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Raman pulse atom interferometry is an important modality for precision measurements of inertial forces and
tests of fundamental physics. Typical Raman atom optics use two coherent laser fields applied at gigahertz-scale
detunings from optical resonance, so that spontaneous emission produces a minor or negligible source of
decoherence. An additional consequence of spontaneous emission is coherent population trapping (CPT). We
show that CPT produces coherences and population differences which induce systematic effects in Raman pulse
atom interferometers. We do not believe that CPT has been previously identified as an error mechanism in Raman
pulse atom interferometry. We present an experimental characterization of CPT coherences and population
differences induced in laser-cooled cesium atoms by application of Raman pulses at detunings near 1 GHz,
commensurate with detunings used in several precision measurement experiments. We are not aware of previous
demonstrations of CPT-induced population difference. We argue that CPT effects could induce phase shifts
of several milliradians in magnitude for typical experimental parameters and stipulate that these errors can be
suppressed by propagation direction reversal in Raman interferometer-based precision measurements.

DOI: 10.1103/PhysRevA.84.043613 PACS number(s): 03.75.Dg, 42.81.Pa

I. INTRODUCTION

Atom interferometry provides sensitive measurements of
inertial forces for inertial navigation and geophysical applica-
tions, as well as tests of fundamental physics. At present,
state-of-the-art atom interferometric inertial sensors utilize
light pulses [1–4] rather than mechanical gratings for co-
herent manipulation of matter waves. Light-pulse atom beam
splitters offer several advantages, including high transmission
efficiency and suitability for increasing interrogation time
and sensitivity in atomic fountain configurations. Most imple-
mentations of light-pulse atom interferometers use stimulated
Raman transitions as the atom beam splitter and mirror. While
other light-pulse beam splitters, such as multiphoton Bragg
pulses [5] and Bloch oscillations [4,6], can achieve larger
momentum transfer and potentially offer higher interferometer
sensitivity, Raman pulse beam splitters are relatively simple
to implement and place less stringent requirements on atom
temperature and laser power.

Both existing and future tests of fundamental physics
with atom interferometry and high-precision inertial sens-
ing technology demand critical investigations of light-based
systematic error sources (e.g., [7]). Analyses of stimulated
Raman transitions in the open literature commonly neglect
the effects of spontaneous emission, or treat it solely as a
source of decoherence (e.g., [8]). An additional consequence of
spontaneous emission is coherent population trapping (CPT),
or the transfer of atomic population to a decoupled (dark)
superposition state. CPT has been extensively analyzed and
observed experimentally in three-level (�) atomic systems
with Raman resonances excited by bichromatic laser fields
[9–11]. Since the discovery of the effect, it has been exploited
for precision measurement applications including chip-scale
atomic clocks [12] and atomic magnetometry [13], in which
narrow rf resonances are achieved in steady-state laser opera-
tion. However, possible residual non-steady-state CPT effects
in atom interferometry with stimulated Raman transitions have
not been discussed in the literature. This work addresses

the impact of transient CPT effects on Raman pulse atom
interferometry. We argue that interferometer phase shifts of
multiple milliradians in amplitude have likely been produced
in some Raman pulse interferometry applications, although
we do not think the accuracy of these measurements was
significantly affected.

We begin by summarizing an elementary density matrix
theory for calculating Raman pulse output state populations
and coherences that, by including spontaneous emission, pre-
dicts CPT effects. We then present measurements of dark-state
coherences and population differences induced in cold cesium
atoms by velocity-sensitive and velocity-insensitive Raman
pulses. Finally, we make a simple argument that dark-state
coherences induced by a Raman pulse beam splitter shift the
phase of a three-pulse atom interferometer and propose that
propagation direction reversal [14] should suppress the phase
error.

II. THEORY

Stimulated Raman transitions in atom interferometry
have previously been described using Schrödinger formalism
[8,15], in which spontaneous emission effects were not
considered. Raman pulses used as atomic beam splitters are
typically detuned from optical resonance by ∼1 GHz or more,
so that spontaneous emission causes minimal decoherence.
However, we show that the presence of spontaneous emission
can be expected to result in creation of dark-state coherences,
even in the large detuning regime of relevance to Raman pulse
atom interferometry.

In this section we summarize a three-state density matrix
theory for Raman pulse physics that motivates and qualita-
tively describes our experimental results. This model only
approximately describes a real atom, but we argue that it
captures the essential physics and permits an analytic solution.
The theory includes spontaneous emission in a three-state
(�) atom, as depicted in Fig. 1. We argue that for relatively
large laser detunings |�| � 1 GHz, the time derivatives of
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FIG. 1. Diagram of the three-level (�) atom and laser fields
considered in Sec. II.

the ground-excited state coherences can be neglected, leading
to a simple analytic solution. Prior to exhibiting solutions,
the problem will be recast in terms of a pseudospin vector
polarization on a Bloch sphere. It is shown that in addition
to “torquing” an initial polarization state in a fashion exactly
analogous to rf spin resonance in nuclear magnetic resonance,
the Raman pulse will induce a dark-state polarization.

Consider an atom with two closely spaced ground states,
|g〉 and |e〉, and a single excited state |i〉 (Fig. 1). Ground state
|g〉 (|e〉) is coupled by electric field �EA ( �EB) to |i〉. The analysis
is placed in a reference frame comoving with the atom in |g〉,
and therefore the frequencies of the applied fields depend on
the motional state of the atom [15]. We define the fields �EA,
�EB as

�EA = êAεA cos
[
φA(t) + φ0

A

]
, (1)

�EB = êBεB cos
[
φB(t) + φ0

B

]
, (2)

with φA(t) = ∫ t

0 [ωA(t ′) − �kA·êzż(t)]dt ′, φB(t) = ∫ t

0 [ωB(t ′) −
�kB · h̄�keff/m − �kB · êzż(t)]dt ′, polarization vectors êj ,
amplitudes εj , time-dependent frequencies ωj , wave vectors
�kj , two-photon effective wave vector �keff = �kA − �kB , and
phases φ0

j for field �Ej . The two wave vectors are assumed

to be either parallel or antiparallel to each other, with
both aligned along êz. The derivation accounts for both
copropagating (velocity insensitive) and counterpropagating
(velocity sensitive) cases. The two-photon recoil velocity
h̄�keff/m is included in the velocity of an atom in state |e〉,
which couples to �EB ; the Doppler shift of �EB thus contains
a recoil contribution. The optical phases are defined with
time-dependent frequencies to address the interrogation of
atoms accelerating relative to the Raman beams, which is
applicable to the gravimeter configuration in our experiments.

The energy origin for the atom is chosen to be the midpoint
between the ground-state energies h̄ωe and h̄ωg , as shown by
Fig. 1. The laser detuning � from the optical resonances,
as well as the Raman detuning δ between the laser fre-
quency difference and the ground-state energy-level splitting,
are indicated in Fig. 1. These detunings are defined here
as

δ(t) ≡ [ωA(t) − ωB(t)]

−
[

(ωe − ωg) + h̄�k2
eff

2m
− h̄

2m

(
k2
A − k2

B

)+ �keff · ż(t)êz

]
,

(3)

� ≡ ωA(t) +ωB(t)

2
−

[
ωi − 1

2

(
h̄�k2

eff

2m
− h̄

2m

(
k2
A − k2

B

)

−(�kA + �kB

) · ż(t)êz

)]
. (4)

The Hamiltonian, including both internal (diagonal elements)
and field interaction (off-diagonal elements) dynamics, is

Ĥ = h̄

2

⎡
⎢⎣

ωe − ωg �BeiφB (t) 0

�∗
Be−iφB (t) 2ωi �∗

Ae−iφA(t)

0 �AeiφA(t) −(ωe − ωg)

⎤
⎥⎦ , (5)

where �j = |�j |eiφ0
j is the complex Rabi frequency associ-

ated with the coupling for field �Ej . The time dependence of the
Hamiltonian can be factored out using a unitary transformation
defined by

Ûint ≡ exp {−P̂e

i

2
[(ωe − ωg) + δ(t)]}

+ exp {P̂g

i

2
[(ωe − ωg) + δ(t)]}

+ exp [−P̂ii(� + ωi)], (6)

where P̂e, P̂i, P̂g are the Hilbert space projection operators
onto states |e〉, |i〉, and |g〉, respectively. In terms of Eq. (5),
the Hamiltonian can be written as

Ĥ = h̄Ûint

⎡
⎢⎣

1
2 (ωe − ωg) 1

2�B 0
1
2�∗

B ωi − 1
2 (ωe + ωg) 1

2�∗
A

0 1
2�A − 1

2 (ωe − ωg)

⎤
⎥⎦ Û

†
int. (7)
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The density matrix ρ for the three-level system is

ρ =

⎡
⎢⎣

ρee ρei ρeg

ρie ρii ρig

ρge ρgi ρgg

⎤
⎥⎦ . (8)

The time rate of change of the density matrix due to
spontaneous emission is

ρ̇SE =

⎡
⎢⎣



2 ρii −


2 ρei 0

−

2 ρie −
ρii −


2 ρig

0 −

2 ρgi



2 ρii

⎤
⎥⎦ , (9)

where 
 is the average rate of spontaneous decay from the
excited state [16]. For simplicity, we have assumed a closed
system in which excited-state decay is restricted to the two
ground states with equal branching ratios, and we neglect any
decay of the ground-state coherences. The equation of motion
for the density matrix is

dρ

dt
= 1

ih̄
[Ĥ ,ρ] + ρ̇SE. (10)

We now transform this equation to the interaction picture using
Ûint and by representing the interaction picture density matrix
Rint as

Rint ≡

⎡
⎢⎣

ρee rei reg

rie ρii rig

rge rgi ρgg

⎤
⎥⎦ = Û

†
intρÛint. (11)

The equations governing the ground-excited state coherences
(rei and rgi) can be simplified first by noting that for typical
experimental conditions, |δ(t)| � |�|. Adiabatic elimination,
wherein a large rate is taken to dominate time evolution,
permits an approximate solution for the ground-excited state
coherences:

d

dt
Rint

∼= d

dt

⎡
⎣ρee 0 reg

0 ρii 0
rge 0 ρgg

⎤
⎦ . (12)

It can then be shown, from the approximate equation of motion
for Rint, that

rei
∼= �Areg − �B(ρii − ρee)

2� − i

, (13)

rig
∼= �∗

A(ρgg − ρii) + �∗
Breg

2� + i

. (14)

Substituting these relations back into the equation of motion,
and making the additional assumption that the excited-state
population ρii � 1, reduces the original equation of motion to
an equation for populations ρee, ρgg and coherence reg . At this
point we define components for a pseudospin �P (t) on a Bloch
sphere

Pj (t) = Tr

([
ρee reg

rge ρgg

]
· σj

)
, j = x,y,z, (15)

where {σj } are the Pauli spin matrices. Thus

�P (t) =

⎡
⎢⎣

Px(t)

Py(t)

Pz(t)

⎤
⎥⎦ =

⎡
⎢⎣

2Re[reg]

−2Im[reg]

ρee − ρgg

⎤
⎥⎦ . (16)

A similar transformation was used in [17], though spontaneous
emission was not considered.

We now state the results of a lengthy but elementary analysis
in which we substitute the pseudospin components from Eq.
(16) into the equation of motion for Rint, apply adiabatic
elimination as per Eq. (12), and assume that ρii � 1. The
approximate vector equation of motion for �P (t) is

d

dt
[ �P (t) − �Pdark] + [ �P (t) − �Pdark] × ��

+
loss[ �P (t) − �Pdark] ∼= −êz
source, (17)

where

�Pdark ≡ −
��

�e,AC + �g,AC

,


source = 
δ

2�
,


loss = 


2�
(�e,AC + �g,AC),

�j,AC = |�j |2
4�

,

δAC = �e,AC − �g,AC, (18)
�� = �[cos θ ẑ + sin θ (cos φx̂ + sin φŷ)],

� =
√

|�eff|2 + (δAC − δ)2,

cos θ = δAC − δ

�
, sin θ = |�eff|

�
,

φ = φ0
A − φ0

B,

�eff = �A�∗
B

2�
= |�A||�B |eiφ

2�
.

Equation (17) is analogous to the dynamics for a classical
magnetization subjected to a magnetic field torque and
decoherence, with a source of longitudinal magnetization. This
equation can be solved with the use of a concise notation.
Given a fixed vector �α = αα̂, we define an exponentiated
cross-product operator acting on an arbitrary vector �V as

exp [α(α̂×)] �V = [cos α(1·)+ sin α(α̂×)+(1− cos α)α̂(α̂·)] �V
= cos α �V + sin α(α̂ × �V )

+ (1 − cos α)α̂(α̂ · �V ). (19)

This exponentiated cross-product operator acts to rotate �V
about α̂ in the right-hand sense by an angle α. The expression
in Eq. (19) can be obtained by Taylor expansion and the
application of cross-product rules. It is simple to show that
the derivative of this operator is

d

dα
exp [α(α̂×)] = α̂ × exp [α(α̂×)]. (20)

With this rotation operator definition, it can be shown that the
solution to Eq. (17) for the time-dependent pseudospin is

�P (t) = exp {[�(�̂×) − 
loss · 1]t} · �P (0)

+{exp [(�(�̂×) − 
loss · 1)t] − 1}
× { �Pdark − [−�(�̂×) + 
loss · 1]−1 · (
sourceêz)}.

(21)
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We note that 
loss cannot vanish on physical grounds, so that
the inverse in the final term of Eq. (21) always exists. This
solution represents the pseudospin polarization in the rotating
frame. As expected, the action of the Raman pulse on the initial
polarization is to rotate it about the Raman effective drive field,
��. There is also a slow loss of coherence due to spontaneous
emission. However, in addition to the torquing action on the
initial polarization, another polarization is induced, with an
asymptotic value of

�P (t → ∞) = − �Pdark + [−�(�̂×) + 
loss · 1]−1 · (
sourceêz).

(22)

On resonance, this expression simplifies to �P (t → ∞) =
− �Pdark. Recalling the definition for �Pdark, we note that for
negative laser detunings (� < 0) the asymptotic polarization
is induced parallel to the effective drive field ��. The dark
polarization is aptly named since �̂ × �Pdark = 0, i.e., the
optical fields do not couple to it.

This theory can only be expected to provide a qualitative
description of Raman pulse physics in the ground-state hyper-
fine manifold of a real alkali-metal atom, given the simple �

structure considered here. In this closed system, spontaneous
decay returns atoms to one of the coupled ground states. In an
alkali atom, spontaneous emission can remove an atom from
further interaction via decay to an uncoupled ground state.
We have also neglected the effect of multiple excited states.
Selection rules permit two excited-state hyperfine sublevels to
act as intermediaries in Raman transitions. The coupling of
the ground states to the two intermediaries is comparable for
the range of detunings considered here (
 � � � ωe − ωg).
Therefore we expect substantial deviations between the present
theory and experiment. Since no ground-state superposition
will be “dark” with respect to two possible intermediary
excited states, continued coupling to the field will result in
decreasing magnitudes of induced polarization at long pulse
lengths. The theory, by contrast, predicts large asymptotic
polarizations, of magnitude approaching unity for excitation
close to the Raman resonance.

We note that for nonresonant pulses, the theory predicts
that a population difference between the ground states is
induced in addition to coherence between the ground states. In
addition, the time evolution of the polarization, when scaled
by the pulse area �t , is predicted to be independent of the
effective Rabi frequency. The approximations employed in the
theory would not appear to compromise this prediction. While
a more accurate numerical simulation of a real atom is not
included in this work, such a study is feasible and constitutes
an interesting step for future work. In the next section we see
that the qualitative predictions of the theory are experimentally
realized, supporting our assertion that the observed effects are
induced by CPT.

III. EXPERIMENT

In this section we describe observations of CPT induced
by Raman pulses in cold atoms. While the three-level theory
presented in Sec. II does not address the more complex
excited-state hyperfine structure encountered with real atoms,
our experiments exhibit clear signatures of population trapping

and the results are in accord with central qualitative predictions
of the theory. Our approach differed from previous work in
that we produced and detected non-steady-state CPT effects
using atom interferometry in a cold dilute vapor, rather than
steady-state CPT induced and detected by pump-probe beams
in a vapor cell (e.g., [11]). Our basic method was to prepare
an ensemble of cold cesium atoms in the |F = 3,mF = 0〉
ground state, apply long Raman pulses in free space, and
observe the resultant population and coherences. As described
below, care was taken to discriminate against the contri-
bution of the initial polarizations. CPT-induced population
differences and coherences were observed to be induced
by both velocity-insensitive and velocity-sensitive Raman
pulses. Use of velocity-insensitive Raman pulses afforded an
expedient path to a first demonstration, because of the ease of
implementation and the suppression of systematic effects due
to atom cloud temperature and laboratory vibrations. However,
inasmuch as velocity-insensitive Raman interferometers are
used mostly as an experimental diagnostic, velocity-insensitive
CPT effects are of limited practical interest. Velocity-sensitive
Raman transitions serve as atom optics in high-precision
atom interferometry experiments. Thus CPT effects induced
by velocity-sensitive Raman pulses have implications for
precision measurement results obtained with Raman pulse
interferometry (e.g., [1,18]), which are discussed at the end
of this section.

The experimental apparatus has been described in detail
in [19], so we provide a brief summary here. Our experiments
begin with an ensemble of cesium atoms loaded in a magneto-
optic trap and cooled in far-detuned optical molasses to
5 μK. The atoms are then prepared in the magnetically
insensitive |F = 3,mF = 0〉 state by optical pumping, and
other atoms are blown away by laser light resonant with
the F = 4 → F ′ = 5 cycling transition. We can also select
a narrower velocity distribution (<0.5 μK) with a velocity-
sensitive Raman pulse. The Raman laser beams are generated
by an 852-nm laser that is stabilized to a detuning of � =
−1.25 GHz from the frequency difference between ground-
state F = 4 and excited-state F ′ = 2 hyperfine levels. Side-
bands at the hyperfine splitting are created by phase modula-
tion in an electro-optic modulator. The Raman beams are then
collimated to a 1 cm (1/e2) diameter and are retroreflected
to drive velocity-sensitive Raman transitions. The atoms are
interrogated in free fall by the vertically oriented Raman
beams, with the Doppler shift lifting the degeneracy between
transitions with opposite �keff . The Raman detuning is chirped
to compensate for the Doppler shift of the accelerating atoms
[δ̇ = �keffg/(2π ) ≈ 23 kHz/ms]. Finally, the interferometer
phase is extracted by measuring the populations in the
|F = 3,mF = 0〉 and |F = 4,mF = 0〉 states with normalized
laser-induced fluorescence.

A. Velocity-insensitive Raman pulses

We have characterized the dependence of CPT effects on
Raman pulse duration, Raman detuning, Rabi frequency, and
laser detuning. In addition to providing an expedient demon-
stration of CPT effects, these measurements also provided an
upper bound on the effect that could be expected to be produced
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FIG. 2. (Color online) Bloch-sphere representation of a two-pulse experiment for detecting coherently trapped population induced by a
velocity-insensitive Raman pulse. (a) The first Raman pulse rotates the initial polarization along −z about the x axis. (b) At long first-pulse
durations, the initial polarization of the ensemble is dispersed in the y − z plane by a spatially varying Rabi frequency. A polarization along
the effective drive field (vector along x) is induced by CPT. (c) After a brief dwell time, a π/2 pulse at a phase ±90◦ relative to the first pulse
rotates the induced coherence onto z, where it is measured as a population difference. The initial ensemble contributes no net polarization.

by velocity-sensitive Raman pulses. Velocity-sensitive Raman
pulse CPT effects are described in the next section.

To distinguish coherently trapped population from popula-
tion remaining in bright states, Raman pulses with duration
greater than 10tπ were applied to dephase the ensemble with
the spatial distribution of Rabi frequencies in the Raman
beam. The resulting visibility of Rabi oscillations from the
initial polarization was less than 1% (in other words, 〈Pz〉 =
0 for the ensemble-averaged pseudospin and the average
transition probability was 50%). When subjected immediately
to population readout, the ensemble appeared completely
dephased, i.e., the population trapped in a dark superposition
had no Pz component. However, by subsequently applying a
π/2 pulse, as depicted in Fig. 2, the coherence was rotated into
an observable population difference. The π/2 pulse induced
right-hand rotation of the induced coherence. An induced
coherence parallel to the effective field �� of the first pulse
would then produce maximum (minimum) population transfer
at −90◦ (+90◦). Interferograms obtained by varying the π/2
pulse phase (Fig. 3) indicate that the induced coherence

FIG. 3. Dark-state population observed with velocity-insensitive
75π − π/2 interferometers at positive (filled circles: � =
−1.25 GHz; open squares: � = +2.5 GHz). Both detunings are
referenced to the F = 4 → F ′ = 2 frequency. As predicted by the
theory in Sec. II, CPT induces dark-state polarizations at opposite
phases for positive/negative laser detunings.

was parallel to the effective drive field for negative � and
antiparallel for positive �, consistent with a CPT effect.
Figure 3 is expressed in terms of transition probability with
peak-to-peak variation of about 23%. On the Bloch sphere
of Fig. 2, this corresponds to an induced polarization of
magnitude 0.23 on a scale where all atoms exclusively in one
ground state correspond to a polarization of magnitude unity.

Figure 4 depicts the measured dark-state population in-
duced by resonant Raman pulses for a range of pulse durations.
Recalling that our theory predicts a trapped population scaling
with the pulse area, the pulse duration is scaled in units
of tπ . Similar curves were obtained with Rabi frequencies
over a range of 20–100 kHz, which is consistent with the
theory. For pulse areas less than 40π , the trapped population
increased linearly. Trapping appeared to saturate at 60−80tπ ,
and thereafter, losses due to spontaneous emission and weak
coupling out of the dark state dominated. A linear fit over
the low-pulse area data estimates that a π pulse traps 1.5%
of the population for � = −1.65 GHz. Direct measurements
of CPT for Raman pulses with pulse areas under 10π were
not possible because of inadequate dephasing of the initial
ensemble. Nevertheless, as Fig. 5 shows, the phase of the

FIG. 4. Dark-state population induced by resonant, velocity-
insensitive Raman pulses (� = −1.25 GHz).
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FIG. 5. Phase of dark-state coherences induced by velocity-
insensitive Raman pulses. A phase of −π/2 corresponds to induced
polarization parallel to the effective drive field ��.

observed coherences at all longer pulse durations remained at
the expected phase of �φ = −π/2, an important necessary
condition for identification of the result as a CPT effect.
Figure 6 shows trapped population versus pulse duration
curves for several laser detunings, from -1.25 to -3 GHz.
Maximum trapping was observed at � ≈ −1.5 GHz. The
theory of Sec. II predicts a constant asymptotic dark-state
polarization, independent of laser detuning. Figure 6 shows
that induced polarizations over a factor-of-2 variation in laser
detuning were similar, reflecting only weak dependence on
laser detuning.

Lastly, we measured population differences induced by
off-resonant Raman pulses, as predicted by the theory in
Sec. II. We began with a sample of atoms prepared in
the |F = 3,mF = 0〉 state ( �P = −ẑ) and formed a coherent
superposition of the |F = 3,mF = 0〉 and |F = 4,mF = 0〉
levels with a Raman π/2 pulse. After a brief dwell time, an
off-resonant Raman pulse dephased this initial coherence and
induced a dark-state polarization. Since the laser frequency
difference changed between the first and second pulse, the
laser difference phase for the second pulse was shifted such
that the initial polarization was dispersed with an average tran-
sition probability of 50% (i.e., 〈Pz〉 = 0). We experimentally

FIG. 6. Induced dark-state population obtained with several
Raman laser detunings. The magnitude of trapped population is
weakly dependent on Raman laser detuning.

FIG. 7. Measurements Pz of dark-state population induced by
off-resonant Raman pulses. The dashed curve represents a theoretical
prediction based on an extension of the three-state theory permitting
spontaneous decay out of the two coupled ground states.

determined this phase offset for each chosen Raman detuning
using a π/2 − π∗ interferometer (π∗ denotes an off-resonant
π pulse) with the same dwell time between pulses. Finally,
the Pz component of the trapped population was measured by
reading out the population transfer and comparing to 50%.
In order to suppress systematic errors resulting from drifting
Raman beam power, we calibrated Pz = 0 in every other
measurement by applying a single resonant 15.5π pulse and
measuring population transfer.

Figure 7 shows the induced Pz for � = −1.25 GHz
and a second pulse duration of 40tπ . In agreement with
theory, the profile is antisymmetric about zero detuning
and the overall sign of Pz is opposite that of the Raman
detuning. We observed extrema at δ = ±�eff . For δ < |�eff|,
the observed Pz dependence resembles the z projection of
a polarization vector aligned with the effective drive field
and with a magnitude equal to the coherence induced by a
resonant Raman pulse (0.19, or population ≈9.5%, for a 40π

pulse). Figure 7 also depicts a theoretical prediction from a
simple extension of the theory presented in Sec. II, which
permits spontaneous emission to uncoupled ground states. We
assumed a probability of spontaneous emission to uncoupled
(mF �= 0) ground-state levels based on dipole matrix elements
for cesium. At larger Raman detunings, observed CPT effects
are smaller than predicted by the three-level theory; this
discrepancy is expected since the theory does not account for
multiple excited states. These measurements further support
our theoretical prediction that coherent population trapping
induces a polarization parallel to the effective drive field vector.

B. Velocity-sensitive Raman pulses

To detect CPT effects with velocity-sensitive Raman pulses,
we used a slightly different method than that described above
for velocity-insensitive Raman pulses. We first prepared atoms
in the |F = 3,mF = 0〉 level and then applied a microwave
π/2 pulse. Since the wavelength of the microwave transition
(∼3.3 cm) is large compared to the cloud size (∼1 mm), all of
the atoms experience a similar phase. After a brief dwell time,
a long, resonant velocity-sensitive Raman pulse dispersed
the ensemble and induced CPT. The atoms experience a

043613-6



COHERENT POPULATION TRAPPING IN RAMAN-PULSE . . . PHYSICAL REVIEW A 84, 043613 (2011)

FIG. 8. Dark-state population induced by velocity-sensitive
Raman pulses. These values have not been adjusted to compensate
for the reduced contrast of the interferometer.

distribution of Raman phases because of their initial spread
in position over many effective wavelengths (2π/|�keff| ≈
426 nm), thoroughly scrambling the phase of the initial
coherence with respect to the position-dependent Raman
effective drive field ��. After a very short dwell time (typically
1 − 2 μs), a Raman π/2 pulse at variable phase projected the
induced polarization onto the z axis.

Figure 8 shows the profile of dark-state population versus
pulse duration for a laser detuning of � = −1.25 GHz and a
Rabi frequency of 80 kHz. This curve resembles the measure-
ments of dark-state population for varying Raman pulse dura-
tion in the analogous velocity-insensitive experiment (compare
with Fig. 4). Again, the effect appears to saturate between
60 and 80 tπ and decays at longer pulse durations. While
the magnitude of the dark-state population appears smaller
than what was measured with velocity-insensitive beams,
these measurements underestimate the trapped population
because the interferometer is only partially overlapping and
consequently exhibits poorer phase contrast (our measure for
the trapped population). To compensate for this inefficiency,
we measured the contrast of a velocity-sensitive π/2 − π/2
interferometer for a range of dwell times. Figure 9 shows
that less than 30% contrast was observed for a 7-μK cloud.
With velocity selection, however, interrogating atoms with a
temperature of 400 nK produced greater than 55% contrast for
the same dwell times (shown by the upper curve in Fig. 9).
In both cases, adjusting the measured dark-state population by
the two-pulse interferometer visibility leads to an estimated
maximum induced dark-state coherence of magnitude of 0.18
(9% population), somewhat smaller than the maximum value
observed with velocity-insensitive Raman pulses. We also
expect less efficient population trapping by velocity-sensitive
Raman pulses due to the Doppler broadening of the resonance.
Based on the slope at short pulse durations, we estimate an
induced dark-state coherence of magnitude 0.0074 (population
of 0.37%) for a π pulse.

C. Impact of CPT on a π/2 − π − π/2 interferometer

We now consider a simple estimate of the impact of an
induced dark-state coherence on a velocity-sensitive π/2 −
π − π/2 interferometer, which is the most common sequence

FIG. 9. Contrast achieved with a velocity-sensitive, nonoverlap-
ping π/2 − π/2 interferometer with (circles) and without (diamonds)
velocity selection. The contrast of this nonoverlapping interferometer
indicates the efficiency with which we can measure dark-state
population induced by velocity-sensitive Raman pulses. Velocity
selection clearly suppresses decoherence due to cloud diffusion.

for acceleration and rotation rate measurements. The first
Raman pulse induces a small coherence 90◦ out of phase
with the primary coherence created by tipping the initial
polarization into the x − y plane. The induced coherence is
orthogonal to the primary coherence, and effectively shifts the
net phase by the ratio of the induced coherence magnitude to
that of the primary coherence. The second pulse again transfers
population to a dark state; however, each atom in the ensemble
experiences a different effective drive field ( ��) phase because
of the thermal velocity distribution. The ensemble average
of the error phase induced by the second Raman pulse is
then zero. The third pulse also induces a coherence, but for
near-resonant Raman pulses it does not affect the final state
population since the induced polarization is in the x − y plane.
Thus, we expect a phase shift due to the first Raman pulse,
with a magnitude equal to the ratio of the induced coherence
to the primary coherence. We have shown that the magnitude
of CPT-induced polarization is roughly independent of Rabi
frequency, so that we can use our measurements to estimate the
induced phase in interferometers using cesium. We estimated
that velocity-sensitive Raman pulses produce coherences of
magnitude 0.0074 per π pulse. Correspondingly, we estimate
that a π/2 − π − π/2 interferometer should register a phase
shift of �φ ≈ 0.0074/2 ≈ 3.7 mrad phase shift. In a previous
high-precision cesium gravimeter [1,18], this phase shift
corresponded to a gravity offset of ≈1 μGal. An error of this
magnitude is four times smaller than the claimed experimental
error, so a CPT-induced error of the estimated size would not
significantly affect their results.

In presenting interferometer phase-shift estimates, we con-
cede the preferability of directly measuring an interferometer
phase shift induced by CPT. In principle, the phase shift
could be measured by alternately running (±π/2) − π − π/2
interferometers and comparing their phases. A deviation of
the relative phase from π would be ascribed to a CPT-induced
shift. However, our apparatus presently lacks sufficient reso-
lution to detect phase offsets of the estimated magnitude.

Finally, we note that a CPT-induced interferometer phase
shift would be independent of the Raman beam wave vector
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�keff . The method of propagation direction reversal should
then suppress the resulting bias with averaged measurements
(phase shifts resulting from ac Stark shifts are suppressed in
a similar fashion), because the �keff-proportional contribution
to the signal will reverse sign while the interferometer phase
shift due to CPT will not.

IV. CONCLUSIONS

We have presented a simple density matrix theory which, by
including spontaneous emission, predicts significant coherent
population trapping in a three-level atom at large laser
detunings typically used in Raman pulse interferometry. By
performing adiabatic elimination on the excited state, we
represented the reduced two-state system as a pseudospin
precessing about an effective drive field on a Bloch sphere,
with CPT acting to induce a polarization along the effective
drive field. The assumed � configuration afforded a simple
presentation but did not yield a theory with quantitative
predictive capability. In future work, a numerical simulation
incorporating multiple excited states could address the effect
of multiple possible dark states, as well as address the potential
for variation in the magnitude of these effects in other atomic
species (e.g., rubidium).

The experiments described in Sec. III detected CPT in both
velocity-insensitive and velocity-sensitive Raman pulse atom
interferometry. We investigated the dependence of the induced
dark-state population on Raman pulse duration, two-photon
Rabi frequency, laser detuning, and Raman detuning. In the
velocity-sensitive case, we showed that Raman pulses induced
nearly as much dark-state population in colder ensembles
(<500 nK) as that induced by velocity-insensitive pulses.

Our experimental approach avails a method for producing
and manipulating coherences and population differences aris-
ing from transient CPT in cold atoms. We are not aware
of a previous demonstration of CPT-induced population
difference.

Finally, we have argued that coherent population trapping
should contribute to the phase of a Raman π/2 − π − π/2
interferometer as a systematic offset. This phase shift should be
accounted for in high-precision interferometer measurements.
Given the scale of the effect, and that the impact of dark-
state coherences on interferometer phase is independent of
the Raman beam wave vector, the method of propagation
direction reversal [14] should suppress this bias with averaged
measurements. While the impact of CPT has been discussed
in the context of a three-pulse interferometer, other Raman
interferometers should also experience phase shifts arising
from this effect. A simple example is a velocity-insensitive
Raman π/2 − π/2 clock measurement, in which the first pulse
induces a dark-state coherence and offsets the phase read out
by the second pulse. Moreover, the clock measurement is
independent of �keff , thereby precluding the use of �keff-reversal
suppression. Since the effect is only weakly dependent on
Rabi frequency and laser detuning, a Raman beam with
well-controlled parameters should produce a stable phase shift,
so that the principal effect would likely pertain more to clock
accuracy than stability.
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