Composite pairing in a mixed-valent two-channel Anderson model

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevB.84.064514</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society (APS)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Jan 07 22:40:02 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/69143</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Composite pairing in a mixed-valent two-channel Anderson model

Rebecca Flint,1,3 Andriy H. Nevidomskyy,2,3 and Piers Coleman3

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
3Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 4 April 2011; published 23 August 2011)

Using a two-channel Anderson model, we develop a theory of composite pairing in the 115 family of heavy fermion superconductors that incorporates the effects of f-electron valence fluctuations. Our calculations introduce “symplectic Hubbard operators”, an extension of the slave boson Hubbard operators that preserves both spin rotation and time-reversal symmetry in a large N expansion, permitting a unified treatment of anisotropic singlet pairing and valence fluctuations. We find that the development of composite pairing in the presence of valence fluctuations manifests itself as a phase-coherent mixing of the empty and doubly occupied configurations of the mixed valent ion. This effect redistributes the f-electron charge within the unit cell. Our theory predicts a sharp superconducting shift in the nuclear quadrupole resonance frequency associated with this redistribution.

We calculate the magnitude and sign of the predicted shift expected in CeCoIn5.

DOI: 10.1103/PhysRevB.84.064514
PACS number(s): 74.70.Tx, 74.20.Mn

I. INTRODUCTION

The 115 family of superconductors continues to attract attention for the remarkable rise in the superconducting state, shown in Fig. 1.

...attention for the remarkable rise in the superconducting state, shown in Fig. 1.

moment paramagnetism directly into the superconducting...}

composite pair superconductivity.7,8 Composite pair superconductivity is a local phenomenon involving the condensation of bound states between local moments and conduction electrons.9 It can be thought of as an intra-atomic version of a d-wave magnetic pairing, between conduction electrons in orthogonal screening channels rather than on neighboring sites,

\[\Delta \text{sc}(j) = \langle \psi_{1j}^\dagger \bar{\sigma} (i \sigma_2) \psi_{2j} \cdot \mathbf{S}_{fj} \rangle. \] (1)

Here \(\psi_{1j} \) and \(\psi_{2j} \) create local Wannier states of conduction electrons in two orthogonal symmetry channels at site \(j \), and \(\mathbf{S}_{fj} \) is the local \(f \) moment on the same site. The composite pair combines a triplet pair of conduction electrons with a spin-flip of the local moment, such that the overall pair remains a singlet.

While the close vicinity of the Ce 115s to antiferromagnetic order has led to a consensus that pairing in these materials is driven by spin fluctuations, the two superconducting domes in the Ce(Co,Rh,Ir)In5 phase diagram10 suggest that composite pairing may provide a second, complementary mechanism in the Ce 115s.8 The absence of magnetism in the actinide 115 phase diagrams suggests that composite pairing may play a more important role. Composite pairs are predicted to have unique electrostatic signature, resulting in a small redistribution of the f-electron charge within the unit cell and an associated change of the f valence. Understanding these charge aspects of composite pairing is essential to disentangling the relative importance of magnetic and composite pairing in these compounds.

These observations motivate us to develop a theory of composite pairing incorporating valence fluctuations. Thus far, composite pairing has been studied within a two-channel Kondo model,7,12 treating only the local spin degrees of freedom. In this paper, we study composite pairing within a two-channel Anderson model, which permits us to include the charge degrees of freedom and model the effects of valence fluctuations on the superconductivity in the 5 \(f \) 115 materials.

We predict a sharp shift in both the f-electron valence and quadrupole moment at the superconducting transition temperature. The quadrupole moment shift should manifest as a shift either in the nuclear quadrupole resonance (NQR) frequency, for Ce\(\text{M} \)ln5, or the Mössbauer quadrupole splitting, for NpPd3Al2, and we make concrete predictions for these shifts in Sec. V.

The two-channel Anderson model is the natural extension of the two-channel Kondo model,

\[H = H_\text{c} + \sum_j H_\text{d}(j) + \sum_j H_\text{f}(j). \] (2)

Here the local atomic Hamiltonian at site \(j \) is

\[H_\text{d}(j) = E_0 X_{00}(j) + E_2 X_{22}(j) + \sum_\sigma \epsilon_j X_{2\sigma}(j). \] (3)
indicated.

relevant charge states of Ce3+ level and is excluded from the Hilbert space of the problem. The similarity (data below not shown).

The excited doublet

\[|2\rangle \equiv |\Gamma_2 \otimes \Gamma_1\rangle_\alpha = \frac{1}{\sqrt{2}} \sum_{\sigma = \pm 1} \text{sgn}(\sigma) f^{\dagger}_{1\sigma} f^{\dagger}_{1,-\sigma} |0\rangle \]

where the \(X \)'s are the Hubbard operators: \[X_{00} = |0\rangle \langle 0|, \quad X_{22} = |2\rangle \langle 2|, \quad \text{and} \quad X_{\sigma\sigma} = |\sigma\rangle \langle \sigma| \]. The atomic states \(|0\rangle\), \(|\sigma\rangle\), and \(|2\rangle\) are shown in Fig. 2, where we take the doubly occupied state to be a singlet containing \(f \) electrons in two orthogonal channels,

\[|2\rangle \equiv |\Gamma_2 \otimes \Gamma_1\rangle_\alpha = \frac{1}{\sqrt{2}} \sum_{\sigma = \pm 1} \text{sgn}(\sigma) f^{\dagger}_{1\sigma} f^{\dagger}_{1,-\sigma} |0\rangle \].

The orthogonality of these two channels is essential to the superconductivity, and we take the Coulomb energy for two electrons in the same channel to be infinite, making this model closer to two copies of the infinite-\(U \) Anderson model than to the finite-\(U \) model. These \(f \) electrons hybridize with a bath of conduction electrons, \(H_c = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma} \). In two different channels,

\[H_{\psi}(j) = \sum_j V_{jj}^{\dagger} X_{\text{beta}}(j) + \text{H.c.} + V_2 \psi^{\dagger}_{2\sigma\sigma} X_{-\sigma-\sigma}(j) + \text{H.c.} \]

where the \(\psi^{\dagger}_{\gamma/\alpha} \) are Wannier states representing a conduction electron in symmetry \(\Gamma \) on site \(j \). \(X_{00} = |0\rangle \langle 0| \) and \(X_{22} = |2\rangle \langle 2| \) are the Hubbard operators between the singly occupied state and empty or doubly occupied states, respectively. Here we have adopted the notation of Ce atoms, whose ground state is a \(4f^1 \) doublet, but this formalism also applies to Np \(5f^3 \) atoms, where both \(|0\rangle \equiv |5f^4\rangle \) and \(|2\rangle \equiv |5f^3\rangle \) are \(\Gamma = 4 \) crystal-field singlets, while \(|\sigma\rangle\) represents one of the \(J = 9/2 \) crystal-field doublets of \(5f^3 \).

To develop a controlled treatment of superconductivity in the two-channel Anderson model, we introduce a large-\(N \) expansion. Preserving the time-reversal symmetries of spins is essential to capture singlet superconductivity in the entire family of large-\(N \) models, and large-\(N \) methods based on SU(\(N \)) spins, like the usual slave boson approach, will lose time-reversal symmetry for any \(N > 2 \). Treating superconductivity in the Kondo model therefore requires symplectic spins, the generators of the Sp(\(N \)) group.

\[S_{\alpha\beta} = f^\dagger_\alpha f^\dagger_\beta - \bar{a}^\dagger_\beta f^\dagger_\beta f^\dagger_\alpha. \]

Here \(N \) is an even integer and the indices \(\alpha \in \{1,2,\ldots, N/2\} \) are integers running from \(-N/2\) to \(N/2\), excluding zero. We employ the notation \(\bar{a} \equiv \text{sgn}(\alpha) \). These spin operators invert under time-reversal \(S \rightarrow \theta S \theta^{-1} = -S \) and generate rotations that commute with the time-reversal operator.

Physically, the spin fluctuations of a local moment are generated by valence fluctuations. Theoretically, these valence fluctuations can be described by Hubbard operators, and in a symplectic-\(N \) generalization of the Anderson model, anticommuting two such Hubbard operators must generate a symplectic spin, satisfying the relations

\[\{X_{\text{beta}}, X_{\rho\beta}\} = X_{\alpha\beta} + X_{00} \delta_{\alpha\beta} \]

\[= S_{\alpha\beta} + \left(X_{00} + \frac{X_{\rho\beta}}{N}\right) \delta_{\alpha\beta}, \]

where the last equality follows from the traceless definition of the symplectic spin operator, \(S_{\alpha\beta} = X_{\alpha\beta} - \frac{X_{00}}{N} \delta_{\alpha\beta} \). In Sec. II, we show that a proper symplectic representation requires the introduction of two \(\alpha \) slave bosons to treat the Hubbard operators in a single channel:

\[X_{00} = b^\dagger f_\alpha + a^\dagger \bar{a}^\dagger f^\dagger_\alpha, \quad X_{00} = b^\dagger b + a^\dagger a. \]

As we shall demonstrate, these symplectic Hubbard operators maintain the invariance of the Anderson Hamiltonian with respect to the SU(2) particle-hole transformation, \(f_\alpha \rightarrow \cos \theta f_\alpha + \text{sgn}(\sigma) \sin \theta f^\dagger_\alpha \). This extension of the slave boson representation with local SU(2) gauge symmetry was originally introduced by Wen and Lee as a mean-field treatment of the t-J model. Here we show that these Hubbard operators maintain the SU(2) gauge symmetry for arbitrary Sp(\(N \)) versions of the infinite-\(U \) Anderson and t-J models. This SU(2) gauge symmetry is essential for eliminating the false appearance of s-wave superconductivity in the finite-\(U \) Anderson model, where the two channels are identical.
What do we learn from this Anderson model picture of composite pairing? A key result is that the amount of composite pairing can be written in a simple gauge-invariant form as

$$\Delta_{SC} = \langle X_{02} \rangle \propto \langle \psi_1^\dagger \sigma (\langle \sigma_2 \rangle \psi_2^\dagger \cdot \vec{S}_f) \rangle,$$

(10)

where the Hubbard operator $X_{02} = |0\rangle \langle 2|$ mixes the empty and doubly occupied states. This mixing resembles an intra-atomic version of the negative-U pairing state, but double occupancy costs a large, positive energy. The physical consequence of this mixing is a redistribution of the charge in the f-electron orbitals, as the three charge states—empty, singly, and doubly occupied—all have different charge distributions. Such a rearrangement not only changes the total charge in the f shell, a monopole effect, but also will result in a quadrupole moment associated with the superconductivity. This quadrupole moment will lead to modified electric-field gradients that should be detectable as a sharp shift in the nuclear quadrupolar resonance (NQR) frequency at the neighboring nuclei, or as a sharp shift in the Mössbauer quadrupolar splitting at the f-electron nuclei.

This paper is organized as follows. First we introduce the symplectic Hubbard operators in Sec. II and demonstrate that the symplectic-N and SU(N) large-N limits are identical for a single channel. We then generalize this formalism to the case of two channels in Sec. III and show how composite pairing naturally appears as a mixing of the empty and doubly occupied states. The mean-field solution is presented in Sec. IV, in which we demonstrate how the superconducting transition temperature increases with increasing valence. In Sec. V, we calculate the charge distribution of the f orbitals in the state with composite pairing and make a concrete prediction for a shift in the NQR frequency at T_c in CeCoIn$_5$. Finally, Sec. VI discusses the implications for the finite-U Anderson model and examines the broader implications of our results.

II. SYMPLECTIC HUBBARD OPERATORS

Composite pairing was originally discussed in the two-channel Kondo model, where it is found in the symplectic-N limit, which maintains the time-reversal properties of spins in the large-N limit by using symplectic spins. Correctly including time-reversal symmetry allows the formation of Cooper pairs, and thus superconductivity. In order to treat composite pairing within a large-N Anderson model treatment, we would like to develop a set of Hubbard operators that maintain this time-reversal property in the large-N limit. Hubbard operators, like $X_{ab} = |a\rangle \langle b|$, are projectors between the local states, $|0, \sigma\rangle$, of the infinite-U Anderson model, describing both charge, $X_{0\sigma}$, and spin, $X_{\sigma\sigma'}$, fluctuations.

Starting from a spin state $|\sigma\rangle$, hopping an electron off and back onto the site generates a spin flip. This condition defines the Hubbard operators within a single channel, where the Hubbard operators must satisfy a graded Lie algebra in which the projected hopping operators anticommute, satisfying the algebra

$$\{X_{a\sigma}, X_{b\sigma'}\} = X_{a\sigma} X_{b\sigma'} + X_{00} \delta_{a\sigma} \delta_{b\sigma'}.$$

(11)

Now the traceless part of $X_{a\beta}$ defines a spin operator,

$$S_{a\beta} = X_{a\beta} - \frac{\delta_{a\beta}}{N} X_{\gamma\gamma},$$

so that quite generally, Hubbard operators must satisfy an algebra of the form

$$\{X_{a0}, X_{b\beta}\} = S_{a\beta} + \left(X_{00} + \frac{X_{\gamma\gamma}}{N} \right) \delta_{a\beta}.$$

(12)

Thus the commutation algebra of the Hubbard operators generalizes the spin operators of the local moments. In the traditional slave boson approach, the Hubbard operators are written $X_{a0} = b^\dagger f_a$. The spin operators generated by this procedure are the generators of SU(N), since

$$S_{a\beta}^{(SU(N))} = \left(f_a^\dagger b^\dagger b f^\dagger f_{-\beta} - \frac{n_f}{N} \delta_{a\beta} \right) + \left(b^\dagger b + \frac{n_f}{N} \right) \delta_{a\beta},$$

(13)

where $S_{a\beta}^{(SU(N))}$ is the well-known form of SU(N) spins. It is thus no wonder that this approach cannot treat superconductivity in the large-N limit, for there are no spin singlet Cooper pairs for SU(N) with $N > 2$. We require instead that the spin fluctuations generated by Hubbard operators are symplectic spin operators,

$$S_{a\beta} = f_a^\dagger f_{-\beta} - \text{sgn}(a\beta) f_{-\beta}^\dagger f_{-\alpha}.$$

(14)

We now show that the Hubbard algebra (11) can be satisfied with symplectic spins, using the introduction of two slave bosons,

$$X_{a0} = f_a^\dagger b + \tilde{\alpha} f_{-\alpha}, \quad X_{a\beta} = b^\dagger f_{\beta} + \tilde{\alpha} f_{-\beta}^\dagger f_{-\beta}.$$

(15)

These operators satisfy the Hubbard operator algebra (11), but now

$$X_{a\beta} = f_a^\dagger f_{\beta} + \tilde{\alpha} f_{-\beta} f_{-\beta} - X_{00} + \delta_{a\beta}$$

(16)

describes a symplectic spin operator while

$$X_{00} = b^\dagger b + a^\dagger a$$

(17)

is the representation of the empty state operator.

At first sight, the expedience of this new representation might be questioned: Why exchange the simplicity of the original Hubbard operators, $X_{ab} = |a\rangle \langle b|$, for a profusion of slave boson fields? However, while the original Hubbard operators may appear to be simple, they are singularly awkward to treat in many-body theory, due to their noncanonical anticommutation algebra, (8). The slave boson representation allows us to represent these operators in terms of canonical bosons and fermions. By doubling the number of slave bosons the symplectic character of the spins is preserved at all even values of N, and we shall see that this process encodes the hard-to-enforce Gutzwiller projection as a mathematically tractable SU(2) gauge symmetry.

Physical spins are neutral, and thus possess a continuous particle-hole symmetry. This property is maintained by symplectic spin operators, which can be seen most naturally by...
introducing the generalized pair-creation operators,
\[\Psi^\dagger = \frac{1}{2} \sum_a \tilde{a} f^\dagger_a f^\dagger_{-a} = \sum_{a>0} f^\dagger_a f^\dagger_{-a}, \]
which allow us to construct the isospin vector, \(\tilde{\Psi} = (\Psi_1, \Psi_2, \Psi_3) \), where
\[\Psi_1 = (\Psi^\dagger + \Psi), \]
\[\Psi_2 = -i(\Psi^\dagger - \Psi), \]
\[\Psi_3 = \sum_{a>0} (f^\dagger_a f_a - f_{-a} f^\dagger_{-a}) = n_s - N/2, \]
and \(n_s \equiv \sum_\alpha \langle \alpha | f^\dagger_\alpha f_\alpha | \alpha \rangle \) is the fermion number in the singly occupied states; i.e., \(n_s \) plays the role of the number of spins in the above constraint \(\Psi_3 \). The isospin vector commutes with symplectic symmetric, which imposes the constraints associated with the hole symmetry that allows us to redefine the spinon, \(Q \), the electromagnetic charge, and prevents double occupancy, while fluctuations must be fixed, representing the symplectic spins, the sum of the spin and charge \(n_f = n_s - N/2 \).

The three operators \((Q_\pm, Q_3) \) commute with the Hamiltonian, which imposes the constraints associated with the physical Hilbert space. The constraint reflects the neutrality of the spins under charge conjugation: \(Q_3 \) conserves total electromagnetic charge, and prevents double occupancy, while \(Q_\pm \) kills any states with \(s \)-wave pairs on site. From the form of \(Q_3 \), we see that \(b \) and \(a \) have opposite gauge charges. The gauge-invariant states satisfying the constraint (for \(N = 2 \)) are
\[|\alpha\rangle = f^\dagger_\alpha |\Omega\rangle, \quad |0\rangle = (b^\dagger + a^\dagger \Psi^\dagger) |\Omega\rangle. \]

The symplectic Hubbard operators can be written more compactly by using Nambu notation,
\[X_{0a} = B^\dagger f^\dagger_a, \quad X_{00} = B^\dagger B, \]
where
\[B = \begin{pmatrix} b \\ a \end{pmatrix}, \quad \tilde{f}^\dagger_a = \begin{pmatrix} f^\dagger_a \\ \tilde{a} f^\dagger_{-a} \end{pmatrix}. \]
The constraint becomes \(\tilde{Q} = B^\dagger \tilde{B} + \sum_a f^\dagger_a \tilde{f}^\dagger_a = 0 \). For \(N = 2 \), these Hubbard operators are the SU(2) slave bosons introduced by Wen and Lee in the context of the \(t-J \) model. Here, it becomes clear that the SU(2) structure is a consequence of symplectic symmetry, present in both the symplectic-\(N \) Kondo and Anderson models, not just for \(N = 2 \), but for all \(N \). This symmetry can be physically interpreted as the result of valence fluctuations in the presence of a particle-hole symmetric spin.

The Hamiltonian of the one-channel, single-impurity, infinite-\(U \) Anderson model can now be expressed via symplectic slave bosons as follows:
\[H = \sum_{k,\alpha} \epsilon_k c^\dagger_{k\alpha} c_{k\alpha} + E_0 (b^\dagger b + a^\dagger a) \]
\[+ \sum_a V \tilde{\psi}^\dagger_a (b^\dagger f_a + a^\dagger \tilde{a} f^\dagger_{-a}) + \text{H.c.} \]
The SU(2) gauge symmetry of this model becomes particularly evident in the field-theoretical formulation, where the partition function is written as a path integral:
\[Z = \int D[\tilde{\psi}, \tilde{\psi}^\dagger, \tilde{f}, \tilde{f}^\dagger, B, B^\dagger] e^{-S}, \]
where the Euclidean action \(S \) is written in Nambu notation as follows:
\[S = \int_0^\beta d\tau \sum_{k,\alpha>0} \tilde{\psi}^\dagger_{k\alpha} (\partial_\tau + \epsilon_k \tau) \tilde{\psi}_{k\alpha} \]
\[+ \sum_j \left\{ \frac{1}{2} \text{Tr} [\tau_3 A^j_{\alpha} (\partial_\tau + E_0 + \tilde{\tau} \cdot \tilde{\tau}) A^j_{\alpha}] \right\}, \]
\[\tilde{\psi}^\dagger_a = (\tilde{\psi}_{\alpha}^\dagger a \tilde{a} \psi_{-\alpha}), \quad \beta = 1/T \]
is the inverse temperature and the SU(2) matrix \(A_{\alpha} \) of slave bosons is defined as
\[A_{\alpha} = \begin{pmatrix} b_j & a_j^\dagger \\ a_j & -b_j^\dagger \end{pmatrix}. \]
The first three terms in Eq. (26) describe the dynamics of conduction electrons \(\tilde{\psi}, \tilde{\psi}^\dagger \) electrons \(\tilde{f}, \tilde{f}^\dagger \), and the slave bosons \(B, B^\dagger \), respectively, with the constraint \(\tilde{Q} = 0 \) imposed by introducing the vector of Lagrange multipliers \(\tilde{\lambda} \). The last term describes the coupling between the \(\tilde{f} \) atom and conduction electrons.

The action (26) is manifestly invariant under the SU(2) gauge transformation via unitary matrix \(\tilde{g}_j \):
\[\tilde{f}_j = g_j \tilde{f}_j, \quad \tilde{\psi}_j = g_j \tilde{\psi}_j, \quad A_j = g_j A_j, \quad \tilde{\lambda}_j = \tilde{\lambda}_j \tilde{g}_j, \tilde{\tau} = \tilde{\tau} - \tilde{g}_j \partial_\tau \tilde{g}_j \]
At first sight, the \(a \) hybridization term in the Hamiltonian, Eq. (24), appears to give rise to \((c^\dagger f^\dagger) \) pairing terms; however, the SU(2) symmetry allows to redefine the fields, making the substitution
\[B = \begin{pmatrix} b \\\n a \end{pmatrix} \rightarrow \tilde{g} B = \begin{pmatrix} b' \\
 a' \end{pmatrix}, \]
recovering the usual \(U(1) \) slave boson Hamiltonian.
One of the most important physical consequences encoded in this local gauge symmetry is the complete suppression of any s-wave pairing in the single-channel Anderson model. Indeed, the constraint operator $Q_+ = \sum_{\sigma} f_\sigma f_\sigma - b^\dagger b$ may be directly interpreted as the on-site s-wave pair-creation operator plus a term $b^\dagger b$ that can be removed by the above gauge transformation. In particular, the mean-field constraint

$$\langle Q_+ \rangle \equiv \langle \text{s-wave pair creation operator} \rangle = 0$$

hard-wires the strong suppression of local s-wave pairing into the formalism. In the language of superconductivity, the constraint $Q_+ = 0$ plays the role of an infinite Coulomb pseudopotential, or renormalized electron-electron interaction, μ^*. It is the satisfaction of this constraint that drives anisotropic composite pairing.

III. THE TWO-CHANNEL ANDERSON LATTICE MODEL

We turn now to the two-channel lattice Anderson model, where the two channels involve charge fluctuations to the “empty” and “doubly occupied” states; here we use the language of Ce^{3+} whose ground-state configuration is f^{13}, but this model captures any system with valence fluctuations from $f^{n-1} \rightarrow f^n = f^{n+1}$, where n is odd. For $n = 1$, the empty state, $|0\rangle$, is trivially a singlet, and we choose the doubly occupied state to be a singlet formed from electrons in two orthogonal channels,

$$|2\rangle = a f_{1,\sigma}^\dagger f_{1,-\sigma}^\dagger |0\rangle,$$

(30)

where $|\Gamma_1 : \pm \rangle \equiv |\pm \rangle$ is the ground-state crystal-field doublet, and $|\Gamma_2 : \pm \rangle$ is an excited crystal-field doublet. In the finite-U Anderson model, the symmetries of the electron addition and removal processes are identical, but here Hund’s rules force the second electron to be placed in a channel orthogonal to the first.

The local atomic Hamiltonian at site j can be expressed in terms of Hubbard operators,

$$H_a(j) = E_0 X_{00}(j) + E_2 X_{22}(j) + \sum_{\sigma} \epsilon_j X_{\sigma\sigma}(j) + \sum_{\sigma} \Delta_{\sigma\sigma} X_{\Gamma_\sigma\sigma; \Gamma_\sigma\sigma},$$

(31)

where the X’s are the Hubbard operators projecting into the empty, $X_{00} = |0\rangle\langle 0|$, and doubly occupied, $X_{22} = |2\rangle\langle 2|$, states, as well as the projectors into ground-state, $X_{\sigma\sigma} = |\Gamma_1 \sigma \rangle \langle \Gamma_1 \sigma | = |\sigma \rangle \langle \sigma |$, and excited, $X_{\Gamma_1\sigma; \Gamma_2\sigma} = |\Gamma_2 \sigma \rangle \langle \Gamma_1 \sigma |$, crystal-field doublets. If we measure the energies from the f-electron level, $E_0 = -\epsilon_f$ and $E_2 = U_{12} + \epsilon_f$ are both positive, where U_{12} is the Hubbard U for the doubly occupied state with one electron in Γ_1 and the other in Γ_2. We take $U_{11}, U_{22} \rightarrow \infty$. The f electrons hybridize with a bath of conduction electrons, $H_c = \sum_{k,\sigma} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma}$, in two different channels,

$$H_c(j) = \sum_{j} V_1 \psi_{1,\sigma}^\dagger X_{00}(j) + V_2 \bar{\sigma} \psi_{2,\sigma}^\dagger X_{-2}(j) + \text{H.c.},$$

(32)

FIG. 3. The six physical states in the Hilbert space of the $N = 2$ two-channel Anderson model, representing the ground state and excited crystal-field doublets, and the empty and doubly occupied singlets. Arrows show the operators that move between states in the Hilbert space.

The angular momentum dependence is hidden inside the conduction Wannier states,

$$\psi_{\Gamma_\sigma} = \sum_k e^{-i k \cdot R_j} \left[\Phi_{\Gamma_k \sigma} c_{k\sigma} \right] \text{ (} \Gamma = 1, 2\text{),}$$

(33)

where the crystal-field form factors $\left[\Phi_{\Gamma_k \sigma} \right] = \langle k \Gamma \sigma | k \sigma \rangle$ are proportional to unitary matrices. $X_{\Gamma_0} = |0\rangle \langle \Gamma_1 \sigma |$ and $X_{\Gamma_2} = |2\rangle \langle \Gamma_1 \sigma |$ are the Hubbard operators between the singly occupied ground state and empty or doubly occupied states, respectively (see Fig. 3).

The symplectic-N Hubbard operators describing charge fluctuations in the two channels are a simple generalization of those used for a single channel. For a single site, these are given by

$$X_{0\alpha} = b_\alpha^\dagger f_{\alpha} + a_\alpha^\dagger \bar{\sigma} f_{-\alpha}^\dagger, \quad X_{0\alpha} = b_\alpha^\dagger b_\alpha + a_\alpha^\dagger a_\alpha,$$

(34)

for the doubly occupied state $|2\rangle$, which can again be written more compactly by using a Nambu notation,

$$X_{0\alpha} = B_\alpha^\dagger f_{\alpha}, \quad X_{2\alpha} = B_\alpha^\dagger f_{-\alpha}^\dagger,$$

(35)

where

$$B_\alpha = \left(\begin{array}{c} b_\alpha \\ a_\alpha \end{array} \right), \quad B_\alpha = \left(\begin{array}{c} b_\alpha \\ -a_\alpha \end{array} \right).$$

(36)

We are free to choose the sign of a_α, and in the above we have chosen the negative sign to preserve continuity with the results from the two-channel Kondo model.7 The doubly occupied state is then

$$|2\rangle = (b_\alpha^\dagger - a_\alpha^\dagger \Psi^\dagger) |\Omega\rangle,$$

(37)

where $\Psi = \sum_{\alpha > 0} f_{\alpha}^\dagger f_{-\alpha}^\dagger$ is the pair-creation operator, as before. In the two-channel model case the constraint becomes

$$\tilde{Q} = b_\alpha^\dagger \tilde{T} B_\alpha + B_\alpha^\dagger \tilde{T} B_\alpha + f_{\alpha}^\dagger f_{\alpha}^\dagger = 0.$$

(38)

The intersection of the two Hubbard algebras gives rise to an extra doublet,

$$|\Gamma_2 \alpha\rangle = (b_\alpha^\dagger a_\alpha^\dagger + b_\alpha^\dagger a_\alpha^\dagger) f_{\alpha}^\dagger |\Omega\rangle,$$

(39)

7 064514-5
which we interpret as the excited crystal-field doublet because it is reached by destroying a Γ_1 electron from the doubly occupied state, leaving behind the Γ_2 electron. However, this extra doublet is not killed by X_{00} or X_{22}, which are no longer the projectors within this larger space. The full Hamiltonian term for this state must therefore be quartic in the bosons, and subtract off the contribution from X_{00}, X_{22}, and $X_{\sigma\sigma}$,

$$\Delta_{\text{CF}} = -(E_0 + E_2 + \epsilon_f)(b_\alpha a_\beta + b_\beta a_\alpha)(b_0 a_2 + a_0 b_2),$$

where Δ_{CF} is the crystal-field-effect splitting. We neglect this term for much of our analysis, as it turns out to be irrelevant for the superconducting states of interest.

In addition to an extra state, there are two additional operators,

$$X_{20} = (X_{02}, X_{a0}) = b_\alpha^\dagger B_0 = b_\alpha^\dagger b_0 - a_\alpha^\dagger a_0,$$

$$X_{\Gamma_{1\alpha\tau\beta}} = - (X_{0\alpha}, X_{2\beta}) = B_{\alpha}^\dagger (-i \tau) B_{\beta}^\dagger T \tilde{\alpha} \delta_{\alpha-,\beta} = (b_\alpha^\dagger a_{\beta}^\dagger - a_\alpha^\dagger b_\beta^\dagger) \tilde{\alpha} \delta_{\alpha-,\beta}.$$

The operator $X_{\Gamma_{1\alpha\tau\beta}}$ mixes the ground-state and excited crystal-field doublets, leading to a composite density wave state, $(c_i^\dagger f_i^\dagger c_i^\dagger f_i^\dagger)$, as this state mixes two irreducible representations of the point group, it necessarily breaks the crystal symmetry, and this phase can also be called a composite nematic. This mixing resembles the ordered state proposed for URu$_2$Si$_2$ (Ref. 20), which mixes ground-state and excited singlets.

The operator $X_{20} = [2][0]$ mixes the empty and doubly occupied states, and can be thought of as a pair-creation operator. As we show in the next section, this operator acquires an expectation value when composite pairing develops. The development of an intra-atomic order parameter (X_{02}) is reminiscent of pairing in a negative-U (attractive-U) atom, but unlike a negative-U atom, the empty and doubly occupied sites are excited states of the atomic Hamiltonian, and they are only partially occupied as a result of valence fluctuations. Furthermore, the paired state is an anisotropic singlet with nodes. In the case of the Ce 115 materials, this product has d-wave symmetry.

Again, we should consider the question of suppressing s-wave superconductivity. Here,

$$Q_+ = \sum_{\alpha>0} f_\alpha^\dagger f_\alpha^\dagger a_\alpha^\dagger a_\alpha + b_\alpha^\dagger a_\alpha + b_\alpha^\dagger a_\alpha.$$

We know from the one-channel model that a_0 can be removed by a gauge transformation, eliminating the middle term, but the $b_\alpha^\dagger a_\alpha$ term cannot be uniformly eliminated. However, it will only be nonzero in a state where both X_{20} and $X_{\Gamma_{1\alpha\tau\beta}}$ are nonzero, implying coexisting superconducting and composite nematic order. Under normal circumstances, these two phases repel one another, and s-wave superconductivity is wholly suppressed.

IV. THE LARGE-N TWO-CHANNEL ANDERSON LATTICE MODEL

We are now able to write the symplectic-N two-channel Anderson lattice model in terms of the symplectic Hubbard operators,

$$H = \sum_k \epsilon_k c_{k\alpha}^\dagger c_{k\alpha} + \sum_j \left[E_0 B_0^\dagger(j) B_0(j) + E_2 B_2^\dagger(j) B_2(j) + \frac{V_1}{\sqrt{N/2}} \sum_j \psi_{1\alpha}^\dagger B_0^\dagger(j) \bar{f}_{j\alpha} + \text{h.c.} \right] + \frac{V_2}{\sqrt{N/2}} \sum_j \psi_{2\alpha}^\dagger \bar{f}_{j\alpha} B_2(j) + \text{h.c.}$$

In order to keep the Hamiltonian extensive in N, we have rescaled the hybridization terms by $(N/2)^{-1/2}$, so that when they recover the correct $N = 2$ form, (32). This rescaling implicitly assumes that the slave boson fields B_j $(i = 0, 2)$ will acquire a magnitude of order $O(\sqrt{N})$. Since there are only two flavors of bosons, for the bosons to play a role in the large-N limit, they must be condensed.

Following the construction that led to the path integral description of the single-channel Anderson model (26) above, one can write down the Euclidean action that corresponds to this Hamiltonian:

$$S_{\Psi, \bar{f}, A_{0,2}} = \int_0^\beta d\tau \sum_{k,\alpha>0} \bar{\psi}_{k\alpha}^\dagger (\partial_\tau + \epsilon_k \tau) \psi_{k\alpha} + \sum_j \left[\frac{1}{2} \text{Tr} \left[\tau_3 A_{0j}^\dagger(\partial_\tau + E_0 + \tilde{\lambda}_j \cdot \bar{\tau}) A_{0j} \right] + \frac{1}{2} \text{Tr} \left[\tau_3 A_{2j}^\dagger(\partial_\tau + E_2 + \tilde{\lambda}_j \cdot \bar{\tau}) A_{2j} \right] \right] + \sum_{\alpha>0} \left\{ \bar{f}_{j\alpha}^\dagger(\partial_\tau + \tilde{\lambda}_j \cdot \bar{\tau}) f_{j\alpha} + \frac{V_1}{\sqrt{N/2}} \bar{\psi}_{j\alpha}^\dagger A_{0j}^\dagger \bar{f}_{j\alpha} + \frac{V_2}{\sqrt{N/2}} \bar{\psi}_{j\alpha}^\dagger A_{2j}^\dagger \bar{f}_{j\alpha} + \text{h.c.} \right\},$$

where $\bar{\psi}_{j\alpha}^\dagger = (\psi_{j\alpha}^\dagger, \text{sgn}(\alpha) \psi_{j\alpha-a}^\dagger)$.

Above, we have collected the slave bosons into the SU(2) matrices,

$$A_{0j}^\dagger = \begin{bmatrix} b_0^\dagger & a_0^\dagger \alpha_0^\dagger & -b_0 \end{bmatrix}, \quad A_{2j}^\dagger = \begin{bmatrix} a_2 & b_2^\dagger & -a_2^\dagger \end{bmatrix}.$$

The action (43) remains manifestly invariant under the SU(2) gauge symmetry $B_i \to \hat{g}_j B_i$, where \hat{g}_j is an SU(2) matrix. The matrices A_{0j}, A_{2j} transform under this gauge symmetry as $A_i \to \hat{g}_j A_i$, leaving the product

$$A_{0j}^\dagger A_{0j}^\dagger = \begin{bmatrix} b_0 b_0^\dagger + a_0 a_0^\dagger & a_0 b_0^\dagger \alpha_0^\dagger & -b_0 b_0^\dagger \\ b_0 a_0^\dagger \alpha_0^\dagger & a_0 a_0^\dagger & -b_0 \alpha_0^\dagger \\ -b_0 a_0^\dagger & b_0 b_0^\dagger & a_0^\dagger \alpha_0^\dagger \end{bmatrix}$$

gauge invariant.

The off-diagonal components of the product $A_{0j}^\dagger A_{0j}$ have the physical meaning of composite pairing between conduction and f electrons. Indeed, in the Kondo limit, $E_0, E_2 \gg \pi \rho V^2$, we can connect the two-channel Anderson model results to those from the two-channel Kondo model. A Schrieffer-Wolff transformation maps $b_0 \to V_1, a_0 \to \Delta_1, b_2 \to \Delta_2$, and $a_2 \to V_2$, where V_1 and Δ_1 are the particle-hole and...
particle-particle hybridizations, respectively. We can now identify the off-diagonal components of $A^{y}_{1,0} \propto V_{1} \Delta_{2} - V_{2} \Delta_{1}$ with composite pairing. More generally, the components of $A^{y}_{1,0}$ can be identified with the state-mixing operators,

$$A^{y}_{1,0} = \begin{bmatrix} X_{g_{1}g_{2}} & -X_{02} \\ X_{20} & X_{g_{2}g_{1}} \end{bmatrix},$$

which confirms the identification of (X_{02}) with composite pairing, and implies that the composite pair state contains an admixture of the empty and doubly occupied states.

To write down a translationally invariant Hamiltonian, we assume that the expectation values of the slave bosons are uniform, which allows us to write down the Hamiltonian in momentum space. To simplify this step, we temporarily drop the spin-orbit dependence of the Wannier functions, treating the form factors as spin diagonal, $V_{1j} = \sum_{k} c_{k} e^{-i k \cdot B_{j}}$. This allows us to absorb the momentum dependence of the form factors into the hybridizations by defining $V_{1j} = \frac{V_{1j}}{\sqrt{N}}$. To obtain the d-wave symmetry which arises naturally from the spin-orbit form factors, we now must explicitly make $V_{1j} V_{2j}$-wave. The full spin-orbit dependence can be restored in a similar manner to the two-channel Kondo model. The Hamiltonian is

$$H = \sum_{k \alpha} (\epsilon_{k} c_{k \alpha}^{\dagger} c_{k \alpha} + V_{1k} c_{k \alpha}^{\dagger} B_{0}^{\dagger}_{\alpha} f_{k \alpha} + V_{2k} c_{k \alpha}^{\dagger} \tilde{f}_{k \alpha}) B_{2} + \text{H.c.})$$

$$+ N_{c} (E_{0} B_{0}^{\dagger}_{0} B_{0} + E_{2} B_{2}^{\dagger}_{2} B_{2}),$$

where N_{c} is the number of lattice sites. As before, the SU(2) constraint is implemented with a vector of Lagrange multipliers, $	ilde{\lambda}$,

$$\tilde{\lambda} \cdot \left(\sum_{k} f_{k \alpha}^{\dagger} B_{0}^{\dagger}_{\alpha} B_{0} + B_{2}^{\dagger}_{\alpha} B_{2} \right),$$

where we have also assumed that $\tilde{\lambda}$ is translationally invariant, enforcing the constraint on average. This approximation becomes exact in the large-N limit.

The Hamiltonian can be rewritten in the compact form with Nambu spinors,

$$H = \sum_{k \alpha} (\tilde{c}_{k \alpha}^{\dagger} f_{k \alpha})$$

$$\times \left[\begin{array}{cc} \epsilon_{k} \tau_{3} & V_{1k} A_{0}^{\dagger}_{0} + V_{2k} A_{2}^{\dagger}_{2} \\ V_{1k} A_{0} + V_{2k} A_{2} & \tilde{\lambda} \cdot \tau \end{array} \right] \left(\tilde{c}_{k \alpha} f_{k \alpha} \right)$$

$$+ [E_{0} B_{0}^{\dagger}_{0} B_{0} + E_{2} B_{2}^{\dagger}_{2} B_{2} + \tilde{\lambda} \cdot (B_{0}^{\dagger}_{0} B_{0} + B_{2}^{\dagger}_{2} B_{2})].$$

A. The mean-field solution

In order to study the effects of mixed valence on the superconductivity, we examine the mean-field solution of the composite pair state in the symplectic-N limit. The bosons are replaced by their expectation values, $B_{j} \rightarrow \langle B_{j} \rangle \sim O(\sqrt{N})$, and the Hamiltonian (49) becomes quadratic in the fermions, which may be integrated out exactly, leading to the effective action $S_{eff}[B_{0}, B_{2}]$ in terms of the boson fields only. The mean-field solution is then obtained as a saddle point of this action:

$$\frac{\delta S_{eff}[B_{0}, B_{2}]}{\delta B_{j}} = 0.$$ (50)

We use the SU(2) gauge symmetry to eliminate the a_{0} boson, and now the composite pair state is defined by the nonzero expectation value of $(X_{02}) = (b_{1}^{\dagger} b_{2})$. While the a_{2} boson can in principle acquire an expectation value, it would lead to a uniform composite density wave solution, which is generally unstable to the composite pair solution. Therefore, in what follows, we shall set $(a_{2}) = 0$. The resulting free energy can be rewritten in terms of our mean-field parameters, where we replace $(b_{1}) / \sqrt{N/2}$ with b_{1} for clarity (however keep in mind that these have lost their dynamics),

$$F = -NT \sum_{k \alpha} \log 2 \cosh \frac{\beta \omega_{k,\pm}}{2} + \frac{N N_{c}}{2} \left[b_{0}^{\dagger}(E_{0} + \lambda_{3}) + b_{2}^{\dagger}(E_{2} + \lambda_{3}) \right].$$ (51)

N_{c} is the number of sites, and the dispersion of the heavy electrons is given by four branches: $\omega_{k,\pm} = \sqrt{\alpha_{k}^{2} \pm \Gamma_{k}^{2}}$, $\alpha_{k} = b_{1}^{2} + \frac{1}{2}(\epsilon_{k} + \lambda_{3} + \lambda_{1})$, $\Gamma_{k} = \sqrt{\alpha_{k}^{2} - \gamma_{k}^{2}}$, $\gamma_{k}^{2} = \epsilon_{k} \lambda_{3} - b_{3}^{2}$.

We also defined $b_{3}^{2} = V_{1k} b_{0}^{\dagger} b_{0} + V_{2k} b_{2}^{\dagger} b_{2}$.

In a nodal composite pair superconductor, the $\tilde{\lambda}$ constraint reduces to λ_{3}, as the λ_{1} constraint acts as a Coulomb pseudopotential eliminating s-wave pairing, and it is thus unnecessary when we choose $V_{1k} V_{2k}$ such as to give nodal superconductivity. However, if we were to treat the finite-U model, where $V_{1k} = V_{2k}$, this constraint is essential to eliminate the appearance of a false s-wave superconducting phase.

The mean-field parameters are determined by minimizing the free energy with respect to $b_{0}, b_{2}, \lambda_{3},$ and λ_{1}. To understand their implications, we first present the mean-field equations in real space,

$$\langle f_{j} f_{j}^{\dagger} \rangle = V_{j}^{2} \sum_{\alpha} \langle f_{j \alpha}^{\dagger} \psi_{j \alpha} \rangle,$$

$$\langle f_{j} f_{j}^{\dagger} \rangle = \frac{V_{j}^{2}}{E_{j}} \sum_{\alpha} \langle \bar{\alpha} f_{j \alpha} \psi_{j \alpha} \rangle,$$

$$\sum_{\alpha} \langle f_{j \alpha} f_{j \alpha} \rangle = N/2 - \langle b_{0} \rangle^{2} - \langle b_{2} \rangle^{2},$$

$$\sum_{\alpha} \langle \bar{\alpha} f_{j \alpha} f_{j \alpha} \rangle = 0.$$ (53)
These equations bear a strong resemblance to the two-channel Kondo equations, where \((h_0)\) plays the role of the hybridization \(V_1\) in channel one, while \((h_2)\) plays the role of the pairing field \(\Delta_2\) in channel two; here the hybridizations are explicitly identified as the magnitude of the valence fluctuations to the empty and doubly occupied states. The number of singly occupied levels, \(n_s = \sum_a f_a^1 f_a^0\), is no longer fixed to \(N/2\) and instead decreases as hybridization and pairing develop.

To calculate the phase diagram, we return to the momentum space picture, and derive the three equations relevant for composite pair superconductivity with a nodal order parameter. The last two equations in (53) impose the constraint \(Q = 0\), fixing \(n_s = N/2 - b_0^2 - b_2^2\) and annihilating any \(s\)-wave pairs, while the first two equations determine the magnitude of the valence fluctuations to the empty and doubly occupied states, respectively:

\[
\sum \pm \frac{\tanh \frac{\beta \epsilon k}{2}}{2 \epsilon k} \begin{pmatrix} \lambda_3 & \lambda_1 \\ 2V_{1k}^2 & 2V_{2k}^2 \end{pmatrix} \begin{pmatrix} \lambda_3 & \lambda_1 \\ 2V_{1k}^2 & 2V_{2k}^2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} b_0^2 + b_2^2 \\ 0 \\ 2(E_0 + \lambda) \\ 2(E_2 + \lambda) \end{pmatrix},
\]

where

\[
A = \begin{pmatrix} \lambda_3 \epsilon k + \epsilon k [b_0^2 - \lambda_3 \epsilon k] \\ \lambda_{12} \epsilon k + \epsilon k [2V_{1k} V_{2k} b_2 - \lambda_1 \epsilon k] \\ V_{1k}^2 (\epsilon k + \lambda_3)^2 + \lambda_3^2 + 2\lambda_{12} V_{1k} V_{2k} b_2 \\ V_{2k}^2 (\epsilon k - \lambda_3)^2 + \lambda_3^2 + 2\lambda_{12} V_{1k} V_{2k} b_2 \end{pmatrix}.
\]

In addition to these four equations, we must also fix the total electromagnetic charge in the system by keeping the total number of conduction electrons plus physical \(f\) electrons constant. Notice that the number of physical \(f\) electrons, \(n_f = N/2 - b_0^2 + b_2^2\), counts the electrons in both the singly and doubly occupied states, and differs from the occupation of the spin states, \(n_s = N/2 - b_0^2 - b_2^2\), by \(2b_2^2\).

These equations can be solved numerically for a simple two-dimensional model where we take an \(s\) wave \(V_{1k} = V\) and a \(d\) wave \(V_{2k} = V \cos k_x - \cos k_y\), and take the two-dimensional conduction electron dispersion, \(\epsilon_k = -2t(\cos k_x + \cos k_y) - \mu\), where \(\mu\) is adjusted to fit the total charge, \(n_f + n_c\). \(\lambda_1\) can be set to zero here since by construction, we are not considering \(s\)-wave composite pairing. This model contains three nontrivial phases:

1. For \(E_0 \ll E_2\), a heavy Fermi liquid develops below the temperature \(T^*_1\). In this phase, \(b_0\) becomes nonzero and the hybridization has symmetry \(\Gamma_3\) due to screening of \(f\) spins by conduction electrons in this channel. The \(f\)-electron valence will be less than \(N/2\), and these results will be identical to the infinite-\(U\) Anderson model discussed in the introduction.

2. For \(E_2 \ll E_0\), a heavy Fermi liquid develops at \(T^*_2\), where \(b_2\) becomes nonzero. This Fermi liquid will have the symmetry of the excited doublet, \(\Gamma_2\), and the \(f\)-electron valence will be larger than \(N/2\). Again, these results should be identical to the appropriate infinite-\(U\) Anderson model.

3. Below the superconducting temperature, \(T_c\), a phase with \(d\)-wave composite pairing develops out of the heavy Fermi liquid, where \(b_0 b_2\) becomes nonzero. \(T_c \leq T^*_1, T^*_2\) is maximal where \(T_c = T^*_1 = T^*_2\) and here the composite pair superconductor develops directly out of the high-temperature state of free spins, bypassing the heavy Fermi liquid. As superconductivity is driven by the Cooper channel in the heavy electron normal states, \(T_c\) is always finite and the ground state will always be superconducting. The \(f\)-electron valence will generally differ from \(N/2\), with nonzero contributions of both \(f^0\) and \(f^2\).

Note that in the full model, the Kondo temperatures \(T^*_1\) and \(T^*_2\) mark crossovers into the heavy Fermi liquids. The appearance of phase transitions associated with condensation of \(\langle b_1 \rangle\) and \(\langle b_2 \rangle\) here is a spurious consequence of the mean-field large-\(N\) treatment and is resolved with \(1/N\) corrections.17 However, the superconducting phase transition is not spurious and will survive to finite \(N\).16

In Fig. 4, we plot the superconducting transition temperature versus the proportion of empty states, \(n_0 = b_0^2\), and that of doubly occupied states, \(n_2 = b_2^2\). Larger \(n_0\) and \(n_2\) indicate a greater degree of mixed valency, which may be obtained by varying \(V\), \(E_0\), and \(E_2\). We show two possible paths for tuning real materials: (1) By varying \(U_{12} = E_2 = E_0 - 2\epsilon_f\), is tuned while fixing the \(f\) level, \(\epsilon_f\) (blue solid path). Here, \(E_2\) is fixed and \(E_0\) increases from left to right. (2) Alternatively, the hybridization, \(V\), can be increased, as by pressure or by exchanging \(4f\) for \(5f\) ions (green dashed path). \(T_c\) is scaled by \(\Delta = \pi V^2\), and we have fixed \(n_2 = 1.8\) in units of \(N/2\).

V. CHARGE REDISTRIBUTION

As the development of composite pairing mixes the empty and doubly occupied states, each develops a nonzero occupation, and the charge density changes. The link between the \(f\)-electron charge and the development of the Kondo effect in the one-channel Anderson model was explored by Gunnarsson and Schoenhammer,22 who showed that the \(f\)-electron valence
n_f decreases gradually with temperature through the Kondo crossover, $n_f(T) = 1 - b_f^2(T)$. The mixing of the empty and doubly occupied states adds a new element to this relationship, and the consideration of real, non-s-wave hybridizations allows us to explore the higher angular momentum components of the charge distribution. The charge density can be written \(\hat{\rho}(x) = \hat{\psi}_a^\dagger(x)\hat{\psi}_a(x) \), where \(\hat{\psi}_a^\dagger(x) \) creates a physical electron of spin \(\alpha \) at \(x \). The electron field \(x \) can be approximately decomposed as a superposition of two orbitals \(\Gamma_1 \) and \(\Gamma_2 \) at nearby lattice sites \(j \).

\[
\hat{\psi}_a(x) = \sum_j [\Phi_1^a\rho_j(x - R_j)f_{1j\beta} + \Phi_2^a\rho_j(x - R_j)f_{2j\beta},
\]

where we have reintroduced the spin-orbit form factor, \(\Phi_1^a\rho_j \), in order to model real materials. The charge density of an \(f \)-electron located at the origin in channel \(\Gamma \) is \(\rho(0) = T_1^a\Phi_1^a(0)R(0)^2 \), where \(R(0) \) is the radial function for the \(f \)-electron, and \(\Phi_1^a(0)^2 \) is a diagonal matrix. If we assume that the overlap of electrons at neighboring sites is negligible, the total charge density has three different terms,

\[
\hat{\rho}(x) = \sum_j \rho_1(x - R_j)f_{1j\beta}^\dagger f_{1j\beta} + \rho_2(x - R_j)f_{2j\beta}^\dagger f_{2j\beta} + [\Phi_1^a\Phi_2^a\rho_j(x - R_j)f_{1j\beta}^\dagger f_{2j\beta}^\dagger + H.c.],
\]

where we have kept the spin indices of \(\Phi_1^a\Phi_2^a\rho_j \), as it may not be diagonal in spin space. In terms of the Hubbard operators, we can replace

\[
f_{1j\beta}^\dagger f_{1j\beta} = X_{22}(j) + n_s(j) = B_{1j}^2 B_2j + n_s(j),
\]

\[
f_{2j\beta}^\dagger f_{2j\beta} = X_{22}(j) + X_{1\gamma\beta}^\dagger X_{1\gamma\beta} = B_{2j}^2 B_2j + \gamma^\dagger \gamma,
\]

\[
f_{1j\beta}^\dagger f_{2j\beta} = X_{1\gamma\beta}^\dagger X_{1\gamma\beta}(j),
\]

where as before, the number of singly occupied states on site \(j \) is \(n_s(j) \), and \(N/(2 - B_0^2)B_{1j}B_2 - B_3^2 B_{2j} \), and \(\gamma = X_{1\gamma\beta}^\dagger X_{1\gamma\beta} \) is the operator from equation (40), so that \(\gamma^\dagger f_{a\beta} \) creates an electron in the excited single-electron crystal field state \(|\Gamma\alpha\rangle \), see Fig. 3. The third term, \(X_{1\gamma\beta}^\dagger X_{1\gamma\beta} = |\Gamma_1\alpha\rangle|\Gamma_2\beta\rangle \), mixes the two crystal-field states, shifting charge from \(\Gamma_1 \) to \(\Gamma_2 \). In the large-\(N \) mean-field theory, this state corresponds to nonvanishing diagonal elements of the matrix \(\langle A_{1\sigma}^\dagger A_0 \rangle \) in Eq. (48), \(\langle X_{1\alpha\gamma\beta}^\dagger X_{1\alpha\gamma\beta} \rangle \sim a_0 b_2 + a_2 b_0 \). Since \(\Gamma_1 \) and \(\Gamma_2 \) are two different representations of the crystal point group, such mixing implies that the crystal symmetry is spontaneously broken: In Ce-115 materials it would correspond to the orthorhombic “nematic” density wave state, which has not been observed. We are primarily interested in superconducting instability, and therefore ignore such a state by setting \(a_0 = 0 \) in what follows, assuming we have already gauge-fixed \(b_0 = 0 \).

In the heavy Fermi liquid and superconducting states, we may use the constraint to rewrite \(f_{1j\beta}^\dagger f_{1j\beta} = N/2 - X_{00}(j) \).

The charge distribution becomes

\[
\hat{\rho}(x) = \sum_j \rho_1(x - R_j) \left[\frac{N}{2} - X_{00}(j) \right] + \rho_2(x - R_j) X_{22}(j).
\]
composite condensate provides an alternate explanation and,
in addition, leads to the development of electric-field gradients
around the f-lattice sites, which can also be measured directly
as a shift in the nuclear quadrupole resonance frequency,
ΔV_{NQR}, at the nuclei of the nearby atoms.

To make contact with potential experiments, we examine
CeCoIn$_5$ in more detail. In atoms have a nuclear moment
$I = 9/2$, which results in a quadrupole moment, $Q = 8.3 \times 10^{-20}$ m2, making them NQR active. The symmetry of the ground-state doublet is Γ_7^+ (Ref. 25), whose angular dependence is given by,

$$\Phi_{\Gamma_7^+}^2(\theta, \phi) = \frac{3}{16} \sin^2 \theta [2 \sqrt{5} \cos 4 \phi \sin^2 \theta \sin 2 \xi + 11 \cos 2 \xi + 5 \cos 2 \theta (1 + 2 \cos 2 \xi)],$$

(60)

where ξ is a crystal-field parameter depending on the
microscopic details that can be measured with inelastic neutron
scattering, and we set $\xi \approx 0.25$ for CeCoIn$_5$ (Ref. 25). We take
the symmetry of the second channel to be Γ_6^-, whose angular dependence is

$$\Phi_{\Gamma_6^-}^2(\theta, \phi) = \frac{3}{32} [12 \cos 2 \theta + 5 (3 + \cos 4 \theta)].$$

(61)

We can now use the real charge distributions of the two orbitals
to estimate the magnitude of the electric-field gradient, V_{ab}, where

$$\rho_r(x) = |\Phi_{\Gamma}^2(\theta, \phi)|^2 R(r)^2.$$

(62)

$R(r)$ is the 4f radial function,

$$R(r) = \frac{1}{96 \sqrt{35}} \left(\frac{Z}{2a_B}\right)^3 \exp \left(-\frac{Zr}{2a_B}\right).$$

(63)

$a_B = 0.53$ Å is the Bohr radius, and $Z = 6 \sqrt{10 a_B} / r_{Ce}$ is
adjusted so that the atomic radius is that of Ce$^{3+}$, $(r) = r_{Ce} =
1.15$ Å (Ref. 26).

The NQR frequency measures the electric-field gradients
at two different indium sites in the crystal: the in-plane,
high-symmetry In(1) sites, which sit in the center of a square of Ce
atoms, and the lower symmetry out-of-plane In(2) sites, which
are above and in between two Ce atoms. The NQR frequency
is given by

$$V_{\text{NQR}} = \frac{3 \epsilon V_z Q}{2 h I (2I - 1)} \text{ Hz},$$

(64)

At the In(2) site, there is a nonzero asymmetric contribution,
$\eta = |V_{xx} - V_{yy}| / V_{zz}$, which can be independently determined
from experiment. Now that we have an accurate expression for the
charge distribution of the two orbitals, we may calculate
the electric-field gradient at x associated with a charge q in
orbital Γ at R_j:

$$V_{zz}(x, R_j) = q \frac{4 \pi \epsilon_0}{3} \int x \rho_r(x - R_j) \left[\frac{3(a - a')^2}{|x - x'|^3} - \frac{1}{|x - x'|^5} \right].$$

(65)

Summing over the eight neighboring Ce sites is sufficient
to estimate the magnitude of the NQR shift, where we use
the lattice constants of CeCoIn$_5$, $a = 4.6$ Å, and $c = 7.4$ Å (Ref. 2). The electric-field gradients for a charge eq_1 in channel Γ are shown in Table I.

<table>
<thead>
<tr>
<th>CeCoIn$_5$</th>
<th>In(1) V_{zz}</th>
<th>In(2) V_{zz}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_7^+</td>
<td>$-1.5q_{7+} \times 10^{19}$ V/m2</td>
<td>$+5.0q_{7+} \times 10^{19}$ V/m2</td>
</tr>
<tr>
<td>Γ_6^-</td>
<td>$+1.4q_{6} \times 10^{20}$ V/m2</td>
<td>$-3.6q_{6} \times 10^{19}$ V/m2</td>
</tr>
</tbody>
</table>

For equal channel strengths, the total charge of the f ion
remains unity, and the increasing occupations of the empty
and doubly occupied sites cause holes to build up with symmetry
Γ_7^+ and electrons with symmetry Γ_6^-. If we define $q(T)$ to be the temperature-dependent occupation
of the empty/doubly occupied states, in the mean field, $q(T) = (b^e_0) = (b^d_2)$ will be proportional to $T_c - T$ just below T_c,
and we can define

$$q(T) = q_0 \frac{T_c - T}{T_c},$$

(66)

where q_0 is the ground-state occupation of the empty/doubly
occupied states. In terms of q_0, the superconducting NQR frequency shift will be

$$\Delta V_{\text{NQR}}^1(T) = -7.6q_0 \left(\frac{T_c - T}{T_c} \right) \text{ kHz},$$

(67)

$$\Delta V_{\text{NQR}}^2(T) = 11q_0 \left(\frac{T_c - T}{T_c} \right) \text{ kHz}.$$

Even assuming a reasonably large 5% change in the single-
occupancy ($q_0 = 0.05$) for CeCoIn$_5$ with $T_c = 2.3$ K will lead
to a small shift in V_{NQR}^1 with a slope of $\approx -0.16, +0.24$ kHz/K,
beginning precisely at T_c. We could also consider the case of
equal channel strengths, where the Ce exchanges charge
with the conduction electrons, sitting in the In p orbitals;
however, this term will be similarly small in any clean sample.
If this shift could be distinguished, it would be an unambiguous
signal of composite pairing. As this shift is quite small,
Mössbauer spectroscopy, which directly probes the f ions,
may be a more likely technique to observe the development of
a condensate quadrupole moment. Given that the crystal fields
of NpPd$_3$Al$_2$ are unknown, we can only make a rough estimate
of the magnitude of the quadrupolar splitting, following. The f-ion contribution to the splitting will originate from
a redistribution of charge eq within the f orbitals, and can
be as large as 0.2q mm/s. The lattice contribution to the
quadrupole splitting, which originates from the change in
valence redistributing charge within the lattice, will likely
be a larger effect.

VI. CONCLUSIONS

Our two-channel Anderson model treatment has shown how
composite pairing arises as the low-energy consequence of
valence fluctuations in two competing symmetry channels,
which in turn manifests itself as a mixing of the empty
and doubly occupied states,

$$\Delta SC \propto \langle |0 \rangle \langle 2 | \rangle.$$

(68)

Composite pairing is primarily a local phenomena, where
the pairing occurs within a single unit cell. The mixing is
reminiscent of an *intra-atomic* antiferromagnetism, involving \(d\)-wave singlet formation between the \(|\Gamma_1\rangle\) and \(|\Gamma_2\rangle\) states. It is the atomic physics of the \(f\) ions, tuned by their local chemical environment, that drives the superconductivity. Such chemically driven \(d\)-wave pairing is a fascinating direction for exploring higher temperature superconductors in even more mixed valent \(3d\) materials, as the strength of the composite pairing increases monotonically with increasing valence fluctuations, which accounts for the difference in transition temperatures between the cerium and the actinide 115 superconductors, and for the effects of pressure.

The local nature of composite pairing should make it less sensitive to disorder than more conventional anisotropic pairing mechanisms. Such insensitivity is observed in the doped Ce-115 materials, where superconductivity survives up to approximately 25\% substitution on the Ce site, while neither Ce-site nor In-site disorder behave according to Abrikosov-Gorkov, suggesting instead a percolative transition.

The redistribution of charge due to the mixing of empty and doubly occupied states provides a promising direction to experimentally test for composite pairing, which should appear as a sharp redistribution of charge associated with the superconducting transition. Both monopole (\(f\) valence) and quadrupole (electric-field gradients) charge effects should be observable, with core-level x-ray spectroscopy and the Mössbauer isomer shift or as a shift in the NQR frequency at surrounding nuclei, respectively. We predict a shift with slope on the order of \(\pm 0.3\) kHz/K in the NQR frequency of In nuclei in CeCoIn\(_5\).

Deriving these results in an exact, controlled mean-field theory required the introduction of symplectic Hubbard operators, which maintain the time-reversal properties of SU(2) electrons in the large-\(N\) limit. While our results are obtained in the large-\(N\) limit, it should also be possible to use these Hubbard operators to develop a dynamical mean-field theory treatment of the two-channel Anderson lattice, enabling us to examine composite pairing for \(N = 2\).

In addition to the two-channel Anderson model, the development of symplectic Hubbard operators allows a controlled treatment of the finite-\(U\) Anderson model, which is potentially useful as an impurity solver for dynamical mean-field theory. We identify the finite-\(U\) model as a special case of our two-channel model when the electron and hole fluctuations occur in the same symmetry channel, \(\Gamma_1 = \Gamma_2\). At first sight, this model appears to give \(s\)-wave superconductivity; however, the SU(2) constraint \(\lambda_1\) forbids any on-site pairing and completely kills the superconductivity, leaving only the simple Fermi liquid solution. We expect that \(1/N\) corrections to this mean-field limit will differ from the SU(\(N\)) approach, and an interesting future direction is to use the Gaussian fluctuations to examine the charge fluctuation side peaks.

ACKNOWLEDGMENTS

We should like to acknowledge discussions with Cigdem Capan, Maxim Dzero, Zachary Fisk, Pascoal Pagliuso, and Ricardo Urbano. This work was supported by the National Science Foundation, Division of Materials Research (Grant No. DMR 0907179).

24. R. Urbano (private communication).