Density hysteresis of heavy water confined in a nanoporous silica matrix

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1100238108</td>
</tr>
<tr>
<td>Publisher</td>
<td>Proceedings of the National Academy of Sciences (PNAS)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Apr 24 14:06:45 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/69011</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Density hysteresis of heavy water confined in a nanoporous silica matrix

1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; 2Neutron Scattering Science Division and Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831; 3National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899; 4Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742; and 5Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

A neutron scattering technique was developed to measure the density of heavy water confined in a nanoporous silica matrix in a temperature-pressure range, from 300 to 130 K and from 1 to 2,900 bars, where bulk water will crystallize. We observed a prominent hysteresis phenomenon in the measured density profiles between warming and cooling scans above 1,000 bars. We interpret this hysteresis phenomenon as support (although not a proof) of the hypothetical existence of a first-order liquid–liquid phase transition of water that would exist in the macroscopic system if crystallization could be avoided in the relevant phase region. Moreover, the density data we obtained for the confined heavy water under these conditions are valuable to large communities in biology and earth and planetary sciences interested in phenomena in which nanometer-sized water layers are involved.

An experimental challenge arises because the hypothesized first-order liquid–liquid phase transition exists in a region of the phase diagram, often called “no man’s land” (5), in which bulk water cannot exist in a liquid state. One method of overcoming this difficulty is to take advantage of confinement. By confining water in a nanoporous silica matrix, MCM-41-S with 15-Å pore diameter, the homogeneous nucleation process (crystallization) can be avoided, allowing us to enter no man’s land and investigate the properties of liquid water. There is still much debate on the differences and similarities between bulk and confined water (16, 30–32); however, even if the silica matrix, with its hydrophilic surfaces, might affect properties of water other than the suppression of homogeneous nucleation, confined water in MCM-41-S is representative of many environments of interest in biological and geological sciences where similar hydrophilic interfaces are intrinsic and important (1).

In this paper, we describe an efficient method for the density determination employing the cold neutron spin polarized inelastic neutron spectrometer (SPINS) at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). Using this method, we are able to obtain sensitive measurements of the density of D2O confined in MCM-41-S as a function of closely spaced temperatures (1-K interval) from 300 to 130 K in a range of pressures from ambient to 2,900 bars, achieving a remarkably good signal-to-noise ratio. The reliability and accuracy of the method are extensively discussed in Materials and Methods. There, we also estimate the extent of possible effects related to small amounts of helium from the pressurizing system being dissolved in the water, and the layering water distributions along the pore radius direction, showing that such effects are most likely negligible. Density plays a central role in many classical phase transitions. In particular, it is the order parameter in the gas–liquid and liquid–solid transitions. Therefore, its experimental determination assumes primary importance regarding the hypothesized liquid–liquid phase transition. In making such measurements, we are seeking evidence of a remnant of a first-order liquid–liquid phase transition of water that would exist in the macroscopic system if it were possible to avoid crystallization.

Results and Discussions

We begin by explaining the purpose of our experimental procedures using Fig. 1, which shows the hypothesized phase diagram of low temperature water in the presence of a first-order HDL–LDL transition. Normally, a discontinuous change of the state

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. E-mail: sowhsein@mit.edu.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1100238108/-/DCSupplemental.
that, the cooling scan with 0.2 K/min was performed from 300 to 130 K (blue line in Fig. 1A). When the full cycle was finished, the sample was brought back to ambient temperature and pressure before measuring another pressure. The system we choose to study is water confined in long cylindrical pores of silica with a diameter of 15 Å. In such confined water, two of its three dimensions are finite, leaving one along the pore axis that can be considered macroscopic. Thus, it is intrinsically difficult to observe a phase transition in such a restricted geometry. However, we may still find a remnant of a phase transition in a confined system, which in principle could be demonstrated by its size scaling.

As described in Materials and Methods, the contrast of the neutron coherent scattering length density (SLD) of heavy water against that of the silica matrix gives rise to a strong signal in our experiment. Specifically, we observe a well-defined first Bragg diffraction peak arising from the (10) plane of a 2D hexagonal lattice of water cylinders in the grains of MCM-41-S silica matrix (Fig. 2A). Fig. 2B–D illustrates the elastic neutron diffraction intensities measured at the highest and lowest temperatures at three representative pressures. One can immediately notice that the width and the position of the Bragg peak do not change with temperature. Hence, for our purposes, the structure of the confining matrix can be regarded as unaffected by temperature. Once the data are corrected for the temperature-independent background arising from the fractal packing of the MCM-41-S crystallites (grains) and the incoherent scattering, the only temperature-dependent quantity is the height of the Bragg peak, which is proportional to the square of the difference of SLD between the heavy water and the silica matrix, and therefore a sensitive indicator of the average mass density of the confined water. We can therefore sit at the Bragg peak position and monitor the peak intensity as a function of temperature, rather than performing a scan in Q at each temperature. Although our measurements are highly precise and sensitive with regard to relative changes, there is an overall uncertainty that we estimate (from the results of repeated measurements on the same and different sample batches) to be about 0.02 g/cm³ (standard deviation) in the overall density scale, arising from uncertainties in the scattering length density of the silica matrix, and the model we have used to analyze the data. Even after careful considerations of all these sources of uncertainties, the estimation of the uncertainty of the absolute density is still a challenge because of the possible systematic errors arising from the model used in the analysis. It should be pointed out, however, that this uncertainty can be considered as a scaling factor and that the relative shape of the density curves is almost directly related to the measured scattering intensity.

Fig. 3 shows the measured density of confined D₂O with both cooling and warming scans at a series of pressures. The fact that the warming and cooling curves join at both high and low temperature ends implies that the expansion–contraction processes are reversible. Up to 1,000 bars, the density difference between the cooling and warming scans is small, which could be attributed to the temperature lag when ramping the temperature continuously. The density difference due to this reason is small and relatively independent of pressure. However, above 1,000 bars, the density difference (hysteresis) opens up progressively as the pressure is increased. We expect the magnitude of the density difference might depend on the temperature ramping rate. Considering the feasibility of neutron scattering experiments, we chose a ramping rate of 0.2 K/min. With such a slow rate, a rather uniform temperature distribution over the sample is assured, but the system may require much longer times to reach physical equilibrium after crossing a phase boundary. There seems to be a small regression of the opening up of the density difference at 2,900 bars between 190 and 210 K. Further investigations are needed to find out whether this regression is real or an experimental artifact. Nevertheless, the biggest density difference (confined D₂O) is found to be on the order of a few percent above 1,000 bars.
In comparison to the density difference between high- and low-density amorphous H$_2$O ice (about 25%, measured at much lower temperatures), the observed difference is small. The reason, to our best speculation, might be a combined effect of confinement, isotopic difference, and temperatures. Note that the accuracy of the absolute density we determined depends on the background subtraction and the scaling. However, the relative shape of the density profiles is independent of the analysis.

Another remarkable feature of the density profiles is that a clear minimum is observed at each measured pressure. The minimum temperature T_{min} decreases from 210 to 170 K as the pressure is increased from ambient to 2,900 bars. Poole et al. have proposed that the occurrence of such a density minimum is an indication of full development of a defect-free random tetrahedral network (RTN) of the hydrogen bonds (36). Below T_{min} the completed RTN shows normal thermal contraction as the temperature is further lowered. Our results therefore imply that at higher pressures, the RTN can be reached only at lower temperatures. This is a consequence of the fact that the enthalpically favorable hydrogen-bonded RTN has a lower density compared to its less developed counterpart.

We now consider whether the observed density hysteresis can be related to a liquid–glass transition of confined heavy water (37–39), as distinct from a glass transition, in which the macroscopic observables may depend on the thermal history of the system. In the literature, the glass transition temperature of bulk H$_2$O at ambient pressure is commonly accepted to be around 130 K (40, 41) and is suggested to be modified to be about 160 K (42, 43). It is expected to be even lower at elevated pressures. Moreover, the structural relaxation time of the confined H$_2$O was reported to be in the order of a few nanoseconds at around 220 K at ambient pressure (44, 45) and even faster at elevated pressures (46). Note that in our experiments we scan at 0.2 K/min, which is many orders of magnitude slower than the structural relaxation time of the confined water. Therefore, it is apparent that the maximum hysteresis we observe in confined D$_2$O at high pressures happens far above the glass transition.

To further support our conclusion, we measured the Q-dependent generalized librational density of states G(E) of H$_2$O confined in MCM-41-S at ambient pressure. Here, we measured H$_2$O rather than D$_2$O because of the dominance of incoherent scattering from hydrogen. Many properties of D$_2$O differ from H$_2$O by a shift of about a few degrees, but the topologies of their phase diagrams are expected to be similar in the region under current investigation. Hence, for our purposes, it is reasonable to use H$_2$O rather than D$_2$O in this measurement. The G(E) was measured twice using the filter analyzer neutron spectrometer (FANS) at NCNR, both times at $T = 180$ K, $P = 2,500$ bars. This state point is presumably close to the maximum density difference between the cooling and warming scans of D$_2$O confined in MCM-41-S. The sample is prepared in such a way that it approaches the same T-P point from two different paths: a cooling approach and a warming approach as explained in Materials and Methods. The measurement time is 18 h per run. As one can see from Fig. 4, the difference between the two measured G(E) is slightly larger than their error bars. The same confined water sample is also measured at 10 K, at which temperature water should have already solidified in an amorphous form for the same reason that the homogenous nucleation is suppressed. For comparison, an additional measurement of the bulk crystalline ice is performed at 30 K, 1 bar. The G(E) of crystalline ice is characterized by a sharp increase in the energy range from 65 to 70 meV, whereas that of our confined water gradually increases from 40 to 70 meV. This difference implies that water confined in MCM-41-S does not crystallize. From inspection of the spectra of confined water, one can tell that the G(E) at 180 K measured from the two different approaches slightly differs from the amorphous solid water at 10 K. Indeed, the density of states of amorphous ice and liquid water are not expected to be radically different.
hypothesized scenarios for supercooled and glassy water (SF, confined heavy water, it is relevant to review the three major profiles (a) to show the difference between crystalline and amorphous T
MCM-41-S is measured twice at P = 2,500 bars.

After examining the possibility of a liquid–glass transition in confined heavy water, it is relevant to review the three major hypothesized scenarios for supercooled and glassy water (SF, LLCP, and CPF). The observed density hysteresis, although it is not a definitive proof, is consistent with the hypothesis of the coexistence of two liquid phases of confined heavy water with different densities, at pressures larger than 1,000 bars. The temperature of the maximum density difference at each pressure is overplotted on Fig. I4. Above this locus, the confined heavy water has higher average density, implying a more HDL-like local structure, whereas below it, the confined heavy water has lower average density, implying a more LDL-like local structure. It has been shown theoretically that phase transitions in confined geometry are not sharply defined but rounded (47); hence the confinement poses additional difficulty to distinguish between SF and LLCP. Nevertheless, it may be possible in the future to determine whether the transition is truly first-order by varying the system sizes, because barriers separating phases of a first-order transition scale with system size. At this point, it is relevant to discuss the possibility of the existence of a liquid–liquid critical point in low temperature water. If such a critical point does exist as illustrated in Fig. 1, at low pressures along the extension of the coexistence line in the one phase region, a critical divergence of the response functions along with the correlation length should be observed (48). However, in confinement such as the quasi-1D pores of MCM-41-S, the correlation length is geometrically constrained by the walls of silica; hence it can grow only along the pore axis direction, making it even more challenging to identify whether there is a critical point. We did observe an increase of the maximum slope of the density profiles (proportional to the thermal expansion coefficient) from ambient pressure to 1000 bars, but the effect is very weak. Surprisingly, we observed an unexpected sudden change of slope in the density profiles (a “kink”) at the temperatures of the maximum slope at and below 1,000 bars. The kink might be related to the previously observed fragile-to-strong dynamic crossover of confined H2O (45, 49, 50), whose origin is still under debate (48, 51–53). The temperature of the kink is rather close to that of the homogeneous nucleation of bulk water (despite the difference in isotopes), which is suppressed in confinement. This coincidence forces us to consider the possibility that the observed kink arises as a manifestation of the homogeneous nucleation in confinement. More experimental evidence and discussions regarding the kink will be provided in future publications.

Materials and Methods
Sample Preparation. The MCM-41-S powder sample is made of micellar templated nanoporous silica matrices (54), consisting of grains of the order of micrometer size. In each grain, parallel cylindrical pores are arranged in a 2D hexagonal lattice with an interplane distance of 30 ± 2 Å. The MCM-41-S is synthesized by reacting preformed β-zeolite seeds [composed by tetraethylammonium hydroxide (TEAOH, Acros), sodium hydroxide (NaOH), and fumed silica (Sigma)] with decyltrimethylammonium bromide (CTAB, Acros), then transferring the mixture into an autoclave at 120 °C for 2 d. After cooling down to room temperature, the mixture was adjusted to pH = 10. Then the mixture was sealed into autoclave at 100 °C for 2 d. Solid sample is collected by filtration, washed by water, dried at 80 °C in air overnight, and then calcined at 540 °C for 8 h. The molar ratios of the reactants are SiO2 : NaOH : TEAOH : CTAB : H2O = 1 : 0.075 : 0.285 : 0.204 : 226.46. The pore diameter and pore volume are estimated to be 15 ± 2 Å and 0.50 cm3/g, respectively, with the Barret–Joyner–Halenda analysis. The pore diameter is also confirmed by fitting the elastic diffraction profile.

The dry MCM-41-S sample is then hydrated by exposing to water vapor in a closed container at room temperature. The achieved full hydration level of D2O corresponds to a fractional mass gain of 0.5 (mass of absorbed water/mass of dry MCM-41-S). We performed an experiment of the surface functionalization of the Si-OH in MCM-41-S to determine the surface functional group Si-O-Si(CH3)3 to the saturation monolayer level. The surface density of Si-OH is determined to be 1.16 groups/nm2 through the chemical analysis of the carbon content. After the subtraction of the Si-OH on the external surface of the MCM-41-S grain (≈10%), we estimated H2O/Hwater = 0.065. Because the Si-O-H bonds are very strong and are attached on rigid surfaces, the migration of silanol groups on the surface is not likely. Therefore, in the temperature range we worked on, we believe that the
interaction between waters and surface Si-OH represent a contribution that is “constant” and water-like. That is, the hydrophilic silanol surface provides a small and constant perturbation to the confined water. It is known that near the hydrophilic surface such as silica, there is a layer of denser water, whereas in the center of the pores water distributes uniformly (32, 55–61). The behavior of water near a hydrophobic surface may be different because of the lack of compensating hydrogen bonds from the surface and therefore requires more careful investigations (10, 58–60, 62). In the pores of MCM-41-S, the long-range ice-like order cannot develop; thus, the homogeneous nucleation process is inhibited. Differential scanning calorimetry was routinely performed to make sure of (i) no freezing of bulk water and (ii) no freezing of confined water occurs down to 130 K.

SPINS Experiment. In this experiment, we attempt to measure the average density of D$_2$O confined in the pores of MCM-41-S. The measurement was carried out at the NCNR using the cold neutron triple-axis spectrometer SPINS, operated in an elastic scattering mode with incident neutron energy of 3.7 meV. The D$_2$O hydrate MCM-41-S sample was loaded in the NCNR pressure cell HW-02 with a sample volume of 1.5 cm3. D$_2$O has a considerably different coherent neutron scattering length density from that of the silica matrix, giving rise to a well-defined Bragg peak. Pressure was applied with helium gas (see SI Text). The sample temperature was controlled using a top-loading closed-cycle refrigerator. A small amount of helium was used to ensure thermal exchange between the sample and the wall of the refrigerator, whose temperature was controlled with accuracy better than 0.01 K. The density data are reported as a function of the sample temperature, which is restricted to a few percent above the sample supercooling limits.

The diffraction pattern of our sample consists of three parts: (i) the low-Q scattering of the fractal packing of the grains, which follows a power law Q dependence; (ii) a Bragg peak at around 2π d coming from the 2D hexagonal internal structure of the grains; and (iii) the Q-independent incoherent background. The elastic neutron diffraction was performed at the lowest and highest temperature at each pressure. Note that the only temperature dependence is the amplitude of the Bragg peak (at 0.21 Å$^{-1}$), which is directly related to the water density. Therefore, we sit at the peak position, measuring the scattering intensity I(Q) = I_{scale} as a function of temperature while ramping the temperature from 300 to 130 K at 0.2 K/min. This ramping rate is slow enough to allow the sample to reach a uniform temperature.

Data Analysis. In our experiment, we used long wavelength neutrons (Å = 4.7 Å) and focused on the small-angle region (Q from 0.15 Å$^{-1}$ to 0.35 Å$^{-1}$). In such a configuration, neutrons view the water and the silica matrix as continuous media and only the long-range (>1 Å) order is probed. The short-range water–water, silica–silica, and water–silica correlation peaks are located at Q values larger than 1.5 Å$^{-1}$, which are beyond the Q range we studied and thus will not concern our measurements. In a small-angle diffraction experiment, the neutron scattering intensity distribution I(Q) is given by $I(Q) = N/\langle \Delta \rho \rangle^2 \mathcal{P}(Q) \langle \rho \rangle$ where N is the number of scattering units (water cylinder), $\langle \rho \rangle$ is the environment, $\mathcal{P}(Q)$ is the normalized particle structure factor (or form factor) of the scattering unit, and $\langle \rho \rangle$ is the intercylinder structural factor of a 2D hexagonal lattice (83). The SLD of the scattering unit ρ_{conf} is proportional to its mass density ρ_{m} as $\rho_{\text{conf}} = \rho_{\text{m}} / N_{\text{A}}$, where $a = \frac{2 \pi}{\sqrt{3} \sqrt{2}} a_{\text{m}}$, N_{A} is Avogadro’s number, M is the molecular weight of D$_2$O, and b_{O} is the coherent scattering length of the O atom in the scattering unit. The SLD of the silica material has been determined by a separate contrast matching experiment by hydrating the sample with a different ratio of D$_2$O and H$_2$O. When the molar ratio is $[D_2O] : [H_2O] = 0.66:0.34$, the Bragg peak is matched out. Compared to water, silica is a rather rigid material. Its thermal expansion coefficient is in the order of 10$^{-5}$/K compared to 10$^{-5}$/K of water. As shown in Fig. 2, the position and the width of the Bragg peaks do not change with temperature, indicating the structure change of the confining matrix is negligible in the measured temperature range. Therefore, based on the above relations, we find that all the variables in the expression for $I(Q)$ are independent of temperature except for ρ_{conf}. Hence we are able to determine the density of confined D$_2$O by measuring the temperature-dependent neutron scattering intensity $I(Q)$ at the Bragg peak.

The form factor $\mathcal{P}(Q)$ of a long (QL = 2x) cylinder is given by $\mathcal{P}(Q) = \int h(Q) \mathcal{P}(Q)$, where L is the length and $\langle \rho \rangle$ the average density of the cylinder, respectively, and $h(x)$ is the first-order Bessel function of the first kind. The structure factor $S(Q)$ can be well approximated by a Lorentzian function. Therefore, the measured neutron scattering intensity is expressed as

$$I(Q) = n_i \frac{\rho_{\text{conf}}}{\rho_{\text{conf}} - \rho_{\text{m}}} \left(\frac{2J_1(QR)}{QR} \right)^2 \left(\frac{1}{Q^2 + \Gamma} \right) + B \cdot Q^{-\beta} + C.$$

where Γ is the FWHM, and C is the Q-independent incoherent background. The approximation of the Bragg peak by a Lorentzian function is purely empirical. The broadening of a diffraction peak comes from many factors, such as the imperfection of the lattice, the instrument resolution, etc. But the choice of the peak formula form will not affect the extraction of the density of water, which merely depends on the peak height.

By fitting the neutron scattering intensity with the above model at the highest and lowest temperature at each pressure, the parameters β, ρ_{conf}, and C are obtained. We are thus able to subtract the “background” (the second and third term in the above equations) with confidence. We determine the last unknown temperature independent constant A by normalizing the density of the highest temperature at each pressure to that of the bulk D$_2$O taken from NIST Scientific and Technical Database (NIST Chemistry WebBook http://webbook.nist.gov/chemistry/density).

Some of the authors have previously used a similar small-angle neutron scattering (SANS) to determine the density of D$_2$O in MCM-41-S at ambient pressure (8, 64). A similar method has also been used to measure the density of confined toluene (65) and benzene (66). Recently, the reliability of this method to determine the density of water confined in MCM-41-S has been criticized because of a possible layering effect of water in the pores (67). However, the scenario hypothesized in ref. 67 assumes the existence of voids in the hydrated pores; this possibility is not consistent with our measurement of a contrast matched sample (D$_2$O); $\langle H_2O \rangle = 0.36:0.34$) in which the diffraction peak is almost completely masked and no evidence of the scattering from the voids can be recognized. The hypothesis of the existence of voids in the hydrated pores originates from a layering of density profiles suggested in ref. 67, which implies that water can penetrate into the wall of MCM-41-S. The problem of whether there is void (micropores) on the wall of MCM-41 has been investigated by the gas adsorption technique many times since 1993. The great majority concluded that MCM-41 materials do not have any microporosity. Recent experiments suggest that MCM-41 is exclusively mesoporous with no water penetration into the wall (68). On the basis of these results we believe that the layering density profiles suggested in ref. 67 is unrealistic and inconsistent with the scattering pattern of our measurements.

The effect related to a nonuniform distribution of water in the pore will be considered in the $P(Q)$ term (see SI Text). It is generally believed that near the hydrophilic surface such as silica there is a 2- to 3-Å layer of water with about 10% higher density, whereas in the center of the pores water distributes uniformly (32, 55–61). When we compare the normalized particle structure factors of this core-shell cylinder and its average, we find that at around the Bragg peak position (Q = 0.2 Å$^{-1}$), the difference of the $P(Q)$ is about 5%. When compared to the observed 40% change of the SLD, one realizes that the change of density profile itself would not be enough to contribute to the overall change of the SANS intensities. The small fluctuations at the sub-Å scale do not provide further information for density, which is a macroscopic quantity. It should be emphasized that small-angle neutron scattering has a “low” spatial resolution and therefore the details of the SLD will have no appreciable effect on the collected data. Therefore, the nonuniform distribution of the water in the pores would account only for a minor correction to the change of the intensity of the Bragg peak, which is mainly influenced by the contrast between the average SLD in the pore and the silica matrix (ρ_{conf})2. The small-angle scattering measurements allow us to determine the average density of fluids in the pores as previously performed by Alba-Simionesco and co-workers (65, 66).

FANS Experiment. The inelastic neutron scattering (INS) experiment was performed using the FANS at the NCNR. The same MCM-41-S sample was hydrated with H$_2$O following the same procedure described previously with D$_2$O. Then the hydrated sample was loaded to the identical pressure cell used in the SPINS experiment. The temperature was controlled using a closed-cycle refrigerator with accuracy better than 0.1 K. The Cu(220) monochromator was used in order to access energy transfers between 30 and 250 meV. The measured INS spectra collected on FANS are representative, within
certain approximations, of the generalized libration density of states $g(E)$ of the water confined in MCM-41-S (69).

ACKNOWLEDGMENTS.

The authors are indebted to the in-depth discussions of the content of this paper with Professors David A. Tallmadge, H. Eugene Stanley, and Pablo G. Debenedetti. Y.Z. acknowledges the support from the Clifford G. Shull fellowship at Oak Ridge National Laboratory. Research at Massachusetts Institute of Technology is supported by Department of Energy Grant DE-FG02-90ER45429, at National Taiwan University by Taiwan National Science Council Grant NSC96-2739-M-213-001. This work utilized facilities supported in part by the National Science Foundation under Agreement DMR-0454672. We acknowledge the support of NIST, US Department of Commerce, in providing us with the neutron research facilities used in this work. Identification of a commercial product does not imply recommendation or endorsement by the NIST, nor does it imply that the product is necessarily the best for the stated purpose.