letter reports a measurement of the top quark mass using the template method [7–9]. We use samples of $t\bar{t}$ candidates in the lepton + jets and dilepton channels, corresponding to an integrated luminosity of 5.6 fb$^{-1}$ of proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV, collected by the CDF II detector [10]. This is a general-purpose detector designed to study $p\bar{p}$ collisions at the Fermilab Tevatron. A charged-particle tracking system, consisting of a silicon microstrip tracker and a drift chamber, is immersed in a 1.4 T magnetic field. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers and scintillators, located outside the calorimeters, detect muon candidates.

Assuming unitarity of the three-generation CKM matrix, the top quark decays almost exclusively into a W boson and a b quark [1]. The case where one W decays leptonically into an electron or a muon plus a neutrino and the other hadronically into a pair of jets defines the lepton + jets decay channel. The dilepton channel is defined as the case where both W’s decay leptonically into an electron or a muon plus a neutrino.

Lepton + jets events are selected by requiring one isolated [11] electron (muon) with $E_T > 20$ GeV ($p_T > 20$ GeV/c) and pseudorapidity $|\eta| < 1.1$ [12]. We also require high missing transverse energy [13], $E_T > 20$ GeV, and at least four jets. Jets are reconstructed with a cone algorithm [14] with radius $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$. Jets originating from b quarks are identified (tagged) using a secondary vertex tagging algorithm [15]. We request at least one jet to be tagged as a b jet. We divide the sample of candidate lepton + jets events into subsamples of one b-tagged jet (1-tag) and two or more b-tagged jets (2-tag). In events with more than two b-tagged jets, we consider the two highest E_T jets as b quark candidates and treat the other b-tagged jets as non-b-tagged jets. In the 1-tag sample, we require exactly four jets with transverse energy $E_T > 20$ GeV and $|\eta| < 2.0$. In the 2-tag sample, three jets are required to have $E_T > 20$ GeV and $|\eta| < 2.0$, and at least one more jet is required to have $E_T > 12$ GeV and $|\eta| < 2.4$. We apply an additional cut on the scalar sum of transverse energies in the event, $H_T = E_{T,lep} + E_T + \sum_{jets} E_{T,jet}^{tag}$, requiring $H_T > 250$ GeV for all events to further reject backgrounds. $E_{T,lep}^{muon} = p_T^{muon}$ is assumed in the H_T calculation.

The primary sources of background in the lepton + jets channel are W + jets and QCD multijet production. We also consider small contributions from Z + jets, diboson, and single-top production. To estimate the contribution of each process, we use a combination of data and Monte Carlo (MC)-based techniques described in Ref. [16]. For the Z + jets, diboson, single top, and $t\bar{t}$ events we normalize MC simulation events using their respective theoretical cross sections [17–19]. QCD multijet background is estimated using the data referring to techniques described in Ref. [20]. The shape of W + jets background is obtained from MC while the number of W + jets events is determined from the data by subtracting all the other backgrounds and $t\bar{t}$.

Three observables are used from each lepton + jets event: two reconstructed top quark masses ($m_{t,rec}^1$ and $m_{t,rec}^2$) and the invariant mass of the two jets from the
TOP QUARK MASS MEASUREMENT USING THE TEMPLATE ...

hadronically decaying W boson (m_{jj}). We have complete reconstruction of the $t\bar{t}$ kinematics in the lepton + jets channel [7,8] with constraints from the precise W boson mass and requiring the t and \bar{t} masses to be the same. With the assumption that the leading four jets in the detector come from the $t\bar{t}$ decay products, there are six and two possible assignments of jets to quarks for 1-tag and 2-tag, respectively. A minimization is performed for each assignment using a χ^2 comparison to the $t\bar{t}$ hypothesis with $m_{t\bar{t}}^{\text{reco}}$ taken from the assignment that yields the lowest χ^2. To increase the statistical power of the measurement, we employ an additional observable $m_{t\bar{t}}^{\text{reco}(2)}$ from the assignment that yields the second lowest χ^2. Events with the lowest $\chi^2 > 9.0$ are removed from the sample to reject poorly reconstructed events. The dijet mass m_{jj} is calculated as the invariant mass of two non b-tagged jets which provides the closest value to the world average W boson mass of 80.40 GeV/c2 [1]. We apply boundary cuts on $m_{t\bar{t}}^{\text{reco}}$ and $m_{t\bar{t}}^{\text{reco}(2)}$ (100 GeV/c$^2 < m_{t\bar{t}}^{\text{reco}}$, $m_{t\bar{t}}^{\text{reco}(2)} < 350$ GeV/c2) and m_{jj} (50 GeV/c$^2 < m_{jj} < 120$ GeV/c2 for 1-tag events and 50 GeV/c$^2 < m_{jj} < 125$ GeV/c2 for 2-tag events), and normalize the probability density function in the signal region. The estimated number of background events and the observed number of events after event selection, χ^2 cut, and boundary cuts are listed in Table I for the lepton + jets decay channel.

To select dilepton candidate events, we require two oppositely charged leptons with $E_T > 20$ GeV (for electrons) or $p_T > 20$ GeV/c (for muons). One lepton is required to be isolated in the central region ($|\eta| < 1.1$) of the detector, but the other can be a nonisolated lepton in the central region or an isolated electron in the forward region ($1.1 < |\eta| < 2.0$). We also require $E_T > 25$ GeV, and at least two jets with $E_T > 15$ GeV and $|\eta| < 2.5$. To further reject backgrounds, we require $H_T > 200$ GeV. In measuring the top quark mass, we divide the dilepton sample into events with b-tagged jets (tagged) and without b-tagged jets (nontagged).

Drell-Yan, diboson, and $W +$ jets (fake lepton) events are the primary sources of background in the dilepton channel. We estimate the rate of the Drell-Yan and diboson events with calculations based on MC simulations. For the Drell-Yan $Z +$ jets process, we normalize the MC sample by matching the number of Z events predicted and observed in the Z mass region between 76 GeV/c2 and 106 GeV/c2. We use data to estimate the rate of $W +$ jets (fake lepton) events where an event has one real lepton and one of the jets misidentified as the other lepton. The detailed procedure of background estimation in the dilepton channel is described in Ref. [21]. For each event, we calculate a reconstructed top quark mass $m_{t\bar{t}}^{\text{NWA}}$ using the neutrino weighting algorithm [22], and we calculate a quantity m_{tr2} [23]. Here, m_{tr2} is a variable related to the transverse mass of the mother particles (top quark in the $t\bar{t}$ system) in events with two missing particles from pair production of the mother particles. We first use this variable for the top quark mass measurement in the dilepton channel [9]. We require these observables to be consistent with the top quark signal by demanding 100 GeV/c$^2 < m_{t\bar{t}}^{\text{NWA}} < 350$ GeV/c2 and 30 GeV/c$^2 < m_{tr2} < 200$ GeV/c2. The estimated number of background events and the observed number of events after event selection are listed in Table II for the dilepton decay channel.

We estimate the probability density functions (PDFs) of signal and background using kernel density estimation (KDE) [24]. In the lepton + jets channel, we use the three dimensional KDE that accounts for the correlation between the three observables. In the dilepton channel, instead, we use the two-dimensional KDE. The dijet mass m_{jj} of the two jets assigned to the W in the lepton + jets channel is used for in situ calibration of jet energy scale (JES) [7,8]. The PDFs for the observables are estimated at discrete values of $M_{t\bar{t}}$ from 130 GeV/c2 to 220 GeV/c2, with increments from 0.5 GeV/c2 in the region immediately above and below 172.5 GeV/c2 to 5 GeV/c2 near the extreme mass values, and at discrete values of Δ_{JES} from

Table I. Expected and observed numbers of signal and background events assuming $t\bar{t}$ production cross section $\sigma_{t\bar{t}} = 7.4$ pb and $M_{t\bar{t}} = 172.5$ GeV/c2 in the lepton + jets channel.

<table>
<thead>
<tr>
<th></th>
<th>1-tag (t)</th>
<th>2-tag (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W +$ jets</td>
<td>53.4 ± 17.5</td>
<td>8.5 ± 3.0</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>13.1 ± 10.6</td>
<td>1.8 ± 1.5</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>4.7 ± 1.0</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>Diboson</td>
<td>6.3 ± 0.8</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>Single top</td>
<td>4.9 ± 0.4</td>
<td>2.0 ± 0.2</td>
</tr>
<tr>
<td>Background</td>
<td>105 ± 21</td>
<td>14.2 ± 3.5</td>
</tr>
<tr>
<td>$t\bar{t}$ signal</td>
<td>590 ± 74</td>
<td>293 ± 45</td>
</tr>
<tr>
<td>Expected</td>
<td>694 ± 77</td>
<td>307 ± 45</td>
</tr>
<tr>
<td>Observed</td>
<td>695</td>
<td>286</td>
</tr>
</tbody>
</table>

Table II. Expected and observed number of signal and background events assuming $t\bar{t}$ production cross section $\sigma_{t\bar{t}} = 7.4$ pb and $M_{t\bar{t}} = 172.5$ GeV/c2 in the dilepton channel.

<table>
<thead>
<tr>
<th></th>
<th>notagged (t)</th>
<th>tagged (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diboson</td>
<td>19.2 ± 3.3</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>Drell-Yan</td>
<td>31.5 ± 3.9</td>
<td>3.7 ± 0.2</td>
</tr>
<tr>
<td>$W +$ jets (fake lepton)</td>
<td>30.8 ± 9.4</td>
<td>4.6 ± 1.3</td>
</tr>
<tr>
<td>Background</td>
<td>81.6 ± 10.4</td>
<td>8.9 ± 1.4</td>
</tr>
<tr>
<td>$t\bar{t}$ signal</td>
<td>124 ± 16</td>
<td>151 ± 19</td>
</tr>
<tr>
<td>Expected</td>
<td>205 ± 19</td>
<td>160 ± 19</td>
</tr>
<tr>
<td>Observed</td>
<td>237</td>
<td>155</td>
</tr>
</tbody>
</table>
the full background model. CDF et al. [28] build the likelihood using MINUIT. The likelihood is built for each channel. We evaluate the statistical uncertainty on the raw value from likelihood fit and \(m_{\text{corr}} \) is the corrected value of the measurement. We increase the measured uncertainty by 4% for combined fit and lepton + jets channel and 3% for dilepton channel to correct the width of the pull.

We examine various sources of systematic uncertainties that could affect the measurement by comparing the results of pseudoexperiments in which we vary relevant parameters within their systematic uncertainties. The dominant sources of systematic uncertainty are the residual JES [8, 25] and signal modeling. We vary JES parameters within their systematic uncertainties. The dominant uncertainty due to modeling of initial-state gluon radiation and final-state gluon radiation by extrapolating uncertainties in the (residual) JES. We estimate the systematic uncertainty by comparing the results of pseudoexperiments generated in which we vary relevant parameters within their systematic uncertainties. The dominant sources of systematic uncertainty are the residual JES [8, 25] and signal modeling. We vary JES parameters within their systematic uncertainties. The dominant uncertainty due to modeling of initial-state gluon radiation and final-state gluon radiation by extrapolating uncertainties in the (residual) JES. We estimate the systematic uncertainty by comparing the results of pseudoexperiments generated in which we vary relevant parameters within their systematic uncertainties. The dominant sources of systematic uncertainty are the residual JES [8, 25] and signal modeling. We vary JES parameters within their systematic uncertainties. The dominant uncertainty due to modeling of initial-state gluon radiation and final-state gluon radiation by extrapolating uncertainties in the (residual) JES. We estimate the systematic uncertainty by comparing the results of pseudoexperiments generated in which we vary relevant parameters within their systematic uncertainties. The dominant sources of systematic uncertainty are the residual JES [8, 25] and signal modeling. We vary JES parameters within their systematic uncertainties. The dominant uncertainty due to modeling of initial-state gluon radiation and final-state gluon radiation by extrapolating uncertainties in the (residual) JES. We estimate the systematic uncertainty by comparing the results of pseudoexperiments generated in which we vary relevant parameters within their systematic uncertainties. The dominant sources of systematic uncertainty are the residual JES [8, 25] and signal modeling. We vary JES parameters within their systematic uncertainties. The dominant uncertainty due to modeling of initial-state gluon radiation and final-state gluon radiation by extrapolating uncertainties in the (residual) JES. We estimate the systematic uncertainty by comparing the results of pseudoexperiments generated in which we vary relevant parameters within their systematic uncertainties.
the p_T of Drell-Yan events to the $t\bar{t}$ mass region [7]. We vary the parameters of parton distribution functions and gluon fusion fraction within their uncertainties to account systematic effects. We estimate systematic uncertainties due to the lepton energy and momentum scales by propagating shifts in electron energy and muon momentum scales within their uncertainties. Background shape systematic uncertainties account for the variation of the background composition. We estimate the multiple hadron interaction systematic uncertainty to account the effect from the difference in the average number of interactions between MC samples and the data. The color reconnection systematic uncertainty [31] is evaluated by MC samples generated with and without color reconnection effects using different tunes [32] of PYTHIA. All systematic uncertainties are summarized in Table III. The total systematic uncertainties, adding individual components in quadrature, are $0.9\text{ GeV}/c^2$ in the combined fit, $0.9\text{ GeV}/c^2$ in the lepton + jets channel, and $3.1\text{ GeV}/c^2$ in the dilepton channel.

We perform the likelihood fits to the data using the observables discussed in this letter and apply the corrections obtained using the simulated experiments. We obtain for the lepton + jets channel, a top quark mass

$$M_{\text{top}} = 172.2 \pm 1.2 \text{ (stat)} \pm 0.9 \text{ (syst) GeV}/c^2$$

$$= 172.2 \pm 1.5 \text{ GeV}/c^2,$$

while for the dilepton channel,

$$M_{\text{top}} = 170.3 \pm 2.0 \text{ (stat)} \pm 3.1 \text{ (syst) GeV}/c^2$$

$$= 170.3 \pm 3.7 \text{ GeV}/c^2.$$
In conclusion, we have performed a measurement of the top quark mass using the template method simultaneously in the lepton + jets and dilepton channels. The result, $M_{\text{top}} = 172.1 \pm 1.4 \text{ GeV}/c^2$, is consistent with the most recent world average of $M_{\text{top}} = 173.3 \pm 1.1 \text{ GeV}/c^2$ [5]. In the lepton + jets channel, we use the same data set as the best single M_{top} measurement [33], and have a consistent result with slightly larger uncertainty. In the dilepton channel, we achieve the single most precise measurement of M_{top} in this channel to date and the result is in good agreement with the measurement in the lepton + jets channel.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolidador-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

[2] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, the SLD Electroweak, and Heavy Flavor Working Groups, arXiv:1012.2367v2.
[11] A lepton is isolated when $(p_{T,\text{total}}^\gamma - p_{T,\text{lepton}}) / p_{T,\text{lepton}} < 0.1$, where $p_{T,\text{total}}$ is the total transverse momentum (energy) and $p_{T,\text{lepton}}$ is the lepton transverse momentum (energy) for muon (electron) in a cone of radius $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ [12] with axis along the direction of the lepton.
[12] We use a right-handed spherical coordinate system with the origin at the center of the detector with the z-axis along the proton beam and the y-axis pointing up. θ and ϕ are the polar and azimuthal angles, respectively. The pseudorapidity is defined by $\eta = -\ln(\tan(\theta/2))$. The transverse momentum and energy of a detected particle or jet are defined by $p_T = p \sin(\theta)$ and $E_T = E \sin(\theta)$, respectively, where p and E are the momentum and energy of the particle. For the reconstructed top quark decay products used in the $m_{T,\gamma}$ calculation, the transverse energy is defined by $E_T = \sqrt{m^2 + p_T^2}$, where m is the mass of the product.
[13] The missing transverse energy, an imbalance of energy in the transverse plane of the detector, is defined by $E_T = \sum \vec{E}_T \cdot \vec{R}_T$, where \vec{R}_T is the unit vector normal to the beam and pointing to a given calorimeter tower and E_T is the transverse energy measured in that tower.
TOP QUARK MASS MEASUREMENT USING THE TEMPLATE...

...PHYSICAL REVIEW D 83, 111101(R) (2011)