The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1063/1.3502594</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Institute of Physics</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/69035</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
</tbody>
</table>
| Detailed Terms | http://creativecommons.org/licenses/by-nc-sa/3.0/`
The effect of excess atomic volume on He bubble formation at fcc-bcc interfaces

M. J. Demkowicz1,∗, D. Bhattacharyya2, I. Usov3, Y. Q. Wang3, M. Nastasi2, A. Misra2

1Materials Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139
2Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545
3MST-8: Structure-Property Relations Group, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract
Atomistic modeling shows that Cu-Nb and Cu-V interfaces contain high excess atomic volume due to constitutional vacancy concentrations of ~5% at. and ~0.8% at., respectively. This finding is supported by experiments demonstrating that a ~5-fold higher He concentration is required to observe He bubbles via through-focus transmission electron microscopy at Cu-Nb interfaces than in Cu-V interfaces. Interfaces with structures tailored to minimize precipitation and growth of He bubbles may be used to design damage-resistant composites for fusion reactors.

Unlike pure metals1, some materials contain constitutional vacancies that are thermodynamically stable at arbitrarily low temperature, for example grain boundaries (GBs) in ceramics2 and semiconductors3, compounds with wide phase fields like NiAl4, and certain metal hydrides5. We use atomistic modeling to show that Cu-Nb and Cu-V interfaces contain high constitutional vacancy concentrations. Indirect experimental verification of this prediction is obtained by measuring the critical He concentration at which bubbles become detectable at these interfaces in transmission electron microscopy (TEM).

∗Corresponding author: demkowicz@mit.edu
All the heterointerfaces in magnetron sputtered Cu-Nb and Cu-V multilayers form along close packed fcc and bcc planes and purely in the Kurdjumov-Sachs (KS) orientation relation: a $<110>$ direction in the (111) fcc interface plane is parallel to a $<111>$ direction in the (110) bcc interface plane, as in Fig. 1.a). Figure 1.b) shows a plan view of the Cu-Nb interface in a model that was relaxed using a specially constructed embedded atom method (EAM) potential. While not strictly periodic, this interface contains a quasi-periodic pattern of sites where a Cu and Nb atom are nearly “on top” of each other. These sites occur at the intersections between two sets of parallel interface misfit dislocations, as elaborated elsewhere.

Figure 1.c) demonstrates the effect of removing an atom (creating a vacancy) near a misfit dislocation intersection in the interface Cu plane. The formation energy of the unrelaxed vacancy is 1.5eV, comparable to fcc Cu (1.3eV). Upon annealing for 10ps at 300K followed by energy minimization, the vacancy reconstructs into the configuration in Fig. 1.d) and its formation energy drops to -0.13eV. Thus, the structure in Fig. 1.d) is energetically favorable to the vacancy-free interface in Fig. 1.b) and the reconstructed vacancy may be viewed as a constitutional vacancy.

To find the ground state interface, we iteratively add vacancies until no negative formation energy sites remain. For Cu-Nb, this structure is shown in Fig. 1.e). It has ~ 25 mJ/m2 lower energy than that in Fig. 1.b) and contains 5%at. constitutional vacancies concentrated near misfit dislocation intersections, i.e. ~ 2.5 vacancies per intersection. A similar calculation for a Cu-V interface also shows ~ 2.5 vacancies per intersection and an energy reduction of ~ 3.4 mJ/m2. Due to the differing lattice parameters of Nb and V, however, the areal density of misfit dislocation intersections in Cu-V is smaller, giving an overall ~ 0.8%at. constitutional vacancy concentration, shown in Fig. 1.f).

These theoretical predictions may be indirectly verified by quantifying the He solubility limits at Cu-Nb and Cu-V interfaces. In perfect crystalline metals, formation energies of He interstitials are close to self-interstitial formation
energies10,11. Consequently, He solubility is below one part per trillion even near the melting temperature12. He therefore preferentially occupies high excess volume sites like vacancies and vacancy clusters. Due to their constitutional vacancies, both Cu-Nb and Cu-V interfaces have high excess volume (verified by Voronoi tessellation13) and thus may exhibit elevated He solubility compared to perfect crystalline metals. Furthermore, the solubility limit should be higher in Cu-Nb than in Cu-V interfaces.

Experimental measurement of He solubility at interfaces poses serious challenges: both local He concentration and whether He has precipitated out must be determined. Due to high solubility, the He concentration needed to nucleate bubbles may be increased compared to the bulk, meaning that He could be present in supersaturation without precipitating. Furthermore, TEM might not be able to resolve the smallest, incipient clusters formed in the early stages of precipitation. Thus, rather than attempt a precision measurement of He solubility itself, we measured the critical He concentration at which bubbles are unambiguously detected via through-focus imaging in TEM: a quantity that, like solubility, should scale with interface excess volume.

Two Cu-Nb multilayers were magnetron sputtered onto Si substrates, as in previous studies14: one with 335nm overall thickness and 5.6nm-thick layers and another 340nm-thick with 2.8nm layers. These samples were implanted at room temperature with 35keV He3 with 10^{17}/cm2. To reduce channeling, samples were tilted 7 degrees from the incident ion beam. He3 concentration as a function of depth was measured using nuclear reaction analysis (NRA), in which atoms in an incident deuterium beam react with implanted He3 to produce alpha particles and protons. NRA provides substantially higher depth resolution than methods like elastic recoil detection (ERD) or secondary ion mass spectrometry (SIMS)15. He3 depth profiles were computed from alpha particle energies using SIMNRA16. The stopping power of implanted He3 was neglected in the analysis. The concentration uncertainty near
the surface, ~0.2/nm3, was used as a concentration uncertainty estimate throughout the sample depth. The detection limit was ~0.5/nm3.

He bubbles in 100nm foils taken from the implanted samples were examined using through-focus bright field (BF) imaging in TEM. Figure 2 shows an under focused BFTEM image where bubbles appear as white dots (dark in over focus, not shown). The diameters of the smallest detectable bubbles were estimated at ~1nm from images at different defocus using the approach outlined in17. In the 5.6nm layer sample numerous bubbles formed at depths containing high He3 concentration with the number decreasing in the low concentration tails. Visual inspection shows no bubbles below a critical depth of 215±10nm, even though the measured He3 concentration there is 1.4±0.6/nm3 (~1.7at.%), as inferred by comparing the TEM image with the measured concentration profile in Figure 2. At greater depths the He3 concentration is too low to form the ~1nm bubbles resolvable elsewhere in the sample. The critical concentration 1.4±0.6/nm3 is significantly higher than the (immeasurably small) concentration required to observe bubbles in pure fcc and bcc metals, implying that all the implanted He above the critical depth is trapped at interfaces.

Figure 2 also shows that He bubbles did not form within ~25nm of the free surface, even though the He3 concentration there exceeded 1.4±0.6/nm3. This higher critical concentration may be due to trapping of implanted He at radiation-induced vacancies. Such He-vacancy complexes are much less mobile than interstitial He11 and may prevent He from reaching nearby interfaces, especially in multilayers with thick individual layers. The concentration of radiation-induced vacancies decreases with depth faster than that of He, suggesting the critical concentration measured at the end of the implantation range, albeit possibly still an overestimate, better indicates the amount of He trapped at interfaces than the concentration near the free surface.
Further modeling and implantation studies with controlled He/dpa ratios as well as improved TEM techniques to reliably detect He clusters will help resolve the above issue, but additional support for our interpretation may be obtained from the 2.8nm layer sample, whose interface area per unit volume is twice that of the 5.6nm layer sample. If all implanted He above the critical depth is trapped at interfaces, the critical He concentration needed to image bubbles in the 2.8nm layer sample should be twice that of the 5.6nm layer sample, i.e. 2.8±1.2/nm³. Indeed, measurements like that in Figure 2 show no He bubbles in the 2.8nm multilayer above a critical depth of 195±10nm, corresponding to a He concentration of 3.3±0.6/nm³, within the uncertainty range of the predicted value.

For samples of layer thicknesses t, the He concentration per unit interface area c_i can be calculated as c_i=tc_c, where c_c is the critical He concentration per unit volume, measured above. Averaging the results from the 5.6nm and 2.8nm multilayers, a critical Cu-Nb interface He concentration to resolve bubbles of 8.5±2.5/nm² is obtained. Similar experiments conducted on magnetron sputtered Cu-V multilayers gave a critical He concentration of ~1.9/nm² for Cu-V interfaces\(^{18}\): a factor of ~4.5 smaller than in Cu-Nb interfaces, in good agreement with the prediction based on constitutional vacancy concentrations obtained from atomistic modeling.

Materials that contain interfaces with high excess atomic volume may find applications in new structural materials for nuclear fusion. As much as 1500 appm He may be implanted at 10 appm/dpa in the plasma facing walls of tokomaks\(^{19}\). The subsequent nucleation of He bubbles at GBs promotes void growth and leads to embrittlement\(^{20}\). At large He concentrations and elevated temperatures, bubbles can grow into voids and blisters\(^{21}\).

One way to address this problem may be to trap He at nanoscale inclusions, e.g. YTiO clusters in ODS steels\(^{22}\). Another may be to synthesize materials containing interfaces with increased resistance to He-assisted degradation. He bubble formation and He-assisted void growth may be delayed at interfaces with high He
solubility, allowing such materials to remain in service longer than existing structural alloys. Furthermore, if these interfaces can promote He outgassing—as demonstrated in Cu-Nb23—then He-assisted degradation may be further delayed. The distribution of free volume at fcc-bcc heterophase interfaces likely depends on the orientation relation and the habit plane orientation. Thus, it may be possible to tailor interface-He interactions by adjusting the distribution of interface constitutional vacancies via judicious selection of interface crystallography to control the configuration of misfit dislocation intersections9.

We thank R. R. Greco for carrying out He3 implantations, P. Dickerson for TEM sample preparation, and R. G. Hoagland and G. R. Odette for insightful discussions. This research was funded by the Center for Materials in Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number 2008LANL1026. Support from the LANL LDRD program (NRA measurements) is also acknowledged.

Figures
Figure 1: (a) Cu-Nb bilayer in the experimentally-observed crystallography6, (b) quasi-periodic pattern formed by interface Cu and Nb planes, (c) unrelaxed interface vacancy, (d) relaxed interface vacancy, (e) ground state Cu-Nb interface with 5\%at. constitutional vacancies, (f) ground state Cu-V interface with \~{}0.8\%at. constitutional vacancies. Atoms colored red have less than 6 nearest neighbors in the interface Cu plane.
Figure 2: BFTEM image at ~1µm under focus of He3-implanted Cu-Nb multilayers with 5.6nm-thick layers (top) and the corresponding He concentration profile measured by NRA (bottom). No bubbles are seen below a critical depth of 215±10nm (indicated by dashed lines), corresponding to a He concentration of 1.4±0.6/nm3.

References

M. Mayer, SIMNRA User’s Guide (Max-Planck-Institut fur Plasmaphysik, Garching, Germany, 1997).