Density of States of Quantum Spin Systems from Isotropic Entanglement

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.107.097205</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Jan 02 11:47:26 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/68629</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Density of States of Quantum Spin Systems from Isotropic Entanglement

Ramis Movassagh1,* and Alan Edelman1

1Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
(Received 17 March 2011; revised manuscript received 27 July 2011; published 26 August 2011)

We propose a method that we call isotropic entanglement (IE), which predicts the eigenvalue distribution of quantum many body (spin) systems with generic interactions. We interpolate between two known approximations by matching fourth moments. Though such problems can be QMA-complete, our examples show that isotropic entanglement provides an accurate picture of the spectra well beyond what one expects from the first four moments alone. We further show that the interpolation is universal, i.e., independent of the choice of local terms.

A highly accurate match (better than four moments).—We propose a method to compute the “density of states” (DOS) or “eigenvalue density” of quantum spin systems with generic local interactions [1]. More generally one wishes to compute the DOS of the sum of noncommuting random matrices from their, individually known, DOS’s.

We begin with an example in Fig. 1, where we compare exact diagonalization against two approximations that we considered early in our work and our method [1]. (1) Dashed gray curve: classical approximation. Notice that it overshoots to the right. (2) Solid gray curve: isotropic approximation (or iso). Notice that it overshoots to the left. (3) Solid black curve: isotropic entanglement (IE). (4) Dots: exact diagonalization of the quantum problem given in Eq. (1).

The classical approximation ignores eigenvector structure by summing random eigenvalues uniformly from noncommuting matrices. The curve is the convolution of the probability densities of the eigenvalues of each matrix.

The isotropic approximation assumes that the eigenvectors are in “general position”; that is, we add the two matrices with correct eigenvalue densities but choose the eigenvectors from Haar (uniform) measure. As the matrix size goes to infinity, the resulting distribution has been popularized recently as the free convolution of the individual distributions [1] (or [2], for a nice exposition).

The exact diagonalization given by red dots and the dashed and solid gray curves have exactly the same first three moments, but differing fourth moments.

Isotropic entanglement (IE) is a linear combination of the two approximations obtained by matching the fourth moments. We show (1) the fit is better than what might be expected by the first four moments alone, (2) the combination is always convex for the problems of interest, given by a \(0 \leq p \leq 1 \), and (3) this convex combination is universal depending on the parameter counts of the problem but not the eigenvalue densities of the local terms.

Parameter counts: Exponential, polynomial, and zero.—Because of the locality of generic interactions, the complete set of eigenstates has parameter count equal to a polynomial in the number of spins, though the dimensionality is exponential. The classical and isotropic approximations have zero and exponentially many random parameters, respectively. This suggests that the problem of interest somehow lies between the two approximations.

Physical implications and problem formulation.—Quantum many body (spin) systems (QMBS) spectra have been elusive for two reasons: (1) The terms that represent the interactions are generally noncommuting. This is particularly pronounced for systems with random interactions (e.g., quantum spin glasses [3], p. 320; [4,5]). (2) Standard numerical diagonalization is limited by memory and computer speed because of exponential growth. Energy eigenvalue distributions are needed for calculating the partition function \(Z \). Exact calculation of the spectrum of interacting QMBS has been shown to be difficult [6].

Though much progress has been made in understanding the ground states of interacting QMBS [7–13], eigenvalue distributions are less studied. An accurate description of tails of distributions is desirable for condensed matter physics. IE provides a direct method for obtaining eigenvalue distributions of quantum spin systems with generic local interactions (i.e., quantum spin systems) and does remarkably well at approximating the tails.

FIG. 1 (color online). The exact diagonalization in dots and IE compared to the two approximations. The title parameters are explained in the section on numerical results.
Though we are not restricted to one-dimensional chains, for the sake of concreteness, we investigate N interacting d-dimensional quantum spins (qudits) on a line with generic interactions. The Hamiltonian is

$$H = \sum_{l=1}^{N-1} \mathbb{I}_{d^l} \otimes H_{l,\ldots,l+L-1} \otimes \mathbb{I}_{d^{N-l-1}}, \quad (1)$$

where the local terms $H_{l,\ldots,l+L-1}$ are finite $d^l \times d^l$ random matrices. From now on we take the case of nearest neighbors interactions, $L = 2$, unless otherwise specified.

The eigenvalue distribution of any commuting subset of H such as the terms with l odd (the “odds”) or l even (the “evens”) can be obtained using local diagonalization. However, the difficulty in approximating the full spectrum “evens” can be obtained using local diagonalization.

The intuition behind IE is that terms with an overlap, such as $H_{l,\ldots,l+L-1}$ and $H_{l+1,\ldots,l+2}$, introduce randomness and mixing through sharing of a site. Namely, the process of entanglement generation introduces an isotropicity between the eigenvectors of evens and odds that can be harnessed to capture the spectrum.

Isotropic entanglement.—Let A and B denote diagonal matrices containing the eigenvalues, in random order, of the odds and evens, respectively. In a basis where (at least) the odds are diagonal, our approximations to the Hamiltonian in Eq. (1) become

$$H^c = A + B, \quad \text{classical},$$

$$H^{iso} = A + Q^{-1}BQ, \quad \text{isotropic}, \quad (2)$$

where Q is a β-Haar measure orthogonal matrix of size d^N with $\beta = 1$ corresponding to real orthogonals, $\beta = 2$ unitaries, and $\beta = 4$ quaternions (see [14] for formal treatment of a general β).

The Hamiltonian given by Eq. (1) in a basis where the odds are diagonal is

$$H = A + Q^{-1}BQ, \quad \text{quantum.} \quad (3)$$

The Q_q has the formidable form $Q_q = (Q_A)^{-1}Q_B$, where (for odd number of sites N)

$$Q_A = Q_1 \otimes Q_3 \otimes \cdots \otimes Q_{N-2} \otimes \mathbb{I}_d,$$

$$Q_B = \mathbb{I}_d \otimes Q_2 \otimes Q_4 \otimes \cdots \otimes Q_{N-1}. \quad (4)$$

The eigenvalue distribution of Eq. (3) is what we are after.

To establish the plausibility of the classical and isotropic approximations, we consider the moments. In general we have the kth moments

$$m^c_k = \frac{1}{d^N} \mathbb{E}\text{Tr}(A + B)^k,$$

$$m^{iso}_k = \frac{1}{d^N} \mathbb{E}\text{Tr}(A + Q^{-1}BQ)^k, \quad \text{and} \quad (5)$$

$$m^q_k = \frac{1}{d^N} \mathbb{E}\text{Tr}(A + Q^{-1}BQ_q)^k.$$

The first three moments are usually encoded as the mean, variance, and skewness; the fourth moment is encoded by the kurtosis which we denote γ_2.

The matching three moments theorem: The first three moments of the classical and isotropic approximations exactly match those of the quantum problem [1].

Turning to the fourth moment, we propose to match the kurtosis γ_2^c with a linear combination of the classical (γ_2^c) and isotropic (γ_2^{iso}) kurtoses:

$$\gamma_2 = p\gamma_2^c + (1-p)\gamma_2^{iso} \Rightarrow p = \frac{\gamma_2^c - \gamma_2^{iso}}{\gamma_2 - \gamma_2^{iso}}. \quad (6)$$

In terms of probability measures, IE provides

$$d\nu^q = d\nu^{IE} = pd\nu^c + (1-p)d\nu^{iso}. \quad (7)$$

where $d\nu$ denotes a probability measure. So long as $0 \leq p \leq 1$, $d\nu^{IE}$ is a probability measure whose first four moments match the theoretical measure $d\nu^q$.

FIG. 2 (color online). An example where $\beta = 1$: the quantum problem for all d lies in between the iso ($p = 0$) and the classical ($p = 1$).

$$m_k^c = \frac{1}{d^N} \mathbb{E}\text{Tr}(A + B)^k,$$

$$m_k^{iso} = \frac{1}{d^N} \mathbb{E}\text{Tr}(A + Q^{-1}BQ)^k, \quad \text{and} \quad (5)$$

$$m_k^q = \frac{1}{d^N} \mathbb{E}\text{Tr}(A + Q^{-1}BQ_q)^k.$$

The first three moments are usually encoded as the mean, variance, and skewness; the fourth moment is encoded by the kurtosis which we denote γ_2.

The matching three moments theorem: The first three moments of the classical and isotropic approximations exactly match those of the quantum problem [1].

Turning to the fourth moment, we propose to match the kurtosis γ_2^c with a linear combination of the classical (γ_2^c) and isotropic (γ_2^{iso}) kurtoses:

$$\gamma_2 = p\gamma_2^c + (1-p)\gamma_2^{iso} \Rightarrow p = \frac{\gamma_2^c - \gamma_2^{iso}}{\gamma_2 - \gamma_2^{iso}}. \quad (6)$$

In terms of probability measures, IE provides

$$d\nu^q = d\nu^{IE} = pd\nu^c + (1-p)d\nu^{iso}. \quad (7)$$

where $d\nu$ denotes a probability measure. So long as $0 \leq p \leq 1$, $d\nu^{IE}$ is a probability measure whose first four moments match the theoretical measure $d\nu^q$.

FIG. 3 (color online). $N = 11$ with full rank Wishart matrices as local terms.
In the expansion of the fourth moments, by a theorem we call the departure theorem [1], the numerator and the denominator in Eq. (6) respectively become

\[
\gamma_2 - \gamma_2^{iso} = \frac{1}{\sigma^4} \frac{\sigma_2}{d^N} E[Tr((AQ^{-1}BQ)^2 - (AQ^{-1}BQ)^2)]
\]

Evaluation of \(p \) in Eq. (6) reduces to the evaluation of the right-hand sides of Eq. (8). It is natural to ask, does a 0 ≤ \(p \) ≤ 1 always exist such that the convex combination of Eq. (6) can be formed? How would quantum spectra look in the thermodynamical limit (\(N \rightarrow \infty \))? The slider theorem provides the answers.

The slider theorem: The quantum kurtosis lies in between the classical and the isotropic kurtoses, \(\gamma_2^{iso} \leq \gamma_2^q \leq \gamma_2^c \). Therefore there exists a 0 ≤ \(p \) ≤ 1 such that \(\gamma_2 = p \gamma_2^c + (1-p) \gamma_2^{iso} \). Furthermore, \(\lim_{N \rightarrow \infty} p = 1 \).

Through our numerical investigations, we observed that \(p \) did not change by the choice of local terms; it did not depend on the covariance matrix. This leads us to prove that \(p \) was universal with respect to the choice of generic local terms and allowed us to derive an analytical formula (Fig. 2, where we take \(\beta = 1 \)).

FIG. 4 (color online). Approximating the quantum spectrum by \(H^{IE} = \sum_{i=1}^{L} Q_i^2 H_{(i,j+1)} Q_i \), where the interaction is taken to be 5-local Wishart matrices.

FIG. 5 (color online). Local terms have a random binomial distribution.

FIG. 6 (color online). Summary of isotropic entanglement. We have denoted the known classical and isotropic convolutions by \(\gamma_2^c \) and \(\gamma_2^{iso} \), respectively. IE approximates the unknown quantum convolutions \(\gamma_2^q \).

Unibersality corollary: \(p \mapsto p(N, d, \beta) \), namely, it is independent of the distribution of the local terms (see [1] for an analytical formula).

Entanglement shows itself starting at the fourth moment; further, in the expansion of the fourth moments, only the terms that involve a pair of local terms sharing a site differ [1].

Numerical results.—Here we compare our theory against exact diagonalization for various numbers of sites \(N \), local ranks \(r \), and site dimensionality \(d \). As our first two examples (Figs. 1 and 3) we take the local terms to be independent Wishart matrices: Each \(H_{i,j+1} = \Lambda^T A \), where \(A \) is a \(d^2 \times d^2 \) matrix with independent and identically distributed Gaussian random entries. The higher moments of the Wishart matrices were obtained using MOPs [15].

One would expect that \(L > 2 \) would be closer to the isotropic approximation than when the interactions are nearest neighbors because of the larger number of random parameters in Eq. (1). When the number of random parameters of the problem \((N - L + 1)d^2 \) becomes...
with Bernoulli eigenvalues:

tured by fitting only the first four moments of the QMBS
of our examples and, in particular, Fig. 5) could be cap-
and local extrema of the quantum problem (as seen in some
kurtosis how tall and skinny versus how short and fat the
width, skewness its bending away from the center, and
mean indicates the center of the distribution, variance its

equality leads us to view IE as more than a moment
matching methodology.

comparable to d^N, we indeed find that we can approximate
the spectrum with a high accuracy by taking the summands
to be all isotropic [16] (Fig. 4).

Lastly take the local terms to have Haar eigenvectors but
with Bernoulli eigenvalues: $H_{l+1} = Q_l^{\dagger} \Lambda_l Q_l$, where Λ_l
is a diagonal matrix of random eigenvalues ± 1 (Fig. 5). Here
classical treatment leads to a binomial distribution. As
expected $p = 1$ in Fig. 5 has three atoms at -2, 0, 2
corresponding to the randomized sum of the eigenvalues
from the two local terms. The exact diagonalization, how-
ever, shows that the quantum chain has a much richer
structure closer to iso; i.e., $p = 0$. This is captured quite
well by IE with $p = 0.046$.

Most distributions built solely from the first four mo-
ments would give smooth curves. Roughly speaking, the
mean indicates the center of the distribution, variance its
width, skewness its bending away from the center, and
kurtosis how tall and skinny versus how short and fat the
distribution is. It is hard to imagine that the kinks, cusps,
and local extrema of the quantum problem (as seen in some
of our examples and, in particular, Fig. 5) could be cap-
tured by fitting only the first four moments of the QMBS
Hamiltonian to a known distribution. Remarkably a one
parameter (i.e., p) interpolation between the isotropic and
classical suffices in capturing the richness of the spectra of
QMBS. Figure 6 summarizes IE.

Accuracy beyond four moments.—We illustrate in
Figs. 7 and 8 how the IE fit is better than expected when
matching four moments. We used the exact first four mo-
ments to approximate the density using the Pearson fit as
implemented in MATLAB and also the well-known Gram-
Charlier fit [17]. In [18] it was demonstrated that the
statistical mechanics methods for obtaining the DOS,
when applied to a finite dimensional vector space, lead to
a Gaussian distribution in the lowest order. Further, they
showed that successive approximations lead naturally to
the Gram-Charlier series [17]. Comparing these against the
accuracy of IE leads us to view IE as more than a moment
matching methodology.

Outlook.—Our work supports a very general principle
that one can obtain an accurate representation of inherently
exponential problems dealing with QMBS by approximat-
ing them with far less complexity. This realization is at the
heart of other recent developments in QMBS research such as
matrix product states [8,9], and density matrix renor-
malization group [10], where the state (usually the ground
state of one-dimensional chains) can be adequately repre-
sented by a matrix product state ansatz whose parameters
grow linearly with the number of quantum particles. Future
work includes explicit treatment of fermionic systems and
numerical exploration of higher dimensional systems.

We thank Peter W. Shor, Jeffrey Goldstone, Patrick Lee,
Peter Young, Gil Strang, Mehran Kardar, Xiao-Gang Wen,
and Ofer Zeitouni for discussions. We thank the National
Science Foundation for support through Grants No. CCF-
0829421 and No. DMS-1035400.

*Corresponding author.
ramis@mit.edu

Free Probability, London Mathematical Society Lecture
Note Series (Cambridge University Press, New York,
2006).
107, 040501 (2011).
[7] A. Ambainis, A.W. Harrow, and M.B. Hastings,
an alternative proof.
205116 (2008).
(2008).
(2010).
[16] R. Movassagh and A. Edelman, Talk given at The
Perimeter Institute (July 2010), http://pirsa.org/index.
php?p=speaker&name=Ramis_Movassagh.
(1975).