Z-Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by MonoAryloxidePyrrolide (MAP) Catalysts

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ma101375v</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jun 23 05:39:02 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/69579</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Z-Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by MonoAryloxidePyrrolide (MAP) Catalysts

by

Margaret M. Flook, Laura C. H. Gerber, Galia T. Debelouchina, and Richard R. Schrock*

Contribution from
Department of Chemistry and Francis Bitter Magnet Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139

rrs@mit.edu

Abstract

We report the Z-selective and syndioselective polymerization of 2,3-bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5-diene (NBDF6) and 3-methyl-3-phenylcyclopropene (MPCP) by monoaryloxide monopyrrolide imido alkylidene (MAP) catalysts of Mo. The mechanism of polymerization with syn-Mo(NAd)(CHCMe2Ph)(Pyr)(OHIPT) (1; Ad = 1-adamantyl, OHIPT = O-2,6-(2,4,6-i-Pr3C6H2)2C6H3) as the initiator is proposed to consist of addition of monomer to the syn initiator to yield a syn first insertion product and propagation via syn insertion products. In contrast, the mechanism of polymerization with syn-Mo(NAr)(CHCMe2Ph)(Pyr)(OTPP) (4; Ar = 2,6-i-Pr2C6H3, OTPP = 2,3,5,6-Ph4C6H) as the initiator at -78 °C consists of addition of monomer to the syn initiator to yield an anti first insertion product and propagation via anti insertion products. Polymerizations of NBDF6 and MPCP at room temperature initiated by 4 led to polymers without a regular structure. We propose that the syndiotacticity of cis polymers is the consequence of the required inversion at the metal center with each insertion of monomer, i.e., stereogenic metal control of the polymer structure. We also propose that the two mechanisms for forming cis,syndiotactic polymers arise as a consequence of the relative steric bulk of the imido and phenoxide ligands.
INTRODUCTION

The use of M(NR)(CHR')(OR")_2 (M = Mo or W) olefin metathesis catalysts for Ring-Opening Metathesis Polymerization (ROMP) has led to an increase in our understanding of how polymers that have a regular and long-range structure (in terms of cis/trans linkages and tacticities) can be formed from norbornenes or substituted norbornadienes. Syn and anti alkylidene isomers of M(NR)(CHR')(OR")_2 catalysts (equation 1) are intimately involved in regulation of cis or trans linkages in ROMP polymers by initiators of this type, while tacticities arise either through chain end control or enantiomorphic site control. For example, two of the four possible regular structures of poly-2,3-dicarbomethoxynorbornadiene (polyDCMNBD) have been prepared. Trans,syndiotactic-polyDCMNBD is formed through chain-end control with Mo(NAr)(CH-t-Bu)(O-t-Bu)_2 (2a; Figure 1) as the initiator, while cis,isotactic-polyDCMNBD is formed through enantiomorphic site control with some initiators that contain a biphenolate or binaphtholate ligand. Controlling polymer structures at the molecular level is key to the synthesis of polymers that have a single structure and therefore uniform and reproducible

![Figure 1](image-url)

Figure 1. Ad = 1-adamantyl, Ar = 2,6-i-Pr_2C_6H_3, TRIP = 2,4,6-i-Pr_3C_6H_2, Ar' = 2,6-Me_2C_6H_3.
properties. *Syn* and *anti* isomers have not been found in Ru catalysts and in general polymers prepared with Ru catalysts do not have regular structures.\(^2\)

Recently we discovered MonoAryloxide Pyrrolide (MAP) catalysts of the type \(\text{M(NR)(CHR')(OR'')(Pyr)}\) (M = Mo or W) where Pyr is pyrrolide itself (\(\text{NC}_4\text{H}_4\)) or a substituted pyrrolide (e.g., 2,5-dimethylpyrrolide) and have been exploring their potential.\(^8\) A key feature of a MAP catalyst is the presence of a stereogenic metal center. It has been demonstrated that MAP catalysts are especially reactive and useful for a variety of metathesis reactions, among them enantioselective reactions,\(^9\) \(Z\)-selective ring-opening cross-metathesis reactions,\(^10\) highly \(Z\)-selective coupling of terminal olefins,\(^11\) and ethenolysis reactions.\(^12\) \(Z\)-selectivity is possible when the olefin attacks the metal *trans* to the pyrrolide in a *syn* alkylidene isomer (one whose substituent points toward the imido group) to yield metallacyclobutane intermediates in which all substituents point toward the axial imido ligand and away from the axial OR' group (equation 2). This version of \(Z\)-selectivity appears to be most efficient when the imido ligand is relatively "small" and the aryloxide ligand is relatively "large." Fundamental studies involving tungsten or molybdenum MAP species support the proposals that (i) intermediate trigonal bipyramidal metallacyclobutanes contain axial imido and alkoxide ligands, and (ii) the stereochemistry at the metal *inverts as a consequence of each forward metathesis step* (equation 2; \(R_1, R_2, R_3 = \text{alkyl groups}\)).\(^9c\)

\[
\text{M(NR)(CHR')(OR'')(Pyr)} \quad (R) \quad (\text{trans to Pyr}) \quad \text{M(NR)(CHR')(OR'')(Pyr)} \quad (S) \\
\]

\[
\text{OR'} \quad \text{OR'} \\
\]

We suspected that new structures of polymers prepared through ROMP by MAP catalysts might be accessible as a consequence of the metal configuration at the metal inverting with each metathesis step. Our preliminary investigation\(^10b\) revealed that polyDCMNBD\(_1\) (produced employing Mo(NAd)(CHCMe\(_2\)Ph)(OHIPT)(\(\text{NC}_4\text{H}_4\)), \(1\), Figure 1; OHIPT = O-2,6-(2,4,6-i-
Pr₃C₆H₂(C₆H₃) as the initiator is cis and highly tactic, but it is not the known cis,isotactic structure. Since only two all cis regular structures are possible, polyDCMNBD₁ must be cis,syndiotactic. As expected, therefore, the analogous polymer produced from 2,3-dicarbomethoxy norbornadiene (polyDCMenNBD) was proven⁷ to be cis,syndiotactic. Cis,syndiotactic-polyDCMNBD₁ is proposed to form as a consequence of coordination of the monomer to the CNO face of each enantiomer to give an "all syn" metallacyclobutane intermediate and inversion of the chirality at the metal with each step (equation 3). We call this new method of controlling polymer structure stereogenic metal control. As proposed by Brunner,¹³ a stereogenic metal center should be a powerful determinant of which of the four approaches to the metal is most facile, since bonds are being formed trans to one of four significantly different ligands in the process. The fundamental feature of stereogenic metal (SM) control is distinct from chain-end control or enantiomorphous site control. Chain-end and enantiomorphous site control are both primarily steric in origin and arise through steric interactions between the incoming monomer and the chiral polymer chain-end in the last-inserted monomer unit, or in a chiral ligand, respectively.

In this paper we expand our initial observations with studies that involve two additional monomers, 2,3-bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5-diene (NBDF6) and 3-methyl-3-phenylcyclopropene (MPCP). Both polyNBDF6 and polyMPCP¹⁴ have some issues that are
unresolved. 2,3-Bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5-diene (NBDF6) is an important member of the class of partially fluorinated monomers that can be polymerized through ROMP. It has been found that 2a (Figure 1) produces a high-trans (>98%) polymer (polyNBDF6$_{2a}$) that is 92% tactic while 2b (Figure 1) produces a >98% cis polymer (polyNBDF6$_{2b}$) that is 75% tactic, both through chain-end control. Cis, 100% tactic polymer can be formed when the initiator contains an enantiomerically pure biphenolate or binaphtholate; that tacticity is the same as the major tacticity present in 75% tactic cis-polyNBDF6$_{2b}$. The tacticities of poly(2,3-dicarbomenthoxynorbornadiene)$_{2a}$ and poly(2,3-dicarbomenthoxynorbornadiene)$_{3a}$ could be proven to be trans,syndiotactic and cis,isotactic, respectively; therefore it is highly likely that polyNBDF6$_{2a}$ is trans,syndiotactic and polyNBDF6$_{3b}$ is cis,isotactic. However, it was suggested (on the basis of relaxed permittivity measurements) that the dominant (75%) tacticity of polyNBDF6$_{2b}$ (the same tacticity as polyDCMNBD$_{3b}$) was cis,syndiotactic, not cis,isotactic. We felt that ROMP studies with the new MAP catalysts might resolve this issue. We were similarly optimistic about resolving issues concerning the structure of polyMPCP samples with a single microstructure that are formed with some initiators that contain a fluorinated biphenolate (3a) or binaphtholate (3b) ligand (Figure 1).

RESULTS

ROMP of 2,3-Bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5-diene (NBDF6)

Addition of 100 equivalents of NBDF6 to 1 in toluene led to formation of a white solid within minutes. In contrast to cis,isotactic-polyNBDF6, polyNBDF6$_{1}$ was found to be essentially insoluble in common organic solvents, including halogenated solvents such as 1,2-dichlorobenzene and α,α,α-trifluorotoluene at their respective boiling points. Therefore solution NMR techniques could not be employed in order to determine the degree of stereoregularity. However, a comparison of the IR spectrum of polyNBDF6$_{1}$ with the IR spectrum of what are proposed to be trans,syndiotactic-polyNBDF6$_{2a}$ and cis,isotactic-polyNBDF6$_{3b}$ (shown in Figure 1S in the Supporting Information) suggests that polyNBDF6$_{1}$ has predominantly a cis
structure since it lacks a strong absorption around 970 cm\(^{-1}\) characteristic of trans olefins. An absorption between 950 and 1000 cm\(^{-1}\) corresponds to a C-H out of plane "wag"\(^{17}\) in trans olefins, and has been used for decades to assign cis or trans structures of ROMP polymers.\(^{18}\)

The insolubility of polyNBDF6\(_1\) could be ascribed to it having an ultrahigh molecular weight. However, a proton NMR spectrum of 1 in toluene-d\(_8\) after addition of five equivalents NBDF6 revealed that >98% 1 (with an alkylidene resonance at 11.9 ppm) was consumed and several resonances for the alkylidenes formed upon insertion of NBDF6 into the M=C bond in 1 were observed at 11.2 and 12.1 ppm. Complete consumption of the initiator suggests that the insolubility of polyNBDF6\(_1\) cannot be the consequence of a runaway polymerization (large \(k_p/k_i\)) by a small amount of initiator to give ultrahigh molecular weight material, but is a characteristic of the microstructure of polyNBDF6\(_1\) itself. When 10 equivalents of NBDF6 are added to 1 in toluene-d\(_8\), ~40% of the polymer formed is insoluble. Therefore, we propose that polyNBDF6\(_1\) begins to be insoluble when ~10 equivalents have been incorporated. The \(^1\)H NMR spectrum of the supernatant showed one major broad alkylidene peak at 11.2 ppm. Attempts to synthesize block copolymers containing NBDF6\(_1\) with either MPCP or DCMNBD in order to obtain soluble polymers so far have yielded only insoluble polymers.

Since the insolubility of polyNBDF6\(_1\) precluded solution NMR studies, a 900 MHz CPMAS \(^{13}\)C NMR spectrum of polyNBDF6\(_1\) was obtained in the solid state. The spectrum of this polymer can be found in the Supporting Information (Figure 2S). The \(^{13}\)C NMR spectrum showed the five expected peaks corresponding to polyNBDF6, each with a line width from 2 to 7 ppm. For comparison, the \(^{13}\)C NMR spectra of what are proposed to be trans,syndiotactic-polyNBDF6\(_{2a}\) and cis,isotactic-polyNBDF6\(_{3b}\) also were obtained in the solid state and are shown alongside the corresponding \(^{13}\)C NMR solution spectra of each in acetone-d\(_6\) (Figure 3S in the Supporting Information).

In the spectra displayed in Figure 3S one point for discussion is the splitting of the resonance around 50 ppm in trans,syndiotactic-polyNBDF6\(_{2a}\) in the solid state spectrum, but not in the solution spectrum of the same polymer. Splitting of a resonance in a solid state spectrum
is not unexpected, as different local environments in the polymer chain in the solid state are known to give rise to different NMR resonances.19 This unpredictable splitting and the breadth of the 13C NMR resonances in general would appear to limit the use of solid state NMR for definitive proof of structures of regular NBDF6 polymers. However, in spite of this limitation, useful conclusions can be drawn. The chemical shifts (referenced to tetramethylsilane) of the major resonances in the solid state and solution 13C NMR spectra of the three polymers are listed in Table 1. The chemical shift of C7 in cis,syndiotactic-polyNBDF6 in solution can be estimated as \(\sim36.5\) ppm on the basis of the chemical shifts of C7 resonances for mm (isotactic) triads, mr/rm (atactic) triads, and rr (syndiotactic) triads in all cis polymers with mixed tacticities.20

![Proposed Structure](image_url)

<table>
<thead>
<tr>
<th>Cat.</th>
<th>Proposed Structure</th>
<th>C1</th>
<th>C2</th>
<th>CF$_3$</th>
<th>C6</th>
<th>C7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>solid</td>
<td>soln</td>
<td>solid</td>
<td>soln</td>
<td>solid</td>
</tr>
<tr>
<td>1</td>
<td>cis,syndio</td>
<td>44.2</td>
<td>N/A</td>
<td>139.3</td>
<td>N/A</td>
<td>121.7</td>
</tr>
<tr>
<td>3b</td>
<td>cis,iso</td>
<td>44.6</td>
<td>44.7</td>
<td>140.7</td>
<td>140.2</td>
<td>122.1</td>
</tr>
<tr>
<td>2a</td>
<td>trans,syndio</td>
<td>49.5</td>
<td>49.8</td>
<td>139.1</td>
<td>140.0</td>
<td>121.6</td>
</tr>
</tbody>
</table>

Table 1. Solid state and solution 13C NMR spectra of polyNBDF6. *Cis or trans* structure was determined through IR spectroscopy; tacticity is assigned on the basis of the proven tacticities of analogous polyDCMenNBD samples; solvent = acetone-d_6 for solution studies. (*Estimated as described in the text.)*

The chemical shifts of carbons in the three polymers in Table 1 suggest that three unique structures are present. The first evidence for three structures consists of the C1 chemical shifts. The C1 resonance in polyNBDF6$_1$ and polyNBDF6$_{3b}$ appears around 44 ppm, while the C1
resonance in polyNBDF62a appears around 50 ppm. A similar difference in chemical shifts is observed in the C1 resonances in the 13C NMR spectra of polyNBDF63b and polyNBDF62a in solution. The chemical shift of C1 in polyNBDF61 is close to that of polyNBDF63b, suggesting that these two polymers have the same configuration about the double bond, and therefore are both cis, as confirmed by IR spectroscopy.

The second piece of evidence for three distinct structures lies in the chemical shifts of the C7 carbon atoms. A 2.5 ppm shift between the C7 resonances in the two cis polymers suggests that two different tacticities are present, namely cis,isotactic and cis,syndiotactic. Unfortunately, as a consequence of the breadth of the C7 resonance, it cannot be determined if polyNBDF61 has a single tacticity or contains some material with the opposite tacticity.

Since both cis,isotactic and cis,syndiotactic polyDCMenNBD have been prepared, and by inference also both cis,isotactic and cis,syndiotactic polyDCMNBD, all data are consistent with the proposal that insoluble polyNBDF61 has a cis,syndiotactic structure while the more soluble polyNBDF63b has a cis,isotactic structure. This proposal is also consistent with what appears to be a required syndiotactic structure for cis polymers formed with the appropriate MAP catalyst (equation 3). It seems unlikely that cis-polyNBDF6 polymers formed with catalysts analogous to those that yield cis,isotactic and cis,syndiotactic polyDCMenNBD in fact would have tacticities opposite to those expected.

ROMP of 3-Methyl-3-PhenylCycloPropene (MPCP)

Several years ago we reported the ROMP polymerization of 3-methyl-3-phenylcyclopropene (MPCP) by molybdenum imido alkylidene bisalkoxide initiators 2a and 2b (Figure 1).14 If an initiator containing a diolate such as 3a is employed for ROMP of MPCP, polyMPCP with a single microstructure can be formed.16 It was proposed that trans linkages were formed between the repeat units on the basis of anticipated steric hindrance in the molybdacyclobutane intermediate, but trans linkages were not proven. We set out to investigate the structure of polyMPCP in more detail.
A proton NMR spectrum of a sample of 1 in toluene-d₈ after addition of 100 equivalents of MPCP showed that both the monomer and the initiator were consumed within minutes. White polymer was isolated after addition of excess benzaldehyde and precipitation of the polymer in methanol. Proton and carbon NMR spectroscopy in CD₂Cl₂ revealed polyMPCP₁ to have a highly regular structure. The aliphatic regions of the 13C spectra of polyMPCP prepared using various initiators are displayed in Figure 2.

![Diagram](image.png)

Figure 2. Partial 13C NMR spectra of polyMPCP samples prepared from 1, 2a, 2b, and 3a.

The resonances corresponding to C₂ and C₃ of polyMPCP prepared from initiators 1 and 3a (polyMPCP₁ and polyMPCP₃a, respectively) are single peaks, suggesting that both are highly regular structures; however, the difference in chemical shifts for C₂ and C₃ suggests their structures are different. In contrast, polyMPCP₂a appears to be ~85% regular and that structure is different from the structure of polyMPCP₁ or polyMPCP₃a. The structure of polyMPCP₂b is atactic, in agreement with previous results.¹⁴ As shown in Table 2, the structures of the polymers obtained using molybdenum imido alkylidene initiators 1, 2a, and 3a can be assigned on the basis of the presence or absence of an absorption around 980 cm⁻¹ characteristic of *trans* olefins.
and the position of the olefinic carbon NMR resonance. PolyMPCP$_2$ has an olefinic 13C resonance at 136.7 ppm and exhibits a strong IR absorption at 980 cm$^{-1}$ characteristic of trans olefins, while polyMPCP$_1$ and polyMPCP$_3$ have olefinic 13C resonances at 137.5 and 137.7 and do not exhibit a strong absorption at 980 cm$^{-1}$. A chemical shift difference of about 1 ppm is expected for cis vs. trans olefins in ROMP polymers (such as polyDCMNBD7b). In a recent report, polyMPCP obtained with a ruthenium-based initiator was assigned to have the trans configuration on the basis of an absorption at ~980 cm$^{-1}$ and an olefinic 13CNMR resonance at 136 ppm.21 Therefore the structures of polyMPCP$_1$ and polyMPCP$_3$ are assigned as cis, while polyMPCP$_2$ is assigned to be trans. For steric reasons we propose that the C=C face in MPCP that adds to the Mo=C bond is the more accessible "methyl face."

As shown in Figure 2 cis-polyMPCP$_1$ and cis-polyMPCP$_3$ have different microstructures on the basis of the methyl carbon resonance appearing at 30 ppm in the former and 32 ppm in the latter. Therefore we propose that polyMPCP$_1$ has a cis,syndiotactic structure, while polyMPCP$_3$ has a cis,isotactic structure.

If only one equivalent of MPCP is added to 1 in benzene-d$_6$, the proton NMR spectrum reveals several new alkylidene resonances along with a resonance for remaining 1 (~30 %). The olefinic region was complex, so we could not determine whether the first insertion product has the cis or trans configuration. When 10 equivalents of MPCP were added to 1 in benzene-d$_6$, the proton NMR spectrum revealed that all 1 had been consumed and only one new propagating alkylidene (H_α resonance at 11.68 ppm) was present. These results suggest that k_i and k_p are

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Olefinic resonance</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>136.7 (major)</td>
<td>trans</td>
</tr>
<tr>
<td>2b</td>
<td>(135.0-138.1)</td>
<td>(irregular)</td>
</tr>
<tr>
<td>3a</td>
<td>137.5</td>
<td>cis</td>
</tr>
<tr>
<td>1</td>
<td>137.7</td>
<td>cis</td>
</tr>
</tbody>
</table>

Table 2. Configuration of polyMPCP samples prepared from Mo imido alkylidene initiators. (Carbon NMR spectra were recorded in CD$_2$Cl$_2$. *Cis or trans structures are assigned on the basis of the presence or absence of ~980 cm$^{-1}$ absorption for trans.*)
approximately the same magnitude. On the basis of the chemical shift of the propagating alkylidene alone, we propose that it has a syn configuration.

In summary, polymerization with 1 as the initiator takes place as shown in equation 4, where norbornadiene represents any of the four monomers (DCMNBD, DCMenNBD, NBDF6, or MPCP). Cis,syndiotactic structures are generated via syn initiation and propagation with the monomer approaching the metal trans to the pyrrolide and pointing toward the adamantylimido group (ene\(_{\text{syn}}\)) with \(k_p \approx k_i\). We propose that only the methyl face of the C=C bond in MPCP adds to the metal. Syndiotacticity arises solely as a consequence of the monomers adding to alternating faces of the M=C bonds in a chiral, racemic catalyst.

Polymerizations employing Mo(NAr)(CHCMe\(_2\)Ph)(OTPP)(Pyr) as the initiator

We then turned to exploration of a catalyst variation for ROMP of MPCP in which the imido ligand is larger than adamantylimido and the phenoxide ligand smaller than OHIPT, namely Mo(NAr)(CHCMe\(_2\)Ph)(OTPP)(Pyr) (4, \(Ar = 2,6\text{-diisopropylphenyl, Pyr} = \text{pyrrolide, OTPP} = 2,3,4,6\text{-tetraphenylphenoxide}\)). Polymerization of MPCP at 20 °C with 4 led to a polymer with no regular structure. Surprisingly, however, polyMPCP can be formed at −78 °C employing 4 as the initiator, and the polyMPCP\(_4\) thus formed has a regular structure that is identical with the cis,syndiotactic-polyMPCP\(_1\) described above. As the temperature of
polymerization is increased from -78 °C to 46 °C in separate experiments, the regularity of the polymer decreases steadily, as shown in Figure 3.

![Figure 3](image)

Figure 3. Partial 13C{1H} NMR spectra (CD$_2$Cl$_2$, 125 MHz) of polyMPCP synthesized at various temperatures (t = 6 h for runs at −78 °C, 0 °C, and 20 °C; t = 2 h for 46 °C and -20 °C; *residual toluene).

Addition of one equivalent of MPCP to 4 in toluene at −78 °C, followed by warming the sample to 22 °C, leads to formation of a mixture that contains a relatively large fraction (> 80%) of the first insertion product (syn-4+1) whose alkylidene resonance is found at 12.1 ppm (1J$_{CH} = 124$ Hz). The 3J$_{HH}$ coupling constant of the olefinic protons in the 1H NMR spectrum of syn-4+1 was found to be 16 Hz, characteristic of a *trans* C=C bond, i.e., the first insertion product after warming a sample to 22 °C is syn-4+1_trans. Some syn-4 remains even upon addition of more MPCP at -78 °C followed by warming the sample to 22 °C. Therefore it appears that some syn-4+1_trans reacts further to give higher insertion products before all 4 is initiated. Perhaps for this reason it has not yet been possible to isolate syn-4+1_trans from the mixture as a pure compound. Observation of a *trans* C=C bond in the first insertion product when MPCP is added at −78 °C suggests that a *trans* double bond is formed upon polymer *initiation* at −78 °C, even though *cis* double bonds are formed upon *propagation* at −78 °C.
If 0.8 equiv of MPCP are added to 4 at -78 °C and the sample is kept at -78 °C, then anti-\(4+1_{\text{trans}}\) is observed. The \(^1\text{H}\) NMR spectrum of anti-\(4+1_{\text{trans}}\) displays an alkylidene singlet at 14.1 ppm and two olefin proton doublets at 6.19 and 5.79 ppm with \(\delta J_{\text{HH}} = 16\) Hz, indicative of a \textit{trans} double bond. In order to confirm the anti assignment, partially \(^{13}\text{C}\)-labeled MPCP (see experimental section) was added to \(\text{syn}-4\) at -70 °C; the \(\delta J_{\text{CH}}\) value for the proposed \(\text{anti}-4+1_{\text{trans}}\) was found to be 144 Hz, which confirms the anti proposal. Upon raising the temperature to -30 °C, \(\text{anti}-4+1_{\text{trans}}\) decays with first order kinetics to \(\text{syn}-4+1_{\text{trans}}\) (\(k = 2.9 \times 10^{-4}\) s\(^{-1}\) at -30 °C; see Figure 4). In the experiment that employed partially \(^{13}\text{C}\)-labeled MPCP the \(\delta J_{\text{CH}}\) value for \(\text{syn}-4+1_{\text{trans}}\) was confirmed to be 124 Hz. When three equivalents of MPCI\(P\) were added to 4 at -70 °C, several new resonances are observed in the \textit{anti} region (13.6 – 14.3 ppm), but none in the \textit{syn} region (11.4 – 12.2 ppm), which suggests that further \textit{anti} insertion products are formed at -70 °C, but \textit{syn} species are \textit{not} formed, either directly, or from \textit{anti} species through M=C bond rotation. Upon raising the temperature of the sample to 20 °C the alkylidene resonances of the \textit{anti} insertion product decay rapidly through M=C bond rotation to yield alkylidene resonances in the \textit{syn} region (11.4 – 12.2 ppm).

Figure 4. First order plot for the conversion of \(\text{anti}-4+1_{\text{trans}}\) to \(\text{syn}-4+1_{\text{trans}}\) at -30 °C.
We became curious as to whether an *anti* isomer also could be observed for 4. Since it has been shown that irradiation of *syn* imido alkylidene bisalkoxide complexes at low temperature results in formation of some *anti* isomer, 6 4 was photolyzed at 366 nm at −78 °C for 3 h. The NMR spectrum observed at −70 °C after photolysis of 4 at −78 °C shows a new resonance (~5-20% of the total) at 13.6 ppm, which is downfield of the alkylidene resonance for *syn*-4 (12.1 ppm, $^1J_{CH} = 122$ Hz; Figure 5 top). The

![Figure 5](https://example.com/figure5.png)

Figure 5. 1H NMR spectra at −60 °C of (top) *syn*-4 after irradiation at −78 °C in toluene-d$_8$ with 360 nm light, and (bottom) after addition of MPCP (~0.1 equiv) to the mixture of *syn*-4 plus *anti*-4.

![Figure 6](https://example.com/figure6.png)

Figure 6. Decay of *anti*-4 to *syn*-4; $k = 5.2(0.5) \times 10^{-3}$ s$^{-1}$ at -15 °C, $2.1(0.1) \times 10^{-3}$ s$^{-1}$ at -20 °C, $5.6(0.2) \times 10^{-4}$ s$^{-1}$ at -25°C, $4.1(0.1) \times 10^{-4}$ s$^{-1}$ at -30 °C, and $1.9(0.1) \times 10^{-4}$ s$^{-1}$ at -35 °C.
value of J_{CH} for the alkyldiene resonance at 13.6 ppm was determined to be 143 Hz by measuring the 13C satellites, which is characteristic of an anti alkyldiene. The anti-4 resonance decays upon warming the sample to room temperature. At several temperatures over a 20 °C range the decay was found to be first order (Figure 6), consistent with an intramolecular process. Rate constants for the conversion of anti-4 to syn-4 (k_{a/s} as defined in equation 1) were obtained at several temperatures (Figure 6). An Eyring plot (Figure 7) revealed ΔH‡ and ΔS‡ to be 19.9 ± 2 kcal/mol and 8 ± 2 eu, respectively.²²

Addition of ~0.1 equivalent of MPCP to a mixture of syn-4 and anti-4 obtained through photolysis of syn-4 (Figure 5 top) leads to formation of a mixture of syn-4, anti-4, and anti-4+1_{trans} (Figure 5 bottom). This experiment confirms that anti-4+1_{trans} is formed from syn-4, not from anti-4, and that anti-4+1_{trans} does not react with added MPCP in the presence of a relatively large amount of syn-4. These results also suggest that at -78 °C syn-4 is the most reactive species and that k_p < k_i.

Values for ΔH‡ and ΔS‡ were employed to calculate ΔG‡ at 298 K (2 ± 2 kcal/mol) and the rate constant for conversion of anti-4 to syn-4 at 298 K (k_{a/s} = 3 s⁻¹). The value for k_{a/s} = 3 s⁻¹ should be compared with those for Mo(NAr)(CHCMe₂Ph)[OCMe₂(CF₃)]₂ (k_{a/s} = 6.8
and Mo(NAr)(CHCMe2Ph)(OCMe(CF3)2)2 (k_a/s = 0.10 s⁻¹) at 298 K obtained in previous studies. At -30 °C the rate constant for conversion of \textit{anti}-4 to \textit{syn}-4 (4.1 ± 0.1 x 10⁻⁴ s⁻¹) is essentially the same as k_a/s (2.9 x 10⁻⁴ s⁻¹ at -30 °C) for conversion of \textit{anti}-4+1\textit{trans} to \textit{syn}-4+1\textit{trans}.

On the basis of these experiments it appears that \textit{anti} species form in the reaction between MPCP and the \textit{syn} initiator at low temperatures and the \textit{anti} alkylidene insertion products do not readily convert to \textit{syn} species at low temperature. (Since k = 1.9 x 10⁻⁴ s⁻¹ at -35 °C the calculated half-life of \textit{anti}-4 at -35 °C is one hour.) Therefore \textit{cis},\textit{syndiotactic}-polyMPCP (except for the first C=C bond) is formed as shown in equation 5. \textit{Cis},\textit{syndiotactic}-polyMPCP is obtained at low temperatures since only \textit{anti} species are available on the time scale of the polymerization at low temperature. It is assumed that the methyl face of the C=C bond adds to the metal in the propagation step. In equation 5 the methyl face is also shown adding to the M=C bond in the initiation step. Whether that is the case or not does not affect the conclusions that the \textit{syndiotacticity} arises as a consequence of MPCP adding to alternating faces of \textit{anti}-M=C bonds selectively through one C=C face of MPCP.

Polymerizations of 100 equivalents of NBDF6 were carried out at -78 °C, -20 °C, 0 °C, and 22 °C. Polymers synthesized at -78 °C, -20 °C, and 0 °C were insoluble in
dichloromethane or chloroform. Not all of the polymer synthesized at 22 °C dissolved in CHCl$_3$, but what did dissolve has a \textit{cis} content of 38 \%, according to NMR spectra. IR spectra of the polyNBDF6 show that the 970 cm$^{-1}$ absorption is stronger in the polymers synthesized at higher temperatures than at −78 °C, consistent with higher \textit{trans} content at higher temperatures, although the precise \textit{cis}/\textit{trans} content cannot be determined accurately by IR methods. Therefore, on the basis of insolubility of polyNBDF6$_4$, we propose that polyNBDF6$_4$ formed at low temperatures is predominantly \textit{cis,syndiotactic}, and that the structure degrades when the polymerization temperature is increased.

The reaction between 4 with 1 equivalent of NBDF6 at −78 °C produced several new alkylidene peaks, although two major alkylidene doublet resonances appeared (at 12.06 and 11.81 ppm), which we assign to the first and second insertion product, respectively, in addition to the alkylidene singlet for 4. The two olefinic doublet resonances correlate with the first and second insertion products and can be assigned to \textit{trans} C=C bonds on the basis of $^{1}J_{\text{CH}} = 16$ Hz. Therefore, initiation yields a \textit{trans} C=C bond, although propagation again proceeds at low temperature to yield \textit{cis,syndiotactic} polymer. Therefore, the polymerization of NBDF6 by 4 appears to proceed via a mechanism analogous to that for polymerization of MPCP by 4 (equation 5).

DISCUSSION

In previous studies with a limited number of bisalkoxide (or biphenolate or binaphtholate) catalysts and a limited number of monomers (often DCMNBD or NBDF6) it has been proposed that the monomer approaches the metal pointed toward the imido group ("ene$_{\text{syn}}$"), even when the imido group is the relatively sterically demanding diisopropylphenylimido group. For each step of this type a \textit{cis} double bond is formed from a \textit{syn} isomer (and the insertion product is \textit{syn}) and a \textit{trans} double bond is formed from an \textit{anti} isomer (and the insertion product is \textit{syn}).6 Therefore key issues are whether \textit{syn} and \textit{anti} isomers of the growing polymer chain can interconvert readily under the conditions of the polymerization, and
which isomer is more reactive toward a given monomer. Four insertion steps are possible if a C=C bond adds to one side of the M=C bond (syn or anti, ene\textsubscript{syn} or ene\textsubscript{anti}). Since the monomer can approach either side of the M=C bond, eight propagation steps are possible if the monomer adds only through one (the same) C=C face in each step. If the faces of the C=C bond in the monomer are different (as is the case for MPCP) and either C=C face can add to the M=C bond, then a total of sixteen propagation steps are possible. For MAP species these sixteen potential propagating steps are diastereomeric for a given configuration at the metal center. However, if the monomer always adds trans to a pyrrolide in a MAP species, then only eight propagating steps are possible. If only one C=C face adds to the M=C bond then only four propagation steps are possible. In the reactions described here where cis polymers are formed the only two possible pathways are syn+ene\textsubscript{syn} and anti+ene\textsubscript{anti}. It makes sense that the syn+ene\textsubscript{syn} situation would most likely arise when the imido ligand is "small" and the anti+ene\textsubscript{anti} situation when the imido ligand is "large" with respect to the aryloxide. Any circumstance in which competitive propagation steps are accessible (e.g., conversion of syn to anti alkylidenes or loss of ene\textsubscript{syn} and ene\textsubscript{anti} specificity) would lead to a loss of cis specificity and tacticity in the resulting polymer. Nevertheless, it was surprising to us that MPCP can be polymerized by 4 at -78 °C.

A correlation between cis or trans C=C bond formation and temperature in polyNBDF6 and polyDCMNBD (and polymers prepared from related ester derivatives) has been observed for a variety of bisalkoxide initiators of molybdenum.20 At low temperatures (-35°C) cis polymers were formed and at high temperatures (65°C) up to 90% trans polymers were formed. These results were proposed to be consistent with formation of cis polymers from syn alkylidenes and trans polymers from anti alkylidenes in circumstances where syn and anti isomers can interconvert through rotation about the M=C bond. Several all cis polymers were found to be biased toward iso- or syndiotacticity. The bisalkoxide systems that were explored are essentially the same as those explored in an earlier paper in which it was proposed that anti alkylidenes are more reactive than syn alkylidenes in general.6 Several other examples of an apparent higher reactivity of anti alkylidenes versus syn alkylidenes have been published.4
The alkyldiene isomer observed for MAP species that have been explored in some detail so far is *syn*.\(^8\) Observation of a significant amount of *anti-4*\(^{1,trans}\) upon addition of MPCP to *syn-4* suggests that the rate of addition of MPCP\(_{anti}\) to *syn-4* is greater than the rate of "ene\(_{anti}\)" addition of MPCP to *anti-4*\(^{1,trans}\). As expected therefore, addition of MPCP to the mixture of *syn-4* and *anti-4*\(^{1,trans}\) does not lead to consumption of *anti-4*\(^{1,trans}\). Although the (initial) alkyldiene in *syn-4* is different from that in *anti-4*\(^{1,trans}\), this is the first evidence that suggests that a *syn* alkyldiene can be more reactive than an *anti* alkyldiene, but now in a MAP catalyst, not a bisalkoxide catalyst.

Measurement of the rates of conversion of *anti-4*\(^{1,trans}\) to *syn-4*\(^{1,trans}\), and of *anti-4* to *syn-4* are the first for any MAP species that contains a monosubstituted alkyldiene. Generation of *anti-4* from *syn-4* through photolysis is also a first for a MAP species. On the basis of what we know now we do not expect MAP species to be wildly different from bisalkoxides in terms of interconversion of *syn* and *anti* species and the role of *syn* and *anti* species in forming cis versus trans C=C bonds or (in polymer chemistry) in generating tactic polymers. But rates of interconversion of *syn* and *anti* alkyldienes in bisalkoxide species, as well as relative reactivities of *syn* and *anti* alkyldienes in bisalkoxide species, can vary by orders of magnitude, with the electronics of the alkoxide being the primary determining factor.\(^6\) Therefore it will prove informative to compare MAP species with bisalkoxides in a wide variety of metathesis reactions.

Interconversion of the two methylidene protons in methylidene MAP species have now been observed in several cases. In Mo(NAr)(CH\(_2\))(OHIPT)(Pyr) and Mo(NAr)(CH\(_2\))(OBitet)(Pyr) (OBitet is the anion derived from (R)-3,3'-dibromo-2'-(tert-butyldimethylsilyloxy)-5,5',6,6',7,7',8,8'-octahydro-1,1'-binaphthyl-2-ol) at 20 °C the methylidene rotates at a rate of < 0.2 s\(^{-1}\),\(^8\) while rates of methylidene rotation at 20 °C have been found to be 230 s\(^{-1}\) in W(NAr\(^{t-Bu}\))(CH\(_2\))(OTPP)(Me\(_2\)Pyr) (Ar\(^{t-Bu}\) = 2-t-butylic\(_6\)H\(_4\)), \(^9\) and 3.6 s\(^{-1}\) in (R)-W(NAr)(CH\(_2\))(OBitet)(Me\(_2\)Pyr).\(^8\) At 298K the rate constant for conversion of *anti-4* to *syn-4* determined here (\(k_{syn}\)) is 3 s\(^{-1}\), compared with those for...
Mo(NAr)(CHMe₂Ph)[OCMe₂(CF₃)]₂ \((k_{a/s} = 6.8 \text{ s}^{-1}) \) and Mo(NAr)(CHMe₂Ph)[OCMe(CF₃)]₂ \((k_{a/s} = 0.10 \text{ s}^{-1}) \) at 298 K obtained in previous studies. Typically, rate constants for conversion of *syn* to *anti* bisalkoxide species \((k_{a/s}) \) have been orders of magnitude smaller than those for \(k_{a/s} \) with the equilibrium between the two therefore lying toward the *syn* isomer. At this early stage we can say that rates of rotation of MAP methylidenes and interconversion of *syn* and *anti* MAP species appear to vary widely, as have the rates of interconversion of *syn* and *anti* bisalkoxide species.

Finally, it should be noted that the Z-selective polymerizations discussed here turn out to be relatively simple compared with situations in which *trans* C=C bonds are formed, largely since *syn* and *anti* isomers are formed from one another when a *trans* C=C bond is formed. Therefore while it seems promising that Z-selectivity employing MAP species can be controlled in a variety of reactions involving acyclic or cyclic olefins, it is not yet clear how to form C=C bonds with *kinetic* E-selectively employing MAP species.

CONCLUSIONS

We have shown that Z-selective reactions in ROMP have some generality and that syndiotacticity (for *cis* polymers) is predictable as a consequence of the mechanism through which MAP catalysts operate, i.e., inversion of configuration at the metal center with each forward metathesis step (stereogenic metal control). Two mechanisms of forming the same *cis*,syndiotactic ROMP polymer have resulted from inverting the relative steric of the imido and phenoxide ligands. MAP species that contain an *anti* alkylidene can be observed, either as intermediates in a ROMP reaction, or upon photolysis of *syn* alkylidenes.
EXPERIMENTAL SECTION

General Details. All air-sensitive manipulations were performed under nitrogen in a drybox or using Schlenk techniques. All glassware was oven-dried and allowed to cool under vacuum or nitrogen before use. Ether, pentane, and toluene were sparged with nitrogen and passed through activated alumina. Anhydrous DMSO was dried over molecular sieves before use. All solvents were stored over molecular sieves in a nitrogen atmosphere. Deuterated solvents were degassed and passed through activated alumina before use and stored over molecular sieves. 1,10b 2a-b,23 3a,24 3b,24 DCMNBD,25 MPCP,26 and NBDF6,27 2,3,5,6-Ph4C6HOH (TPPOH),28 and Mo(NAr)(CHCMe2Ph)(Pyr)28b were prepared according to the literature. (1-13C)-2-Phenylpropene29 and (1-13C)-MPCP were prepared in ways analogous to literature procedures for unlabeled species. Benzaldehyde was distilled and stored under nitrogen. All other reagents were used as received. NMR spectra were obtained on Varian 300 MHz, Varian 500 MHz, Bruker 400 MHz, or Bruker 600 MHz spectrometers, reported in δ (parts per million) relative to tetramethylsilane, and referenced directly to a tetramethylsilane internal standard or to residual 1H/13C signals of the deuterated solvent (1H (δ) benzene 7.16, chloroform 7.27, methylene chloride 5.32, toluene 2.09; 13C (δ) benzene 128.39, chloroform 77.23, methylene chloride 54.00, toluene 20.40).

ROMP of MPCP. (This description is representative for ROMP of MPCP with other initiators and at other temperatures.) 3-Methyl-3-phenylcyclopropene (101 mg, 0.776 mmol, 100 eq) was dissolved in 0.5 mL toluene and the solution was added to a 1 mL toluene solution of 1 (0.00776 mmol) in one portion. The mixture was stirred for 1 h, then 500 µL benzaldehyde was added. The reaction mixture became brown within 5 minutes, and was stirred for 1 h. The entire mixture was added dropwise to 100 mL of vigorously stirred methanol. A fine white solid formed immediately, and the mixture was stirred for 12 h. The white polymer was filtered off employing a glass frit, rinsed with methanol, and dried in vacuo: 1H NMR (CD2Cl2) δ 7.09 (s,
5H, Ar), 5.48 (s, 2H, C=C), 1.33 (s, 3H, C–H); 13C{$_1^H$} NMR (CD$_2$Cl$_2$) δ 151.3 (C$_{ipso}$), 137.8 (C=C), 128.4 (Ar), 127.2 (Ar), 126.0 (Ar), 46.2 (C$_{quat}$), 30.0 (CH$_3$).

Mo(NAr)(CHCMe$_2$Ph)(OTPP)(Pyr) (4). Mo(NAr)(CHCMe$_2$Ph)(Pyr)$_2$ (0.489 g, 0.913 mmol) was dissolved in 8 mL of diethyl ether in a scintillation vial. TPPOH was added as a solid and a yellow precipitate formed. The mixture was stirred for 1.5 h and the yellow solid was collected on a frit and dried in vacuo. The solution was left in the freezer at -25° C overnight and a second crop was collected; total yield 0.668 g (84%): 1H NMR (benzene-d$_6$) δ 11.96 (s, 1H, 1J$_{CH}$ = 125 Hz, Mo–CH$_3$), 7.32 – 6.89 (overlapping, Ar-H), 6.84 (t, J$_{HH}$ = 7.5 Hz, 2H, Ar-H$_{para}$), 6.44 (d, J$_{HH}$ = 2Hz, 2H, pyr), 6.42 (d, J$_{HH}$ = 2Hz, 2H, pyr), 3.25 (septet, J$_{HH}$ = 7Hz, 2H, C–HMe$_2$), 1.48 (s, 3H, C(C$_3$H$_2$)(Ph)), 1.31 (s, 3H, C(C$_3$H$_2$)(Ph)), 1.06 (d, J$_{HH}$ = 7Hz, 6H, CH(CH$_3$)$_2$), 1.02 (d, J$_{HH}$ = 7Hz, 6H, CH(CH$_3$)$_2$); 13C{$_1^H$} NMR (benzene-d$_6$) δ 291.6, 159.4, 153.8, 148.5, 146.9, 142.7, 142.2, 138.3, 133.0, 131.9, 131.3, 130.4, 129.1, 128.9, 128.4, 127.5, 127.1, 126.9, 126.8, 126.6, 123.5, 110.6, 55.6, 31.8, 30.9, 29.1, 24.9, 23.7. Anal. Calcd for C$_{56}$H$_{54}$MoN$_2$O: C, 77.38; H, 6.27; N, 3.20. Found: C, 77.58; H, 6.28; N, 3.23.

Kinetic studies of conversion of anti-4 to syn-4. After photolysis at 366 nm for 3 h at -78 °C the samples were kept at -78 °C until placed in the preequilibrated 500-MHz 1H NMR probe. Data were collected over at least two half-lives by observing the disappearance of the anti-4 resonance with respect to an internal standard (anthracene, poly(dimethylsiloxane), or tetramethyldisilane).

Observation of Mo(NAr)(CHC(Me)(Ph)(CH)$_2$CMe$_2$Ph)(OTPP)(Pyr) (syn-4+1$_{trans}$). Mo(NAr)(CHCMe$_2$Ph)(OTPP)(Pyr) (0.188 g, 0.217 mmol) was dissolved in 4 mL toluene in a 10 mL Schlenk tube and the solution was cooled to -78° C. A solution of MPCP (27.7 µL, 0.217 mmol) in 0.5 mL toluene was added. The yellow solution turned dark orange. The reaction was stirred 15 min at -78° C and 2 hr at room temperature. The volatiles were removed in vacuo: 1H NMR (benzene-d$_6$, 293 K) δ 12.14 (s, 1H, Mo–CH$_3$), 7.35 – 6.72 (overlapping Ar-H, pyr), 6.55 (t, J$_{HH}$ = 2Hz, 2H, pyr), 5.65 (d, J$_{HH}$ = 16 Hz, 1H, olefinic CH), 5.43 (d, J$_{HH}$ = 16 Hz, 1H, olefinic CH), 3.25 (septet, J$_{HH}$ = 6.5 Hz, CHMe$_2$), 1.89 (s, 3H, MoCHC(CH$_3$)), 1.31 (d, J$_{HH}$
= 12 Hz, 6H, terminal C(Ph)(CH₃)₂, 0.99 (d, J_HH = 6.5 Hz, 6H, CHC(CH₃)₂), 0.96 (d, J_HH = 6.5 Hz, 6H, CHC(CH₃)₂).

Observation of Mo(NAr)₁¹³CHC(Me)(Ph)₁³CH=CHCMe₂Ph](OTPP)(Pyr). A solution of MPCP (66% ¹³C labeled at one olefinic position) in 0.3 mL toluene was added to a −78 °C solution of 4 in 2 mL of toluene. The mixture was stirred 1.5 h at −78 °C and then 1 h at RT. The volatiles were removed in vacuo: ¹H NMR (benzene-d₆, 293 K) δ 12.14 (1/3 d, ¹J_CH = 124 Hz, Mo=¹³CH), 5.43 (1/3 dd, ¹J_CH = 154 Hz, ³J_HH = 16 Hz, ¹³CH=CH), all other resonances the same as in unlabeled species; ¹³C NMR (benzene-d₆, 293 K) δ 290.4 (d, ¹J_CH = 125 Hz, Mo=¹³CH), 133.2 (d, ¹J_CH = 154 Hz, ¹³CH=CH).

Observation of anti-(Mo)(NAr)[CHC(Me)(Ph)(CH)₂CMe₂Ph](OTPP)(Pyr) (anti-4+1trans). An NMR sample of 4 (20.5 mg, 22.6 µmol) in toluene-d₈ in a screw-capped NMR tube with a septum top was cooled to −70 °C in the NMR probe. ¹³C-labeled (33%) MPCP (3 µL, 23 µmol) was added by syringe, the tube inverted once to mix and returned to the probe: ¹H NMR (toluene-d₈, characteristic resonances, 203 K) δ 14.15 (¹J_CH = 144 Hz, Mo=CH), 6.29 (d, ³J_HH = 16 Hz, CH=CH), 5.79 (d, ³J_HH = 16 Hz, CH=CH).

Observation of labeled syn-4+1trans at 203 K generated from anti-4+1trans. After observation of anti-4+1trans by ¹H NMR spectroscopy (see above), the sample was removed from the probe and allowed to warm to room temperature before being reinserted into the cold probe: ¹H NMR (toluene-d₈, characteristic peaks, 203 K) δ 12.55 (¹J_CH = 124 Hz, Mo=CH), 5.66 (d, ³J_HH = 16 Hz, CH=CH), 5.38 (d, ³J_HH = 16 Hz, CH=CH).

Observation of first and second insertion products of NBDF6. Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) (1) (20 mg, 0.023 mmol) was dissolved in 2 mL toluene and cooled to −78 °C. NBDF6 (between 0.5 and 2 eq) were added as a solution in 0.3 mL toluene. The mixtures were stirred for 30 min at −78 °C and warmed to 22 °C and stirred for 2 hr. The volatiles were removed in vacuo and ¹H NMR used to assign the first and second insertion products based on the relative ratios. First insertion product: ¹H NMR (benzene-d₆, 294 K) δ 12.06 (d, J_HH = 8 Hz, 1H, Mo=CH), 5.61 (d, J_HH = 16 Hz, 1H, CHCMe₂Ph), 5.24 (dd, J_HH = 16
Hz, J_{HH} = 9 Hz, 1H, CHCHCMe_2Ph); Second insertion product: 1H NMR (benzene-d_6, 294 K) δ

11.81 (d, J_{HH} = 8 Hz, Mo=CH), 5.66 (d, J_{HH} = 16 Hz, CHCMe_2Ph), 5.31 (dd, J_{HH} = 16 Hz, J_{HH} =

9 Hz, CHCHCMe_2Ph).

Acknowledgment. We are grateful to the U.S. Army (Institute for Soldier Nanotechnology, under Contract DAAD-19-02-D-0002 with the U.S. Army Research Office) and to the Department of Energy (DE-FG02-86ER13564) for research support. The department of chemistry thanks the NSF (CHE-9808061) for funds to purchase a Varian 500 NMR instrument. We are indebted to Professor R. G. Griffin for use of the high field NMR facilities and to Marvin J. Bayro for technical advice. R.G.G. thanks the National Institutes of Health for funding (GM066360 and EB002026).

Supporting Information Available. Solid state carbon NMR spectra and IR spectra of polymer samples. Supporting Information is available free of charge via the Internet at http://pubs.acs.org.
References

TOC for

Z-Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by MonoAryloxidePyrrolide (MAP) Catalysts

by

Margaret M. Flook, Laura C. H. Gerber, Galia T. Debelouchina, and Richard R. Schrock