Laminar differences in gamma and alpha coherence in the ventral stream

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1011284108</td>
</tr>
<tr>
<td>Publisher</td>
<td>Proceedings of the National Academy of Sciences (PNAS)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Apr 02 12:05:01 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/69051</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
A

natomical and physiological studies have characterized the
different inputs to and efferent inputs from neurons in dif-
f erent layers of visual cortical areas. However, physiological
distinctions across layers, such as synchronous interactions, have
not been fully identified. We first came across laminar differences
in synchrony serendipitously. Gamma-band synchrony, measured either by spike-field or spike-spike interactions across
multiple electrodes, is a prominent feature in visual cortex, and
several studies have shown that attention enhances gamma-band
synchrony in area V4 (1–5). In our first recordings in area V1, we
also found prominent gamma-band synchrony, although the
effects of attention, if any, were much smaller than what we
previously found in V4 (1). However, in our first recordings in
area V2 in the lunate sulcus, we were surprised to find hardly any
gamma-band synchrony. We initially had no explanation for why
V2 should be so different from V1 and V4. Probing at greater
electrode depths led to the discovery that V2 cells do show
gamma-band synchrony but only at those deeper electrode
depths. Because V2 in the lunate sulcus bends under V1, layer 6
cells are closer to V1 on the occipital surface than are layer 1
cells. Thus, our deeper electrode recordings were actually lo-
cated in the more superficial layers of V2. Because we typically
studied the first responsive cells found in any penetration, this
must have strongly biased our first recordings in V2 to the deep
layers, and these deep layers apparently had little gamma-band
synchrony. Conversely, the same tendency to sample the first
responsive cells on a penetration would have resulted in a strong
bias to record cells in the superficial layers of V1 and V4, from
which we recorded directly on the cortical surface. This possi-
bility led us to test whether the deep layers of V1 and V4 were
also lacking in gamma-band synchrony, as in V2.

In addition, we examined whether there are any laminar dif-
f erences in attentional effects on synchrony, because the different
layers play very different roles in sending information to other
areas and have different cortical and subcortical projections.
Several lines of research have shown that directed attention to
a cued location leads to improved processing of visual stimuli at
that location and attenuated processing of competing stimuli
presented elsewhere (6). In visual cortex, attention enhances
neuronal firing rates (7–11), reduces variance [e.g., decreased
Fano factor and noise correlation (12–14)], and enhances gamma
frequency synchrony (1, 3), all of which are thought to increase
the signal to noise for attended signals and to increase their im-
 pact on neurons in downstream areas (15–17). There is also recent
progress in understanding the nature of some of the attentional
feedback to visual cortex from the frontal eye fields and parietal
cortex (18), which appears to enhance firing rates and synchronize
activity in the gamma range in visual cortex, at least in V4 and/or
middle temporal area (MT) (19–21). However, any laminar differ-
ences in the effects of attention in visual cortex remain unknown.

Results

We recorded from a total of 226 small clusters of cells (multi-
units, termed cells for convenience) and local field potentials
(LFPs) on four to eight nearby electrodes in each recording
session. Total cells recorded in the superficial layers of V1, V2,
and V4 were 67, 13, and 73, respectively, and the corresponding
totals in the deep layers were 14, 47, and 12. The superficial V4
cells included 47 cells reported in previous studies of coherence
and attention in V4 (1), and individual cells from recordings in
all three areas were included in a previous study of attentional
effects on firing rate latencies (22). Cells were recorded in two
monkeys performing a task of directed spatial attention (Fig. L4).

Coherence Differences Across Layers. The most striking differences
in neuronal response measures in superficial vs. deep layers were
in spike-field coherence (SFC). Fig. 1 shows the SFC spectra for
attend-in and attend-out conditions averaged from the pop-
ulation of recordings in all three areas. For each spike-field pair,
the spike and LFP signals were taken from separate electrodes
recorded simultaneously and located in the same layer (super-
ficial or deep). Independent of attention, the superficial layers of
all three areas showed a strong peak in gamma, from about 40–
60 Hz (Fig. 1 B–D).

By contrast, the SFC in the deep layers was almost the mirror
image of the pattern in the superficial layers (Fig. 1 E–G).
Coherence in gamma was minimal; there was only a slight bump in
gamma in the deep layers in V1 and V4 and no gamma bump at
all in V2. Moving into the lower frequencies, coherence rose
sharply beginning at about 35 Hz. Coherence peaked at about
10 Hz, in the alpha range, in V1 and V2. For convenience, we
will refer to the observed 6- to 16-Hz band as “alpha,” although it extends from high theta, through alpha, to low beta. Coherence below 4 Hz, not shown in Fig. 1, was often phase-locked to the drifting grating frequency, and it was slightly enhanced by attention in V4. In the superficial layers of all three areas, SFC rose steadily in moving down from 20 to 4 Hz, but there was no peak in alpha (there was even a suggestion of a trough in alpha) and the magnitude of coherence in alpha did not reach the magnitude of coherence at gamma. The differences between the superficial and deep layers in gamma-band vs. alpha-band SFC can also be seen in Fig. 2A, which shows the distribution of gamma- and alpha-band SFC in the superficial and deep cortical layers for all recording sites in area V4. Fig. S1 shows the results for areas V1 and V2. In some layers and areas, we obtained data primarily from one or the other monkey; however, a similar pattern of effects was observed across layers and areas (Fig. S2).

A further distinction between layers was revealed in the effect of visual stimulation on alpha-band coherence (Fig. S3). For the superficial layers, there was a significant decrease in alpha on stimulus onset (compared with the prestimulus baseline) for all

Fig. 1. Attentional modulation of SFC in areas V1, V2, and V4. (A) On alternating blocks of trials, monkeys were cued to attend to a moving grating either inside (top) or outside (bottom) of the recorded neuron’s RF. Red traces represent SFC in each area, with attention directed INTO the neuron’s RF. Blue traces represent SFC with attention directed OUT of the RF. The magnitude of coherence as a function of frequency is shown for superficial recordings (B–D) and deep recordings (E–G) for areas V1 (B and E), V2 (C and F), and V4 (E and G). Shaded areas represent SEM.

Fig. 2. Laminar effects in area V4. (A) Distribution of coherence in gamma- and alpha-bands for superficial and deep recordings in area V4. Superficial layer recordings (red) demonstrated stronger gamma-band coherence, whereas deep layer recordings (blue) demonstrated stronger alpha-band coherence. (B) Attentional effects across superficial and deep layer recordings in area V4. Contrast indices (In – Out/In + Out) of the effects of attention were calculated for several measures. Superficial recordings are shown in black, and deep recordings are shown in gray. *P < 0.05; **P < 0.01. All comparisons are sign tests, relative to zero.
three areas [V1: \(t(225) = 5.97, P < 0.001; \) V2: \(t(31) = 3.52, P < 0.01; \) V4: \(t(224) = 15.54, P < 0.0001 \)], consistent with previous reports (3). By contrast, the deep layers of areas V1 and V2 showed a significant increase in alpha-band SFC at stimulus onset [V1: \(t(23) = -3.29, P < 0.01; \) V2: \(t(124) = -23.09, P < 0.0001 \)]. In the deep layers of V4, there was a small decrease in alpha after stimulus onset, which reached statistical significance \(t(42) = 2.16, P < 0.05 \).

Attention Effects on Coherence Across Layers. The difference in gamma- vs. alpha-band SFC between layers was paralleled by differences in the effects of attention on coherence. Whereas gamma-band coherence in the superficial layers was enhanced with attention, alpha-band coherence in the deep layers was suppressed with attention. To examine the distribution of these effects across all spike-field pairs, we calculated a contrast index of attentional effects for each pair in both the alpha- and gamma-frequency bands (Fig. 2B and Fig. S4). The attention index was computed according to the following formula within each frequency band: attend IN \(\sim \) attend OUT/attend IN + attend OUT for all spike-field pairs. Across the population of superficial recordings in each visual area, gamma-band (40–90 Hz) SFC was increased with attention. In V1, gamma-band SFC was increased by a median of 2% with attention, although it did not reach significance (1.31 increases, 95 decreases; paired sign test, \(P = 0.06 \)). When we analyzed the V1 attentional effect in each monkey separately, there was a significant effect of attention on gamma-band SFC in monkey M1 (79 increases, 47 decreases; paired sign test, \(P < 0.01 \)) but not in monkey M2 (52 increases, 48 decreases; paired sign test, \(P > 0.1 \)). In V2, gamma-band SFC was increased by a median of 4% with attention (26 increases, 6 decreases; paired sign test, \(P < 0.001 \)), and in V4, gamma-band SFC was increased by a median of 8% with attention (198 increases, 27 decreases; paired sign test, \(P < 0.001 \)). By contrast, there was no significant effect of attention on gamma coherence in the deep layers of any of the three areas \((P > 0.05 \) for all values).

In contrast to the enhancement of gamma by attention in the superficial layers, attention reduced alpha coherence in the deep layers. Across the population of deep recordings in areas V2 and V4, alpha (6–16 Hz) SFC was significantly decreased with attention. In V2, alpha-band SFC was decreased by a median of 5% with attention (28 increases, 97 decreases; paired sign test, \(P < 0.001 \)), and in V4, alpha-band SFC was decreased by a median of 10% with attention (9 increases, 34 decreases; paired sign test, \(P < 0.001 \)). In the deep layers of V1, alpha SFC was decreased by a median of 3% with attention, but this decrease failed to reach significance (9 increases, 15 decreases; paired sign test, \(P > 0.1 \)). Among the superficial layers, there was a significant decrease in alpha coherence with attention only in area V4 (median = 4% decrease; 89 increases, 136 decreases; paired sign test, \(P < 0.05 \)).

We also examined spike-spike coherence (SSC) in the superficial and deep layers of all three areas, and the results, shown in Fig. S5, paralleled the results from analyzing SFC. Specifically, the superficial layers showed a large gamma peak in SSC, which was significantly enhanced by attention in V2 and V4 (V2: 7 increases, 2 decreases, paired sign test, \(P < 0.05; \) V4: 67 increases, 33 decreases, paired sign test, \(P < 0.001 \)), whereas the deep layers showed a large low-frequency peak in alpha frequencies, which was significantly desynchronized by attention in all three areas (V1: 1 increase, 11 decreases, paired sign test, \(P < 0.001; \) V2: 10 increases, 33 decreases, paired sign test, \(P < 0.001; \) V4: 4 increases, 13 decreases, paired sign test, \(P < 0.01 \)).

Other Effects of Attention Across Layers. In contrast to the consistent differences in SFC and SSC between superficial and deep layers, there were smaller and less consistent differences in LFP power in the superficial and deep layers. As shown in Fig. 2B and Fig. S4, in the superficial layers of V2 and V4, there was a small but significant increase in gamma power with attention (V2: 9 increases, 4 decreases, paired sign test, \(P < 0.05; \) V4: 51 increases, 22 decreases, paired sign test, \(P < 0.001 \)). There were no differences across attention conditions in the gamma power of the deep layers \((P > 0.05 \) for all values). By contrast, there was a decrease in alpha power with attention in the deep layers of areas V1, V2, and V4 (V1: 3 increases, 11 decreases, paired sign test, \(P < 0.05; \) V2: 11 increases, 36 decreases, paired sign test, \(P < 0.001; \) V4: 1 increase, 11 decreases, paired sign test, \(P < 0.001 \)), as well as in the superficial layers of V2 and V4 (V2: 1 increase, 12 decreases, paired sign test, \(P < 0.001; \) V4: 9 increases, 64 decreases, paired sign test, \(P < 0.001 \)).

The difference in attentional effects on coherence in the superficial and deep layers raised the question of whether there were other differences in the effects of attention across layers. Fig. 2B and Fig. S4 compare the alpha/gamma contrast index found in the superficial and deep layers with comparable contrast indices for attentional effects on alpha and gamma coherence, LFP power, firing rates, and the cross-trial “noise correlation.” As described above, there was a very large difference in gamma and alpha coherence between layers. By contrast, attentional effects on firing rates were not significantly different across layers, but there was a significant effect of area with the largest effects in area V4 (two-way ANOVA, main effect of area \(F(2,222) = 9.89, P < 0.001; \) main effect of layer \(F(1,222) = 0.10, P > 0.05 \)). Noise correlation refers to the correlation in firing rates recorded across pairs of electrodes measured over trials, and two recent studies have shown that noise correlation is significantly reduced with attention in area V4 (13, 14). We calculated the Pearson correlation for all pairs in all layers; as shown in Fig. 2B and Fig. S4, there was no significant difference in noise correlations across layers. However, although the largest effects were in area V4, a two-way ANOVA revealed no significant main effects of area or layer \([\text{main effect of area } F(2,235) = 1.07, P > 0.05; \text{ main effect of layer } F(1,235) = 0.04, P > 0.05] \). Thus, despite the large difference in SFC and SSC between superficial and deep layers, attentional effects on firing rates and noise correlation seemed comparable across layers.

Discussion

The laminar differences in synchrony described here are roughly consistent with a laminar model of attention proposed by Grossberg (23). Although prior studies have not localized gamma- and alpha-band coherence to the superficial and deep layers under the conditions we have studied here, data from slice recordings and anesthetized rat recordings have long suggested that alpha synchrony derives from pyramidal cells in layer 5 (24–26). Data from translaminar recordings in the visual cortex of dogs suggested that layer V cells are the cortical origin of the alpha rhythm, based on a phase reversal in this rhythm at about 1,100 \(\mu \)m below the cortical surface (27). A recent study in awake monkeys using translaminar electrodes also localized alpha synchrony primarily to the granular and infragranular layers in areas V2 and V4 (28). It is thought that these layer 5 pyramidal cells have two inward currents, known as the \(h \) and \(T \) currents, which have time constants consistent with alpha. Modeling studies have shown that such a cell, when coupled with a fast-spiking inhibitory neuron, will exhibit sustained alpha oscillations (29), although recent whole-cell recordings suggest that the alpha frequency oscillations of layer 5 cells derive mainly from excitatory inputs (26). Certain thalamic cells also exhibit alpha-band synchrony, and a thalamocortical anatomical loop may also play a role in generating cortical alpha (30).
slices induces gamma-band oscillations only in cells in superficial layer slices, whereas low Mg (which stimulates NMDA receptors) induces alpha-band oscillations only in cells in layer 5 slices (25). A study of rat somatosensory cortex slices showed that kainate induced gamma oscillations in the superficial layers, beta2 oscillations in the deep layers, and mixed frequencies in layer 4 (31). The cat visual cortex also contains a class of pyramidal and stellate cells termed “chattering cells,” which are localized to layers 2/3 and fire with high-frequency bursts in the gamma-frequency range (32, 33). A recent study in awake monkeys using translaminar electrodes also reported a predominance of gamma activity in the LFP of superficial layers in area V1 (34).

The superficial and deep layers not only had different peak coherence frequencies, but these peaks showed opposite effects of attention. Gamma coherence was enhanced by attention, whereas alpha coherence was reduced with attention, and both of these effects have been reported in prior attentional studies in area V4 (1, 3, 21). The enhancement of gamma synchrony with attention has been proposed to increase the impact of attended signals on downstream neurons in visual cortex as a result of the finite synaptic integration time of cortical neurons (1). Indeed, attention appears to enhance gamma synchrony across cortical areas (20, 21), at least for monosynaptically connected cortical areas (35). A desynchronization of alpha synchrony recorded with electroencephalography has long been associated with attention (36–39), and increased alpha power in the EEG or magnetoencephalogram predicts errors in perception tasks (40–42) and has been suggested to reflect an active attentional suppression mechanism (43–45).

We did not find the same desynchronization of coherence with attention at frequencies below 4 Hz. In fact, there was a small enhancing effect of attention on these low frequencies in V4. By contrast, a recent study reported strong desynchronization of frequencies below 5 Hz with attention in V4 (14). The most likely explanation for this difference is that our stimuli were gratings with a drift rate of 1–2 Hz, and there was a strong increase in intertrial coherence at low frequencies that began at stimulus onset. Thus, the temporal structure of our stimulus may have prevented any desynchronization of low-frequency coherence with attention. This explanation would also be consistent with recent results showing a strong increase in low-frequency coherence in V4 in an attentional paradigm, with low-frequency alternation between visual and auditory stimuli (46). Schroeder and Lakatos (47) have proposed that in tasks with temporal structure to the stimuli, the attentional feedback will be frequency-modulated to enhance whatever frequency components are behaviorally useful.

Two recent studies have reported that attention decreases the noise correlation between simultaneously recorded neurons in area V4 (13, 14). If these correlations were attributable to coupled oscillatory fluctuations in activity, they would represent low-frequency (<5 Hz) coherence. Although the low-frequency desynchronization with attention found in one study (14) appeared to be strongly related to the decrease in noise correlation that was found, these two phenomena were dissociated in the present study in that we found that low-frequency synchrony in superficial V4 increased slightly with attention, whereas the noise correlation decreased with attention. Again, this difference is likely related to the low-frequency drift of the stimulus in our study, which caused cells to fire in a phase-locked fashion. This difference in attentional effects on noise correlation possibly paralleled the order of attentional effects on firing rates and gamma synchrony, in that the effect was strongest in V4 and nonsignificant in V1 and V2 (Fig. 2B and Fig. S4). The absence of an attentional effect on noise correlations in V1 was also reported previously (48).

We found a “backward” progression of attentional effects on synchrony in the ventral stream, with the strongest enhancement of synchrony in V4 and the weakest effects in V1, suggesting that V4 might be responsible for the attentional effects in upstream areas through feedback projections (22). Another recent study found an enhancement of gamma synchrony with attention in V4 but a suppression of gamma synchrony in V1 (49). That study also found strong stimulus dependence for gamma synchrony, suggesting that stimulus differences might explain the discrepancy. However, both studies suggest that the attentional enhancement of gamma synchrony in V4 is not attributable to an earlier enhancement in V1 that is passed forward through feedforward projections.

The difference in coherence between superficial and deep layer cells likely has both practical and functional consequences. One practical consequence is that recording studies in the cortex may easily miss much gamma synchrony if the recordings are biased toward the deep layers. In our experience, for example, penetrations through a thickened dura can lead to deep dimpling and eventual punch-through of the electrode to the deep layers. Chronic electrode arrays with fixed 1-mm electrode lengths (50) may also be biased toward the deep layers, depending on the thickness of the cortex, and may consequently find relatively less gamma coherence. It will be important to localize precisely which layers exhibit different forms of synchrony in future studies, preferably using translaminar electrodes that can sample all layers simultaneously (46).

A major functional consequence of laminar differences in synchrony is that gamma- and alpha-band synchrony will be communicated preferentially to different anatomical targets of a given cortical area. The deep layers are the major source of subcortical projections: Layer 5 cells project to the superior colliculus and basal ganglia, and layer 6 cells project to the thalamus (51, 52). The deep layers are also a major source of corticocortical feedback connections, and the ratio of deep to superficial cells making feedback connections increases with distance in the cortical hierarchy (53–55) Almost the exact opposite is found for feedforward connections, which predominantly arise from layers 2/3, especially for long-range connections (55). Thus, gamma-band coherence in a given cortical area is most likely to have an effect on downstream areas, whereas low-frequency coherence is most likely to have an effect on upstream areas and subcortical structures.

Methods

Surgical Procedures. Experiments were performed in areas V1, V2, and V4 in four hemispheres of two male rhesus monkeys (Macaca mulatta). All procedures followed the guidelines of the National Institutes of Health.

Two adult male rhesus monkeys were surgically implanted with a head post, a scleral eye coil, and recording chambers. Surgery was conducted under aseptic conditions with isoflurane anesthesia, and antibiotics and analgesics were administered postoperatively. Preoperative MRI was used to identify the stereotaxic coordinates of V1, V2, and V4. V4 recording chambers were placed over the prelunate gyrus. Additional plastic recording chambers were used for V1 and V2 recordings, centered 15 mm lateral and 15 mm dorsal to the occipital crest. The skull remained intact during the initial surgical procedure, and small holes (~3 mm in diameter) were later drilled within the recording chambers under ketamine anesthesia and xylazine analgesic to expose the dura for electrode penetrations.

Behavioral Task. While the monkey fixated a central spot, two stimuli were presented at equal eccentricity, one inside and one outside the recorded neurons’ receptive fields (RFs) (Fig. 1A). On alternating blocks of trials, the monkey attended to the stimulus either inside or outside the recorded neurons’ RF. The monkey was rewarded for releasing a bar when it detected a subtle color change in the attended stimulus while ignoring any change in the unattended stimulus. The color change could occur at any time between 500 and 5,000 ms after stimulus onset, thus requiring the monkey to sustain attention for a long period. Neuronal responses were compared during trials when attention was directed to the stimulus located inside (attention IN) vs. outside (attention OUT) the RF. The hit rate for successful target color change detection was 92.3%, and the false alarm rate for bar releases to the
distracter color change was 4.2%. The sensory conditions were identical across attention conditions.

Recording Techniques. In each recording session, four to eight tungsten microelectrodes (impedances of 1–2 MΩ) were advanced at a very slow rate (1.5 μm/s) to minimize deformation of the cortical surface by the electrode (“dimpling”). For V1 and V4 recordings, we lowered the electrodes slowly until we observed neuronal activity for which we could map an RF. In some of the recordings, we left half of the electrodes (n = 2–4) at that location (supragranular layers) and moved the other half of the electrodes another 1–1.5 mm into the cortex (infra-granular layers). We allowed the electrodes to settle for about 30 min and then adjusted each of the electrodes independently as needed to increase the neuronal signal. We then remapped the RFs and began the recording experiment. The V2 recordings were located in the posterior bank of the lunate sulcus. Accordingly, we moved the electrodes through area V1 to reach area V2. For area V2, we used the same recording procedure as in V1 and V4, except that the first V2 neurons encountered were in the infragranular layers.

Electrode tips were separated laterally by 650 or 900 μm. Data amplification, filtering, and acquisition were performed with a Multichannel Acquisition Processor (Plexon). The signal from each electrode was passed through a head stage with unit gain. The signals were filtered from 250 Hz to 8 kHz, further amplified, and digitized at 40 kHz. A threshold was set interactively, and spike waveforms were stored for a time window from 150 μs before to 700 μs after threshold crossing. The threshold clearly separated spikes from noise but was chosen to include multunit activity. Offline, we performed a principal component analysis of the waveforms and plotted the first principal component against the second principal component. Those waveforms that corresponded to artifacts were excluded. Spikes were sorted and neuronal stimulus selectivity were as expected for the target part of each visual area. For LFP recordings, the signals were filtered with a passband of 0.7–170 Hz, further amplified, and digitized at 1 kHz.

Visual Stimulation and Experimental Paradigm. Stimuli were presented on a 17-in cathode ray tube monitor 0.57 m from the monkey’s eyes that had a resolution of 800 × 600 pixels and a screen refresh rate of 120 Hz non-interlaced. Stimulus generation and behavioral control were accomplished with the CORTEX software package. A trial began when the monkey touched a bar and directed its gaze within 0.7° of the fixation cross on the computer screen (Fig. 1A). After achieving fixation for 300 ms (1,000 ms for some of the recordings), the stimuli were presented. The stimuli consisted of two circular patches of drifting square-wave luminance grating (100% contrast, diameter of 2°–3°, drift rate of 1°–2°/s, 1–2 cycles/degree of spatial frequency). One stimulus was positioned inside the recorded neurons’ RF, and the other was positioned at an equal eccentricity in an adjacent visual field quadrant. The task of the monkey was to release the bar between 150 and 650 ms after a change in stimulus color (i.e., a change of the white stripes of the grating to photometrically isoluminant yellow). That change in stimulus color occurred at an unpredictable moment in time between 500 and 5,000 ms after stimulus onset. All times during this period were equally likely for the color change. Successful trial completion was rewarded with four drops of diluted apple juice. If the monkey released the bar too early or if it moved its gaze out of the fixation window, the trial was immediately aborted and followed by a timeout.

Recordings and Depth Classification. Small clusters of cells (multiniits, termed cells for convenience) and LFPs were recorded on two to four nearby electrodes in each recording session. Cells on different electrodes always had overlapping RFs. We separated recording sites into superficial vs. deep based on depth in the cortex. Along the electrode trajectories, cortical thickness was at least 1.5 mm and was often 2 mm or more, depending on the angle of the electrode penetration to the cortex. We considered recording sites to be in the superficial layers if they were the first responsive cells recorded near the surface, with a maximum distance of 1 mm from the cortical surface. We included in this study all the cells recorded in a previous study of V4 (3), which we classified as “superficial” because of the strong bias to record from the first active cells. We considered recording sites to be in the deep layers if they were recorded more than 1 mm deeper than the first superficial layers cells. For some deep sites, we also advanced the electrodes to the white matter to verify that the deep sites were within 0.5–1 mm of the white matter. Although crudely classifying sites as superficial vs. deep based on electrode depths such as this almost certainly resulted in the misclassification of some sites near the middle layers, any misclassification should only have reduced differences in neuronal properties between the layers rather than create illusory differences that were not actually present in the cortex.

Data Analysis. All analyses were performed using custom programming in Matlab (Mathworks) and using FieldTrip, an open source Matlab toolbox. We quantified power and coherence spectra separately for the prestimulus period and for the sustained epoch with constant visual stimulation until the first stimulus change (excluding the first 300 ms after stimulus onset with response onset transients). For both time epochs, we cut the data into nonoverlapping time segments (300 ms, spectral resolution of 3.33 Hz) and equated the signals for possible firing rate differences across attention conditions. To eliminate any possible contribution of firing rate differences across conditions to coherence values, we equated firing rates across attention conditions using procedures described previously (21). Coherence spectra were calculated between the spiking activity obtained on one electrode and the spiking activity or the LFP activity derived from a different electrode positioned in the same cortical layer. For each comparison between conditions, we equated the number of data segments for both conditions before spectral analysis by randomly discarding data epochs from the condition with a higher number of segments. This equalization prevents any bias for the spectral estimates that could potentially be introduced by unequal numbers of trials.

Exploratory data analysis demonstrated oscillatory components at low (~10–15 Hz) and high (~60 Hz) frequencies, which occupied frequency bands that varied in width, with the width increasing with the main frequency of the component. For this reason, we used different tapers for the analysis of low and high frequencies. For frequencies up to 22 Hz, we used a single Hanning taper and applied fast-Fourier transforms to the Hanning-tapered trials. For attention conditions, we equilized the number of data segments for both conditions before spectral analysis by randomly discarding data epochs from the condition with a higher number of segments. This equalization prevents any bias for the spectral estimates that could potentially be introduced by unequal numbers of trials.

Acknowledgments. We thank D. Heister and P. Su for their help with data collection. This study was supported by National Eye Institute Grants EY017292 and EY017921 (to R.D.).

