Bandgap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.jcp.2010.01.023</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 01 02:30:36 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/69624</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike 3.0</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/3.0/</td>
</tr>
</tbody>
</table>
Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods*

H. Men†, N. C. Nguyen‡, R. M. Freund§, P. A. Parrilo¶, and J. Peraire∥

January 15, 2010

Abstract

In this paper, we consider the optimal design of photonic crystal structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using the finite element method into a series of finite-dimensional eigenvalue problems for multiple values of the wave vector parameter. The resulting optimization problem is large-scale and non-convex, with low regularity and non-differentiable objective. By restricting to appropriate eigenspaces, we reduce the large-scale non-convex optimization problem via reparametrization to a sequence of small-scale convex semidefinite programs (SDPs) for which modern SDP solvers can be efficiently applied. Numerical results are presented for both transverse magnetic (TM) and transverse electric (TE) polarizations at several frequency bands. The optimized structures exhibit patterns which go far beyond typical physical intuition on periodic media design.

1 Introduction

The propagation of waves in periodic media has attracted considerable interest in recent years. This interest stems from the possibility of creating periodic structures that exhibit band gaps in their spectrum, i.e., frequency regions in which the wave propagation is prohibited. Band gaps occur in many wave propagation phenomena including electromagnetic, acoustic and elastic waves. Periodic structures exhibiting electromagnetic wave band gaps, or photonic crystals, have proven very important as device components for integrated optics including frequency filters [11], waveguides [10], switches [21], and optical buffers [28].

The optimal conditions for the appearance of gaps were first studied for one-dimensional crystals by Lord Rayleigh in 1887 [18]. In a one-dimensional periodic structure, one can widen the band gap by increasing the contrast in the refractive index and difference in width between the materials. Furthermore, it is possible to create band gaps for any particular frequency by changing...
the periodicity length of the crystal. Unfortunately, however, in two or three dimensions one can only suggest rules of thumb for the existence of a band gap in a periodic structure, since no rigorous criteria have yet been determined. This made the design of two- or three-dimensional crystals a trial and error process, being far from optimal. Indeed, the possibility of two- and three-dimensionally periodic crystals with corresponding two- and three-dimensional band gaps was not suggested until 100 years after Rayleigh’s discovery of photonic band gap in one dimension, by Yablonovitch [26] and John [14] in 1987.

From a mathematical viewpoint, the calculation of the band gap reduces to the solution of an infinite-dimensional Hermitian eigenvalue problem which is parametrized by the dielectric function and the wave vector. In the design setting, however, one wishes to know the answer to the question: which periodic structures, composed of arbitrary arrangements of two or more different materials, produce the largest band gaps around a certain frequency? This question can be rigorously addressed by formulating an optimization problem for the parameters that represent the material properties and geometry of the periodic structure. The resulting problem is infinite-dimensional with an infinite number of constraints. After appropriate discretization in space and consideration of a finite set of wave vectors, one obtains a large-scale finite-dimensional eigenvalue problem which is non-convex and is known to be non-differentiable when eigenvalue multiplicities exist. The current state-of-the-art work done on this problem falls into two broad categories. The first kind tries to find the “optimal” band structure by parameter studies — based on prescribed inclusion shapes (e.g., circular or hexagonal inclusions) [9], fixed topology [27], or geometric considerations from the interpretation of an extensive numerical optimization study [19]. The second kind attempts to use formal topology optimization techniques [4, 7, 20], and level set methods [15]. Both approaches typically use gradient-based optimization methods. While these methods are attractive and have been quite successful in practice, the optimization processes employed explicitly compute the sensitivities of eigenvalues with respect to the dielectric function, which are local subgradients for such non-differentiable problem. As a result, gradient-based solution methods often suffer from the lack of regularity of the underlying problem when eigenvalue multiplicities are present, as they typically are at or near the solution.

In this paper we propose a new approach based on semidefinite programming (SDP) and subspace methods for the optimal design of photonic band structure. In the last two decades, SDP has emerged as the most important class of models in convex optimization; see [1, 2, 16, 23, 25]. SDP encompasses a huge array of convex problems as special cases, and is computationally tractable (usually comparable to least-square problems of comparable dimensions). There are three distinct properties that make SDP very suitable for the band gap optimization problem. First, the underlying differential operator is Hermitian and positive semidefinite. Second, the objective and associated constraints involve bounds on eigenvalues of matrices. And third, as explained below, we can approximate the original non-convex optimization problem by a semidefinite program for which SDP can be well applied, thanks to its efficiency and robustness of handling this type of spectral objective and constraints.

In our approach, we first reformulate the original problem of maximizing the band gap between two consecutive eigenvalues as an optimization problem in which we optimize the gap in eigenvalues between two orthogonal subspaces. The first eigenspace consists of eigenfunctions corresponding to eigenvalues below the band gap, whereas the second eigenspace consists of eigenfunctions whose eigenvalues are above the band gap. In this way, the eigenvalues are no longer present in our formulation; however, like the original problem, the exactly reformulated optimization problem is large-scale. To reduce the problem size, we truncate the high-dimensional subspaces to only a few eigenfunctions below and above the band gap [5, 17], thereby obtaining a new small-scale yet non-convex optimization problem. Finally, we keep the subspaces fixed at a given decision
parameter vector and use a reparametrization of the decision variables to obtain a convex semidefinite optimization problem for which SDP solution methods can be effectively applied. We apply this approach to optimize band gaps in two-dimensional photonic crystals for either the transverse magnetic (TM) or the transverse electric (TE) polarizations.

A detailed assessment of the computational efficiency of the proposed approach compared to alternative methods is outside the scope of this paper. We note that the performance of methods that require sensitivity information of the eigenvalues with respect to the dielectric function will deteriorate when eigenvalue multiplicities occur. The approach developed herein is designed to deal with such situations and therefore, we expect it will perform with increased robustness in complex realistic applications.

The rest of the paper is organized as follows. In Section 2 we introduce the governing differential equations and the mathematical formulation of the band gap optimization problem. We then discuss the discretization process and present the subspace restriction approach. In Section 3 we introduce the semidefinite programming formulation of the band structure optimization, and lay out the optimization steps involved in solving the problem. Numerical results are presented in Section 4 for both the TE and TM polarizations in square lattices. Finally, in Section 5 we conclude with several remarks on anticipated future research directions.

2 The Band Gap Optimization Problem

2.1 Governing Equations

Our primary concern is the propagation of electromagnetic linear waves in periodic media, and the design of such periodic structures, or photonic crystals, to create optimal band gaps in their spectrum. The propagation of electromagnetic waves in photonic crystals is governed by Maxwell’s equations. The solutions to these equations are in general very complex functions of space and time. Due to linearity however, it is possible to separate the time dependence from the spatial dependence by expanding the solution in terms of harmonic modes – any time-varying solution can always be reconstructed by a linear combination of these harmonic modes using Fourier analysis. By considering only harmonic solutions, the problem is considerably simplified since it reduces to a series of eigenvalue problems for the spatially varying part of the solutions (eigenfunctions) and the corresponding frequencies (eigenvalues).

In the absence of sources and assuming a monochromatic wave, i.e., with magnetic field $H(r, t) = H(r)e^{-i\omega t}$, and electric field $E(r, t) = E(r)e^{-i\omega t}$, Maxwell’s equations can be written in the following form:

$$\nabla \times \left(\frac{1}{\varepsilon(r)} \nabla \times H(r) \right) = \left(\frac{\omega}{c} \right)^2 H(r), \quad \text{in } \mathbb{R}^3,$$

$$\frac{1}{\varepsilon(r)} \nabla \times (\nabla \times E(r)) = \left(\frac{\omega}{c} \right)^2 E(r), \quad \text{in } \mathbb{R}^3,$$

where c is the speed of light, and $\varepsilon(r)$ is the dielectric function. In two dimensions, there are two possible polarizations of the magnetic and electric fields. In TE (transverse electric) polarization, the electric field is confined to the plane of wave propagation and the magnetic field $H = (0, 0, H)$ is perpendicular to this plane. In contrast, in TM (transverse magnetic) polarization, the magnetic field is confined to the plane of wave propagation and the electric field $E = (0, 0, E)$ is perpendicular to this plane. In such cases, the Maxwell’s equations can be reduced to scalar eigenvalue problems

$$\text{TE} : \quad - \nabla : \left(\frac{1}{\varepsilon(r)} \nabla H(r) \right) = \left(\frac{\omega}{c} \right)^2 H(r), \quad \text{in } \mathbb{R}^2,$$
Figure 1: Left: A photonic crystal on a square lattice. The dashed box represents the primitive unit cell (Ω), where a is the periodicity length of the lattice. Right: The reciprocal lattice, and the dashed box represents the first Brillouin zone (B). The irreducible zone is the green triangular wedge, and its boundary is denoted by ∂B.

\[\text{TM : } - \nabla \cdot (\nabla E(r)) = \left(\frac{\omega}{c} \right)^2 \varepsilon(r) E(r), \quad \text{in } \mathbb{R}^2. \]

Note that the reciprocal of the dielectric function is present in the differential operator for the TE case, whereas the dielectric function is present in the right-hand side for the TM case.

For two-dimensional square lattices the dielectric function satisfies $\varepsilon(r) = \varepsilon(r + R)$, where R are the crystal lattice vectors\(^1\). By applying the Bloch-Floquet theory \([3, 12]\) for periodic eigenvalue problems we obtain that

\[H(r) = e^{ik \cdot r} H_k(r), \quad \text{and} \quad E(r) = e^{ik \cdot r} E_k(r), \]

where $H_k(r)$ and $E_k(r)$ satisfy

\[\text{TE : } (\nabla + ik) \cdot \left(\frac{1}{\varepsilon(r)} (\nabla + ik) H_k(r) \right) = \left(\frac{\omega}{c} \right)^2 H_k(r), \quad \text{in } \Omega, \]

\[\text{TM : } (\nabla + ik) \cdot ((\nabla + ik) E_k(r)) = \left(\frac{\omega}{c} \right)^2 \varepsilon(r) E_k(r), \quad \text{in } \Omega, \]

respectively. Thus, the effect of considering periodicity is reduced to replacing the indefinite periodic domain by the unit cell Ω and ∇ by $\nabla + ik$ in the original equation, where k is a wave vector in the first Brillouin zone B. Note that the unit cell Ω and the Brillouin zone B depend on the lattice type (e.g., square or triangular lattices) as well as the crystal lattice vectors R. If we further take into consideration the symmetry group of the square lattice \([24]\), we only need to consider all possible wavevectors k on the irreducible Brillouin zone, or (under certain conditions) its boundary \([13]\). Figure 1 shows an example of the unit cell and the Brillouin zone for a square lattice.

For notational convenience, we write the above equations in the following operator form

\[Au = \lambda M u, \quad \text{in } \Omega, \]

where, for the TE case, $u \equiv H_k(r)$, $\lambda \equiv \omega_{\text{TE}}^2/c^2$, and

\[A(\varepsilon, k) \equiv -(\nabla + ik) \cdot \left(\frac{1}{\varepsilon(r)} (\nabla + ik) \right), \quad M \equiv I; \]

\(^1\)For a square lattice, R denotes the vectors spanned by $\{ae_1, ae_2\}$, where e_1 and e_2 are the unit basis vectors and a is the periodicity length of the crystal \([13]\).
whereas, for the TM case, \(u \equiv E_k(r) \), \(\lambda \equiv \omega_{\text{TM}}^2/c^2 \), and

\[
A(k) \equiv - (\nabla + ik) \cdot (\nabla + ik), \quad \mathcal{M}(\varepsilon) \equiv \varepsilon(r)I.
\]

Here \(I \) denotes the identity operator. We denote by \((u^m, \lambda^m)\) the \(m \)-th pair of eigenfunction and eigenvalue of (5) and assume that these eigenpairs are numbered in ascending order: \(0 < \lambda^1 \leq \lambda^2 \leq \cdots \leq \lambda^\infty \).

2.2 The Optimization Problem

The objective in photonic crystal design is to maximize the band gap between two consecutive frequency modes. Due to the lack of fundamental length scale in Maxwell’s equations, it can be shown that the magnitude of the band gap scales by a factor of \(s \) when the crystal is expanded by a factor of \(1/s \). Therefore, it is more meaningful to maximize the gap-midgap ratio instead of the absolute band gap [13]. The gap-midgap ratio between \(\lambda^m \) and \(\lambda^{m+1} \) is defined as

\[
J(\varepsilon(\mathbf{r})) = \frac{\inf_{\mathbf{k} \in \partial B} \lambda^{m+1}(\varepsilon(\mathbf{r}), \mathbf{k}) - \sup_{\mathbf{k} \in \partial B} \lambda^m(\varepsilon(\mathbf{r}), \mathbf{k})}{\inf_{\mathbf{k} \in \partial B} \lambda^{m+1}(\varepsilon(\mathbf{r}), \mathbf{k}) + \sup_{\mathbf{k} \in \partial B} \lambda^m(\varepsilon(\mathbf{r}), \mathbf{k})},
\]

where \(\partial B \) represents the irreducible Brillouin zone boundary; see Figure 1 for example.

A typical characterization of the dielectric function \(\varepsilon(\mathbf{r}) \) is the distribution of two different materials. Suppose that we are given two distinct materials with dielectric constants \(\varepsilon_\text{min} \) and \(\varepsilon_\text{max} \) where \(\varepsilon_\text{min} < \varepsilon_\text{max} \). We wish to find arrangements of the materials within the unit cell \(\Omega \) which result in maximal gap-midgap ratio. To this end, we decompose the unit cell \(\Omega \) into \(N_\varepsilon \) disjoint subcells \(K_i \), \(1 \leq i \leq N_\varepsilon \), such that \(\Omega = \bigcup_{i=1}^{N_\varepsilon} K_i \) and \(K_i \cap K_j = \emptyset \) for \(i \neq j \). Here we take this subcell grid to be the same as the finite element triangulation of the unit cell as we are going to discretize the continuous eigenvalue problem by the finite element method. Our dielectric function \(\varepsilon(\mathbf{r}) \) takes a unique value between \(\varepsilon_\text{min} \) and \(\varepsilon_\text{max} \) on each subcell, namely, \(\varepsilon(\mathbf{r}) = \varepsilon_i \in \mathbb{R} \) on \(K_i \) and \(\varepsilon_\text{min} \leq \varepsilon_i \leq \varepsilon_\text{max} \). However, due to the symmetry of square lattice, we only need to define the dielectric function \(\varepsilon(\mathbf{r}) \) over part of the unit cell \((1/8 \text{ of the unit cell})\). Hence, in general, the dielectric function \(\varepsilon(\mathbf{r}) \) is discretized into a finite dimensional vector \(\varepsilon = (\varepsilon_1, \ldots, \varepsilon_{n_\varepsilon}) \in \mathbb{R}^{n_\varepsilon} \) (with \(n_\varepsilon \leq N_\varepsilon \)) which resides in the following admissible region:

\[
\mathcal{Q}_{\text{ad}} \equiv \{ \varepsilon = (\varepsilon_1, \ldots, \varepsilon_{n_\varepsilon}) \in \mathbb{R}^{n_\varepsilon} : \varepsilon_\text{min} \leq \varepsilon_i \leq \varepsilon_\text{max}, \ 1 \leq i \leq n_\varepsilon \}.
\]

This region consists of piecewise-constant functions whose value on every subcell varies between \(\varepsilon_\text{min} \) and \(\varepsilon_\text{max} \). Moreover, to render this problem computationally tractable, we replace the irreducible Brillouin zone boundary \(\partial B \) by a finite subset

\[
S_{n_k} = \{ \mathbf{k}_t \in \partial B, \ 1 \leq t \leq n_k \},
\]

where \(\mathbf{k}_t, 1 \leq t \leq n_k \), are wave vectors chosen along the irreducible Brillouin zone boundary. As a result, the band gap optimization problem that maximizes the gap-midgap ratio between \(\lambda^m \) and \(\lambda^{m+1} \) can be stated as follows:

\[
\max_{\varepsilon} \quad J^*(\varepsilon) = \frac{\min_{\mathbf{k} \in S_{n_k}} \lambda^{m+1}(\varepsilon, \mathbf{k}) - \max_{\mathbf{k} \in S_{n_k}} \lambda^{m}(\varepsilon, \mathbf{k})}{\min_{\mathbf{k} \in S_{n_k}} \lambda^{m+1}(\varepsilon, \mathbf{k}) + \max_{\mathbf{k} \in S_{n_k}} \lambda^{m}(\varepsilon, \mathbf{k})}
\]

\[
s.t. \quad A(\varepsilon, \mathbf{k})\mathbf{u}^j = \lambda^j \mathcal{M}(\varepsilon)\mathbf{u}^j, \quad j = m, m + 1, \ \mathbf{k} \in S_{n_k}, \
\varepsilon_\text{min} \leq \varepsilon_i \leq \varepsilon_\text{max}, \quad 1 \leq i \leq n_\varepsilon.
\]
In this problem a subtle difference between TE and TM polarizations lies in the operators of the eigenvalue problem: A and M take the form of either (6) for the TE case or (7) for the TM case. In either case, note that the eigenvalue problems embedded in (8) must be addressed as part of any computational strategy for the overall solution of (8).

2.3 Discretization of the Eigenvalue Problem

We consider here the finite element method to discretize the continuous eigenvalue problem (5). This produces the following discrete eigenvalue problem:

\[
A_h(\epsilon, k)u^j_h = \lambda^j_hM_h(\epsilon)u^j_h, \quad j = 1, \ldots, N, \quad k \in S_{n_k},
\]

where $A_h(\epsilon, k) \in \mathbb{C}^{N \times N}$ is a Hermitian stiffness matrix and $M_h(\epsilon) \in \mathbb{R}^{N \times N}$ is a symmetric positive definite mass matrix. These matrices are sparse and typically very large ($N \gg 1$). We consider the approximate eigenvalues in ascending order: $\lambda^1_h \leq \lambda^2_h \leq \cdots \leq \lambda^N_h$.

It is important to note that the dependence of the above matrices on the design parameter vector ϵ is different for the TE and TM polarizations. In the TE case, A^TE_h depends on ϵ and M^TE_h does not, whereas in the TM case M^TM_h depends on ϵ and A^TM_h does not. More specifically, since $\epsilon(r)$ is a piecewise-constant function on Ω, the ϵ-dependent matrices can be expressed as

\[
A^\text{TE}_h(\epsilon, k) = \sum_{i=1}^{n_\epsilon} \frac{1}{\epsilon_i} A^\text{TE}_{h,i}(k), \quad M^\text{TM}_h(\epsilon) = \sum_{i=1}^{n_\epsilon} \epsilon_i M^\text{TM}_{h,i}.
\]

where the matrices $A^\text{TE}_{h,i}(k)$ and $M^\text{TM}_{h,i}$, $1 \leq i \leq n_\epsilon$ are independent of ϵ. We note that $A^\text{TE}_h(\epsilon, k)$ is linear with respect to $1/\epsilon_i$, $1 \leq i \leq n_\epsilon$, while $M^\text{TM}_h(\epsilon)$ is linear with respect to ϵ_i, $1 \leq i \leq n_\epsilon$. The affine expansion (10) is a direct consequence of the fact that we use piecewise-constant approximation for the dielectric function $\epsilon(r)$. (In the TE case, we will shortly change our decision variables to $y_i = 1/\epsilon_i$, $1 \leq i \leq n_\epsilon$, so as to render A^TE_h affine in the variables $y_1, \ldots, y_{n_\epsilon}$.)

After discretizing the eigenvalue problem (5) by the finite element method, we obtain the following band gap optimization problem:

\[
\max_{\epsilon} J_h(\epsilon) = \frac{\min_{k \in S_{n_k}} \lambda^{m+1}_h(\epsilon, k) - \max_{k \in S_{n_k}} \lambda^m_h(\epsilon, k)}{\max_{k \in S_{n_k}} \lambda^{m+1}_h(\epsilon, k) + \min_{k \in S_{n_k}} \lambda^m_h(\epsilon, k)},
\]

s.t. \(A_h(\epsilon, k)u^j_h = \lambda^j_hM_h(\epsilon)u^j_h, \quad j = m, m+1, \quad k \in S_{n_k}, \)

\[
\epsilon_{\min} \leq \epsilon_i \leq \epsilon_{\max}, \quad 1 \leq i \leq n_\epsilon.
\]

Unfortunately, this optimization problem is non-convex; furthermore it suffers from lack of regularity at the optimum. The reason for this is that the eigenvalues λ^m_h and λ^{m+1}_h are typically not smooth functions of ϵ at points of multiplicity, and multiple eigenvalues at the optimum are typical of structures with symmetry. As a consequence, the gradient of the objective function $J(\epsilon)$ with respect to ϵ is not well-defined at points of eigenvalue multiplicity, and thus gradient-based descent methods often run into serious numerical difficulties and convergence problems.

3 Band Structure Optimization

In this section we describe our approach to solve the band gap optimization problem based on a subspace method and semidefinite programming (SDP). In our approach, we first reformulate the
original problem as an optimization problem in which we aim to maximize the band gap obtained by restriction of the operator to two orthogonal subspaces. The first subspace consists of eigenfunctions associated to eigenvalues below the band gap, and the second subspace consists of eigenfunctions whose eigenvalues are above the band gap. In this way, the eigenvalues are no longer explicitly present in the formulation, and eigenvalue multiplicity no longer leads to lack of regularity. The reformulated optimization problem is exact but non-convex and large-scale. To reduce the problem size, we truncate the high-dimensional subspaces to only a few eigenfunctions below and above the band gap [5, 17], thereby obtaining a new small-scale yet non-convex optimization problem. Finally, we keep the subspaces fixed at a given decision parameter vector to obtain a convex semidefinite optimization problem for which SDP solution methods can be efficiently applied.

3.1 Reformulation of the Band Gap Optimization Problem using Subspaces

We first define two additional decision variables:

$$
\lambda^u_h := \min_{k \in S_{n_k}} \lambda^{m+1}_h (\varepsilon, k), \quad \lambda^\ell_h := \max_{k \in S_{n_k}} \lambda^m_h (\varepsilon, k),
$$

and then rewrite the original problem (11) as

$$
P_0 : \max_{\varepsilon, \lambda^u_h, \lambda^\ell_h} \frac{\lambda^u_h - \lambda^\ell_h}{\lambda^u_h + \lambda^\ell_h}
\text{ s.t. } \lambda^m_h (\varepsilon, k) \leq \lambda^\ell_h, \quad \lambda^u_h \leq \lambda^{m+1}_h (\varepsilon, k), \quad \forall k \in S_{n_k},
A_h (\varepsilon, k) u^m_h = \lambda^m_h M_h (\varepsilon) u^m_h, \quad \forall k \in S_{n_k},
A_h (\varepsilon, k) u^{m+1}_h = \lambda^{m+1}_h M_h (\varepsilon) u^{m+1}_h, \quad \forall k \in S_{n_k},
\varepsilon_{\min} \leq \varepsilon_i \leq \varepsilon_{\max}, \quad i = 1, \ldots, n_\varepsilon,
\lambda^u_h, \lambda^\ell_h > 0.
$$

Next, we introduce the following matrices:

$$
\Phi^\varepsilon (k) := [\Phi^\varepsilon_u (k) | \Phi^\varepsilon_\ell (k)] := [u^1_h (\varepsilon, k) \ldots u^m_h (\varepsilon, k) | u^{m+1}_h (\varepsilon, k) \ldots u^N_h (\varepsilon, k)],
$$

where $\Phi^\varepsilon_u (k)$ and $\Phi^\varepsilon_\ell (k)$ consist of the first m eigenvectors and the remaining $N - m$ eigenvectors, respectively, of the eigenvalue problem:

$$
A_h (\varepsilon, k) u^j_h = \lambda^j_h M_h (\varepsilon) u^j_h, \quad 1 \leq j \leq N.
$$

We will also denote the subspaces spanned by the eigenvectors of $\Phi^\varepsilon_u (k)$ and $\Phi^\varepsilon_\ell (k)$ as $sp(\Phi^\varepsilon_u (k))$ and $sp(\Phi^\varepsilon_\ell (k))$, respectively.

The first three sets of constraints in (12) can be represented exactly as

$$
\Phi^\varepsilon_u (k) [A_h (\varepsilon, k) - \lambda^\ell_h M_h (\varepsilon)] \Phi^\varepsilon_\ell (k) \preceq 0, \quad \forall k \in S_{n_k}
$$

$$
\Phi^\varepsilon_\ell (k) [A_h (\varepsilon, k) - \lambda^u_h M_h (\varepsilon)] \Phi^\varepsilon_u (k) \succeq 0, \quad \forall k \in S_{n_k},
$$

where “\succeq” is the Löwner partial ordering on symmetric matrices, i.e., $A \succeq B$ if and only if $A - B$
Although the reformulation given
Let us assume that we are approximating method for solving the band gap optimization problem as discussed below.

\[
P_1: \quad \max_{\epsilon, \lambda_h^m, \lambda_h^{m+1}} \frac{\lambda_h^u - \lambda_h^f}{\lambda_h^u + \lambda_h^f}
\]

s.t. \[
\Phi^e(k)[A_h(\epsilon, k) - \lambda_h^m M_h(\epsilon)] \Phi^e(k) \leq 0, \quad \forall k \in S_{nk}, \\
\Phi^u(k)[A_h(\epsilon, k) - \lambda_h^{m+1} M_h(\epsilon)] \Phi^u(k) \geq 0, \quad \forall k \in S_{nk}, \\
\epsilon_{\min} \leq \epsilon_i \leq \epsilon_{\max}, \quad i = 1, \ldots, n_{\epsilon}, \\
\lambda_h^u, \lambda_h^f > 0.
\]

Although the reformulation \(P_1\) is exact, there is however a subtle difference in the interpretation of \(P_0\) and \(P_1\): \(P_0\) can be viewed as maximizing the gap-midgap ratio between the two eigenvalues \(\lambda_h^m\) and \(\lambda_h^{m+1}\); whereas \(P_1\) can be viewed as maximizing the gap-midgap ratio between the two subspaces \(\text{sp}(\Phi^e(k))\) and \(\text{sp}(\Phi^u(k))\). The latter viewpoint allows us to develop an efficient subspace approximation method for solving the band gap optimization problem as discussed below.

3.2 Subspace Approximation and Reduction

Let us assume that we are given a parameter vector \(\hat{\epsilon}\). We then introduce the associated matrices

\[
\Phi^e(k) := [\Phi^e(k) \mid \Phi^e(k)] = [u_h^1(\hat{\epsilon}, k) \ldots u_h^m(\hat{\epsilon}, k) \mid u_h^{m+1}(\hat{\epsilon}, k) \ldots u_h^N(\hat{\epsilon}, k)],
\]

where \(\Phi^e(k)\) and \(\Phi^u(k)\) consist of the first \(m\) eigenvectors and the remaining \(N - m\) eigenvectors, respectively, of the eigenvalue problem

\[
A_h(\hat{\epsilon}, k) u_h^j = \lambda_h^j M_h(\hat{\epsilon}) u_h^j, \quad 1 \leq j \leq N.
\]

Under the presumption that \(\text{sp}(\Phi^e(k))\) and \(\text{sp}(\Phi^u(k))\) are reasonable approximations of \(\text{sp}(\Phi^e(k))\) and \(\text{sp}(\Phi^u(k))\) for \(\epsilon\) near \(\hat{\epsilon}\), we replace \(\Phi^e(k)\) with \(\Phi^e(k)\) and \(\Phi^u(k)\) with \(\Phi^u(k)\) to obtain

\[
P_2^\epsilon: \quad \max_{\epsilon, \lambda_h^m, \lambda_h^{m+1}} \frac{\lambda_h^u - \lambda_h^f}{\lambda_h^u + \lambda_h^f}
\]

s.t. \[
\Phi^e(k)[A_h(\epsilon, k) - \lambda_h^m M_h(\epsilon)] \Phi^e(k) \leq 0, \quad \forall k \in S_{nk}, \\
\Phi^u(k)[A_h(\epsilon, k) - \lambda_h^{m+1} M_h(\epsilon)] \Phi^u(k) \geq 0, \quad \forall k \in S_{nk}, \\
\epsilon_{\min} \leq \epsilon_i \leq \epsilon_{\max}, \quad i = 1, \ldots, n_{\epsilon}, \\
\lambda_h^u, \lambda_h^f > 0.
\]

Note in \(P_2^\epsilon\) that the subspaces \(\text{sp}(\Phi^e(k))\) and \(\text{sp}(\Phi^u(k))\) are approximations of the subspaces \(\text{sp}(\Phi^e(k))\) and \(\text{sp}(\Phi^u(k))\) and are no longer functions of the decision variable vector \(\epsilon\).

Note also that the semidefinite inclusions in \(P_2^\epsilon\) are large-scale, i.e., the rank of either the first or second inclusion is at least \(N/2\), for each \(k \in S_{nk}\), and \(N\) will typically be quite large. In order to reduce the size of the inclusions, we reduce the dimensions of the subspaces by considering only the “important” eigenvectors among \(u_h^1(\epsilon, k) \ldots u_h^m(\epsilon, k), u_h^{m+1}(\epsilon, k) \ldots u_h^N(\epsilon, k)\), namely those \(a_k\) eigenvectors whose eigenvalues lie below but nearest to \(\lambda_h^m(\epsilon, k)\) and those \(b_k\) eigenvectors
whose eigenvalues lie above but nearest to $\lambda_{h}^{m+1}(\hat{\varepsilon}, k)$, for small values of a_k, b_k, typically chosen in the range between 2 and 5, for each $k \in S_{nk}$. This yields reduced matrices

$$\Phi_{a_k+b_k}^{\hat{\varepsilon}}(k) := [\Phi_{a_k}^{\hat{\varepsilon}}(k) | \Phi_{b_k}^{\hat{\varepsilon}}(k)] = [u_{h}^{-a_k+1}(\hat{\varepsilon}, k) \ldots u_{h}^{m}(\hat{\varepsilon}, k) | u_{h}^{m+1}(\hat{\varepsilon}, k) \ldots u_{h}^{m+b_k}(\hat{\varepsilon}, k)].$$

Substituting $\Phi_{a_k}^{\hat{\varepsilon}}(k)$ in place of $\Phi_{a_k}^{\hat{\varepsilon}}(k)$ and $\Phi_{b_k}^{\hat{\varepsilon}}(k)$ in place of $\Phi_{a_k}^{\hat{\varepsilon}}(k)$ in the formulation $P_{2}^{\hat{\varepsilon}}$ yields the following reduced optimization formulation:

$$P_{3}^{\hat{\varepsilon}} : \max_{\varepsilon, \lambda_{h}^{u}, \lambda_{h}^{\ell}} \quad \frac{\lambda_{h}^{u} - \lambda_{h}^{\ell}}{\lambda_{h}^{u} + \lambda_{h}^{\ell}}$$

subject to

$$\Phi_{a_k}^{\hat{\varepsilon}}(k)[A_{h}(\varepsilon, k) - \lambda_{h}^{\ell}M_{h}(\varepsilon)]\Phi_{a_k}^{\hat{\varepsilon}}(k) \preceq 0, \quad \forall k \in S_{nk},$$

$$\Phi_{b_k}^{\hat{\varepsilon}}(k)[A_{h}(\varepsilon, k) - \lambda_{h}^{u}M_{h}(\varepsilon)]\Phi_{b_k}^{\hat{\varepsilon}}(k) \succeq 0, \quad \forall k \in S_{nk},$$

$$\varepsilon_{\min} \leq \varepsilon_{i} \leq \varepsilon_{\max}, \quad i = 1, \ldots, n_{\varepsilon},$$

$$\lambda_{h}^{u}, \lambda_{h}^{\ell} > 0.$$

In this way the formulation $P_{3}^{\hat{\varepsilon}}$ seeks to model only the anticipated “active” eigenvalue constraints, in exact extension of active-set methods in nonlinear optimization. The integers a_k, b_k are determined indirectly through user-defined parameters $r_l > 0$, and $r_u > 0$, where we retain only those eigenvectors whose eigenvalues are within $100r_{l}\%$ beneath $\lambda_{h}^{m}(\hat{\varepsilon}, k)$ or whose eigenvalues are within $100r_{u}\%$ above $\lambda_{h}^{m+1}(\hat{\varepsilon}, k)$. This translates to choosing $a_k, b_k \in \mathbb{N}_{+}$ as the smallest integers that satisfy

$$\frac{\lambda_{h}^{m+1}(\hat{\varepsilon}, k) - \lambda_{h}^{m-a_k+1}(\hat{\varepsilon}, k)}{\lambda_{h}^{m}(\hat{\varepsilon}, k)} \leq r_l \leq \frac{\lambda_{h}^{m+1}(\hat{\varepsilon}, k) - \lambda_{h}^{m-a_k}(\hat{\varepsilon}, k)}{\lambda_{h}^{m}(\hat{\varepsilon}, k)},$$

$$\frac{\lambda_{h}^{m+1}(\hat{\varepsilon}, k) - \lambda_{h}^{m+b_k+1}(\hat{\varepsilon}, k)}{\lambda_{h}^{m+1}(\hat{\varepsilon}, k)} \leq r_u \leq \frac{\lambda_{h}^{m+1}(\hat{\varepsilon}, k) - \lambda_{h}^{m+1}(\hat{\varepsilon}, k)}{\lambda_{h}^{m+1}(\hat{\varepsilon}, k)}.$$
and set $y_{\min} = 1/\varepsilon_{\max}$ and $y_{\max} = 1/\varepsilon_{\min}$. We also amend our notation to write various functional dependencies on y instead of ε such as $\Phi_{\varepsilon}^y(k)$, etc. Utilizing (10), we re-write P_3^y for the TE polarization as

$$P_{\text{TE}}^y: \max_{y} \frac{y_{n_y} - y_{n_y-1}}{y_{n_y} + y_{n_y-1}}$$

s.t. $\Phi_{a_k}^y(k) \left[\sum_{i=1}^{n_y-2} y_i A_{h,i}^{\text{TE}}(k) - y_{n_y-1} M_{h}^{\text{TE}} \right] \Phi_{a_k}^y(k) \preceq 0, \quad \forall k \in S_{h}$, (16)

$$\Phi_{b_k}^y(k) \left[\sum_{i=1}^{n_y-2} y_i A_{h,i}^{\text{TE}}(k) - y_{n_y} M_{h}^{\text{TE}} \right] \Phi_{b_k}^y(k) \succeq 0, \quad \forall k \in S_{h},$$

$y_{\min} \leq y_i \leq y_{\max}$, $i = 1, \ldots, n_y - 2,$

$y_{n_y-1}, y_{n_y} > 0.$

We note that the objective function is a linear fractional expression and the constraint functions are linear functions of the variables y. Therefore P_{TE}^y is a linear fractional SDP. Using a standard homogenization [6, 8], a linear fractional SDP can be converted to a linear SDP.\(^2\)

TM polarization. We introduce slightly different decision variable notation for convenience:

$$z := (z_1, z_2, \ldots, z_{n_z}) := (\varepsilon_1, \ldots, \varepsilon_{n_z}, 1/\lambda_{h}^{u}, 1/\lambda_{h}^{l})$$

and set $z_{\min} = \varepsilon_{\min}$ and $z_{\max} = \varepsilon_{\max}$. Similar to the TE case, we amend our notation to write various functional dependencies on z instead of ε such as $\Phi_{\varepsilon}^z(k)$, etc. Noting that

$$\frac{\lambda_{h}^{u} - \lambda_{h}^{l}}{\lambda_{h}^{u} + \lambda_{h}^{l}} = \frac{z_{n_z-1} - z_{n_z}}{z_{n_z-1} + z_{n_z}},$$

utilizing (10), and multiplying the semidefinite inclusions of (15) by z_{n_z-1} and z_{n_z}, respectively, we re-write P_3^z for the TM polarization as

$$P_{\text{TM}}^z: \max_{z} \frac{z_{n_z-1} - z_{n_z}}{z_{n_z-1} + z_{n_z}}$$

s.t. $\Phi_{a_k}^z(k) \left[z_{n_z-1} A_{h}^{\text{TM}}(k) - \sum_{i=1}^{n_z-2} z_i M_{h,i}^{\text{TM}} \right] \Phi_{a_k}^z(k) \preceq 0, \quad \forall k \in S_{h}$, (17)

$$\Phi_{b_k}^z(k) \left[z_{n_z} A_{h}^{\text{TM}}(k) - \sum_{i=1}^{n_z-2} z_i M_{h,i}^{\text{TM}} \right] \Phi_{b_k}^z(k) \succeq 0, \quad \forall k \in S_{h},$$

$z_{\min} \leq z_i \leq z_{\max}$, $i = 1, \ldots, n_z - 2,$

$z_{n_z-1}, z_{n_z} > 0.$

Here again the objective function is a linear fractional form and the constraint functions are linear functions of the variables z. Therefore P_{TM}^z is a linear fractional SDP with format similar to that of P_{TE}^y.

Since both P_{TE}^y and P_{TM}^z are linear fractional semidefinite programs, they can be solved very efficiently by using modern interior point methods. Here we use the SDPT3 software [22] for this task.

\(^2\)Indeed, for notational simplicity consider a linear fractional optimization problem of the form $\max_z \frac{c^T z}{d^T z}$ subject to $b - Ax \in K_1$, $x \in K_2$, where $d^T x > 0$ for all feasible x and K_1, K_2 are convex cones. Then this problem is equivalent to the problem $\max_{w, \theta} c^T w$ subject to $b \theta - Aw \in K_1$, $w \in K_2$, $d^T w = 1$, $\theta \geq 0$, under the elementary transformations $x \leftarrow (w/\theta)$ and $(w, \theta) \leftarrow (x/d^T x, 1/d^T x)$, see [6, 8].
3.4 Main Algorithm

We summarize our numerical approach for solving the band gap optimization problem of the TE polarization in the following table. Essentially the same algorithm (with the modifications described in the previous section) is used to solve the band gap optimization problem of the TM polarization.

<table>
<thead>
<tr>
<th>Implementation Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Start with an initial guess y^0 and an error tolerance ϵ_{tol}, and set $\hat{y} := y^0$.</td>
</tr>
<tr>
<td>Step 2. For each wave vector $k \in S_{nk}$, do:</td>
</tr>
<tr>
<td>- Determine the subspace dimensions a_k and b_k.</td>
</tr>
<tr>
<td>- Compute the matrices $\Phi_{a_k}(k)$ and $\Phi_{b_k}(k)$.</td>
</tr>
<tr>
<td>Step 3. Form the semidefinite program $P_{TE}^{\hat{y}}$.</td>
</tr>
<tr>
<td>Step 4. Solve $P_{TE}^{\hat{y}}$ for an optimal solution y^*.</td>
</tr>
<tr>
<td>Step 5. If $|y^* - \hat{y}| \leq \epsilon_{\text{tol}}$, stop and return the optimal solution y^*.</td>
</tr>
<tr>
<td>Else update $\hat{y} \leftarrow y^*$ and go to Step 2.</td>
</tr>
</tbody>
</table>

Table 1: Main algorithm for solving the band gap optimization problem.

4 Results and Discussions

4.1 Model Setup

We consider a two-dimensional photonic crystal confined in the computational domain of a unit cell of the square lattice, and with square domain $\Omega \equiv [-1, 1] \times [-1, 1]$. The domain Ω is decomposed into a uniform quadrilateral (in particular, we use square elements for the square lattice) grid of dimensions 64×64, which yields a mesh size of $h = 1/32$ and 4096 linear square elements.

The dielectric function ε is composed of two materials with dielectric constants $\varepsilon_{\text{min}} = 1$ (air) and $\varepsilon_{\text{max}} = 11.4$ (GaAs). As mentioned earlier in Section 2.2, the symmetry of the lattice can be exploited to further reduce the dielectric function to be defined in only 1/8 of the computation domain. The number of decision variables relating the dielectric material (ε_i, $i = 1, 2, \ldots, n_{\varepsilon}$) is thus reduced to $n_{\varepsilon} = (1 + 32) \times 32/2 = 528$. Figure 2 shows an illustration of a coarse mesh (16×16) and dielectric function for the square lattice to aid visualization; note that the actual computational mesh (64×64) is finer than this one. The shaded cells represent those modeled by ε, and the rest are obtained through symmetry. Furthermore, in this case, the irreducible Brillouin zone B is the triangle shown in Figure 1, with $n_k = 12$ k-points taken along the boundary of this region (∂B). Band diagrams plotted in the figures below show the eigenvalues moving along the boundary of B, from Γ to X to M and back to Γ.

4.2 Choices of Parameters

4.2.1 Initial configuration

Because the underlying optimization problem may have many local optima, the performance of our method can be sensitive to the choice of the initial values of the decision variables y^0, which in turn depend on the initial configuration ε^0. Indeed, different initial configurations do lead to different local optima as shown in Figure 3 for the second TE band gap and in Figure 4 for the fourth TM band gap. Therefore, the choice of the initial configuration is important. We examine here two different types of initial configurations: photonic crystals exhibiting band gaps at the low frequency spectrum and random distribution.

The well-known photonic crystals (e.g., dielectric rods in air – Figure 4(a), air holes in dielectric material, orthogonal dielectric veins – Figure 3(d)) exhibit band-gap structures at the low frequency spectrum. Such a distribution seems to be a sensible choice for the initial configuration as it resembles various known optimal structures [4]. When these well-known photonic crystals are used as the initial configuration, our method easily produces the band-gap structures at the low frequency mode (typically, the first three TE and TM modes). On the other hand, maximizing the band gap at the high frequency mode (typically, above the first three TE and TM modes) tends to produce more complicated structures which are very different from the known photonic crystals mentioned above. As a result, when these photonic crystals are used as the initial configurations for maximizing the band gap at the high frequency mode, the obtained results are less satisfactory.

Random initial configurations such as Figures 3(a) and 4(d)) have very high spatial variation and may thus be suitable for maximizing the band gap at the high frequency mode. Indeed, we observe that random distributions often yield larger band gaps (better results) than the known photonic crystals for the high frequency modes. Of course, the random initialization does not eliminate the possibility of multiple local optima intrinsic to the physical problem. In view of this effect, we use multiple random distributions to initialize our method. In particular, we start our main algorithm with a number of uniformly random distributions as initial configurations to obtain the optimal structures in our numerical results discussed below.
4.2.2 Subspace dimensions
The dimensions of the subspaces $\text{sp}(\Phi_{a_k}(k))$ and $\text{sp}(\Phi_{b_k}(k))$ are determined indirectly by the parameters r_l and r_u. A good choice of r_l (and r_u) is one that returns $a_k \ll N$ (and $b_k \ll N$), and at the same time includes the “important” eigenvectors to enhance convergence to an optimum. In our numerical experiments, we choose $r_u = r_l = 0.1$ which in turn leads to the resulting subspace dimensions a_k and b_k in the range of $[2, 5]$. Moreover, we find that choosing larger values of r_u and r_l (e.g., $r_l = r_u = 0.2$), which in turn increases a_k and b_k and hence increases computational cost, does not yield fewer iterations than choosing $r_u = r_l = 0.1$.

4.3 Computational Cost
All the computations have been carried out using MATLAB and run on a Linux PC with processor Intel Xeon E5550, 2.67GHz. One run of the algorithm typically takes 0.5 – 10.0 minutes, which includes 4–30 outer iterations; each iteration consists of one pass of Steps 2–5 of the main algorithm in Table 1.

Due to the presence of local maxima as well our use of randomly chosen starting point configurations, the times as well as the quality of the resulting solution can vary. For this reason, we make 10 runs of our algorithm corresponding to 10 randomly chosen starting point configurations, and report our aggregate results in Table 2. The table shows average execution times and average number of outer iterations for each case. Since our method and the choice of initial configurations do not guarantee that the solutions will have a positive band gap, we also report the number of successful runs, where a run is judged to be successful if the resulting gap-midgap ratio is at least 10%.

Table 2 shows that in general TM problems usually solve faster and require fewer outer iterations than TE problems. This observation is consistent with the result reported in [15], and is possibly
Figure 4: Two locally optimal band gaps between λ_{TM}^4 and λ_{TM}^5 in the square lattice caused by higher non-convexity of the original TE optimization problem. Table 2 also shows that lower eigenvalue band gap optimization problems tend to require less computation time, and yields wider band gaps more consistently. To explore this further, we also performed 30 runs with random initial conditions for two representative band gap cases (the second and the ninth bands), and report histograms of the gap-midgap ratios for these runs in Figure 5. For the second band gap, the histograms show that 53.3% and 90% of the cases are successful for the TE and the TM problems, respectively. For the ninth band gap the numbers are substantially lower, namely 13.3% and 16.7%, respectively.

<table>
<thead>
<tr>
<th>$\Delta \lambda$</th>
<th>TE</th>
<th>$\Delta \lambda$</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{2,3}$</td>
<td>1.3</td>
<td>$\lambda_{2,3}$</td>
<td>0.42</td>
</tr>
<tr>
<td>$\lambda_{4,5}$</td>
<td>1.7</td>
<td>$\lambda_{4,5}$</td>
<td>0.81</td>
</tr>
<tr>
<td>$\lambda_{6,7}$</td>
<td>2.9</td>
<td>$\lambda_{6,7}$</td>
<td>1.6</td>
</tr>
<tr>
<td>$\lambda_{8,9}$</td>
<td>3.2</td>
<td>$\lambda_{8,9}$</td>
<td>1.7</td>
</tr>
<tr>
<td>$\lambda_{10,11}$</td>
<td>3.4</td>
<td>$\lambda_{10,11}$</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Table 2: Average computation time, average number of outer iterations, and total number of successes of 10 runs for optimizing various band gaps, for both TE and TM polarization. Here $\Delta \lambda_{i,i+1}^{TE}$ denotes the gap-midgap ratio between the ith and $(i+1)$th eigenvalue for the TE polarization.

Table 3 shows the progressive increase in computation cost as the mesh is refined, using the $\Delta \lambda_{2,3}$ problem as an illustrative example. Here the total computation cost is decomposed into solving the eigenvalue problem, solving the SDP problem, and the remaining cost. We observe that the computation time increases rapidly as we refine the mesh and that the computation time
is dominated by the time to solve the SDP problem. This is because the number of decision variables increases by a factor of four after each mesh refinement, due to the fact that uniform mesh refinement increases the number of elements by a factor of four as the mesh size is halved.

The optimized crystal and band structures for four different meshes are shown in Figures 6 to 13. We see that the optimized crystal structures of coarser meshes topologically resemble those of finer meshes and that their gap-midgap ratios are quite close to each other. This seems to indicate that adaptive mesh refinement strategies may be effective for computing these structures.

Before ending this subsection, we discuss possible ways to improve the computation cost of our procedure, while capturing the micro features of the optimized photonic crystals. The above insight on mesh size refinement points to potentially large saving from using mesh adaptivity and incorporating a non-uniform grid for the representation of the dielectric function, as well as the eigenvalue calculation. This approach may reduce the number of decision variables considerably and thus result in significant computational savings. Further computational savings may result from improving our current strategy for choosing the initial configuration (namely, randomization). One strategy that will be considered is to modify the randomization approach to include positive correlation for adjacent cells.

4.4 Optimal Structures

We start the optimization procedure with a random distribution of the dielectric, such as the one shown in Figure 14(a). The corresponding band structures of the TE and TM fields are shown in Figure 14(b). In Figure 15, we present an example of the evolution of the crystal structure as the
Table 3: Average computation cost (and the breakdown) of 10 runs as the mesh is refined.

<table>
<thead>
<tr>
<th>Δλ_{2,3}</th>
<th>TE</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh size</td>
<td>16 × 16</td>
<td>32 × 32</td>
</tr>
<tr>
<td>Eigenvalue solve</td>
<td>22.1%</td>
<td>21.3%</td>
</tr>
<tr>
<td>SDP solve</td>
<td>56.4%</td>
<td>57.1%</td>
</tr>
<tr>
<td>Other cost</td>
<td>21.5%</td>
<td>21.6%</td>
</tr>
<tr>
<td>Total time (min)</td>
<td>0.15</td>
<td>0.32</td>
</tr>
<tr>
<td>Outer Iterations</td>
<td>6.5</td>
<td>8.1</td>
</tr>
</tbody>
</table>

(a) Optimized crystal structure
(b) Optimized band structure

Figure 6: Optimal band between λ_{2,TE} and λ_{3,TE} of mesh size 16 × 16.

(a) Optimized crystal structure
(b) Optimized band structure

Figure 7: Optimal band between λ_{2,TE} and λ_{3,TE} of mesh size 32 × 32.
Figure 8: Optimal band between λ_{TE}^2 and λ_{TE}^3 of mesh size 64 × 64.

Figure 9: Optimal band between λ_{TE}^2 and λ_{TE}^3 of mesh size 128 × 128.

Figure 10: Optimal band between λ_{TM}^2 and λ_{TM}^3 of mesh size 16 × 16.
Figure 11: Optimal band between λ_{TM}^2 and λ_{TM}^3 of mesh size 32×32.

Figure 12: Optimal band between λ_{TM}^2 and λ_{TM}^3 of mesh size 64×64.

Figure 13: Optimal band between λ_{TM}^2 and λ_{TM}^3 of mesh size 128×128.
optimization process progresses. (The light color indicates the low dielectric constant and the dark color denotes the high dielectric constant.) As illustrated in Figure 16, the gap-midgap ratio starts from a negative value (−8.93%) corresponding to the random configuration (Figure 16(a)) and increases up to +43.82% corresponding to the optimal configuration (Figure 16(f)) at which time the optimization process terminates successfully. Another example of the optimization evolution for TE polarization is shown in Figure 17 and Figure 18, in which the gap-midgap ratio increases from −39.21% to +29.23%.

In Figures 19 through 28, we present only plots of the final optimized crystal structures and the corresponding band structures for the 6th through 10th optimized band gaps for TE and TM polarizations. We see that the optimized TM band gaps are exhibited in isolated high-ε structures, while the optimized TE band gaps appear in connected high-ε structures. This observation has also been pointed out in [13] (p75) “the TM band gaps are favored in a lattice of isolated high-ε regions, and TE band gaps are favored in a connected lattice“, and observed in [15] previously. For both TE and TM polarizations, the crystal structures become more and more complicated as we progress to higher bands. It would be very difficult to create such structures using physical intuition alone. The largest gap-midgap ratio for the TM case is 43.82% between the seventh and eighth frequency bands, while the largest ratio for the TE case is 44.12%, also between the seventh and eighth bands. The results presented here are not guaranteed to be globally optimal, as pointed out in Section 4.2.1. While most crystal structures in the TM cases appear similar to those presented in [15], we have shown quite different TE structures. A qualitative comparison between the two results in the background indicates larger band gaps (both in absolute value and in the gap-midgap ratio) in our results.

5 Conclusions and Future Work

We have introduced a novel approach, based on reduced eigenspaces and semidefinite programming, for the optimization of band gaps of two-dimensional photonic crystals on square lattices. Our numerical results convincingly show that the proposed method is very effective in producing a variety of structures with large band gaps at various frequency levels in the spectrum.

Since our computational techniques make essential use of the finite element method, we antic-
Figure 15: The evolution of the square lattice crystal structure for optimizing the gap-midgap ratio between $\lambda_{7\text{TM}}$ and $\lambda_{8\text{TM}}$.

Figure 16: The corresponding band structure (of Figure 15)) and the gap-midgap ratio between $\lambda_{7\text{TM}}$ and $\lambda_{8\text{TM}}$ in the square lattice.
Figure 17: The evolution of the square lattice crystal structure for optimizing the gap-midgap ratio between $\lambda_{3\text{TE}}$ and $\lambda_{4\text{TE}}$.

Figure 18: The corresponding band structure (of Figure 17)) and the gap-midgap ratio between $\lambda_{3\text{TE}}$ and $\lambda_{4\text{TE}}$ in the square lattice.
Figure 19: Optimization of band gap between λ_{TM}^{6} and λ_{TM}^{7} in the square lattice.

Figure 20: Optimization of band gap between λ_{TM}^{7} and λ_{TM}^{8} in the square lattice.

Figure 21: Optimization of band gap between λ_{TM}^{8} and λ_{TM}^{9} in the square lattice.
Figure 22: Optimization of band gap between λ_{TM}^9 and λ_{TM}^{10} in the square lattice.

Figure 23: Optimization of band gap between λ_{TM}^{10} and λ_{TM}^{11} in the square lattice.

Figure 24: Optimization of band gap between λ_{TE}^6 and λ_{TE}^7 in the square lattice.
Figure 25: Optimization of band gap between λ_{TE}^7 and λ_{TE}^8 in the square lattice.

Figure 26: Optimization of band gap between λ_{TE}^8 and λ_{TE}^9 in the square lattice.

Figure 27: Optimization of band gap between λ_{TE}^9 and λ_{TE}^{10} in the square lattice.
Figure 28: Optimization of band gap between λ_{TE}^{10} and λ_{TE}^{11} in the square lattice.

ipate that notions of mesh adaptivity can be easily incorporated into our approach, and thus its computational efficiency will be improved even further. For example, one can start with a relatively coarse mesh and converge to a near-optimal solution, and then judiciously refine the finite element mesh (e.g., refining elements at the interface of dielectric materials) using the current optimal solution at the coarser mesh as the new initial configuration. We intend to explore this approach and report the details and results in a forthcoming paper.

The main strengths of our proposed approach to solve eigenvalue gap optimization problem is the fact that SDP-based methods do not require explicit computation of (sub-)gradients of the objective function (which are ill-defined in the case of eigenvalue multiplicities), hence maintaining the regularity of the formulation. The approach proposed in this paper can also be readily extended to deal with more general problems, such as the optimization of photonic crystals in combined TE and TM fields, optimizing multiple band gaps, dealing with other types of lattices (e.g. triangular), as well as modeling and optimizing the design of three-dimensional photonic crystals.

Acknowledgments. We are grateful to Professor Steven Johnson of the Mathematics Department of MIT for numerous discussions on this research. We thank Professor Lim Kian Meng of National University of Singapore for advising and supporting of H. Men. We are grateful to the anonymous reviewers of this paper for their suggestions on improving the paper.

References

