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A Variable Stiffness PZT Actuator Having Tunable
Resonant Frequencies

Thomas W. Secord, Student Member, IEEE, and H. Harry Asada, Member, IEEE

Abstract—A new approach to a variable stiffness actuator with
tunable resonant frequencies is presented in this paper. Variable
stiffness actuators have become increasingly important to meet
safety requirements and achieve adaptive manipulation or locomo-
tion. For cyclic motion, exploiting dynamic resonance can lead to
high power transmission, high energy efficiency, and large motion
amplitude. Resonance and variable stiffness characteristics have
yet to be incorporated into a single actuator design. In this paper, a
cellular artificial muscle actuator that achieves both variable stiff-
ness and variable resonance capabilities is presented. The design is
based on piezoelectric stack actuators. First, the principle of vari-
able stiffness and variable resonant frequencies is described. The
static and dynamic performance are then quantified with theoreti-
cal models. Theoretical analysis reveals that the proposed actuator
can be tuned over a broad range of resonant frequencies by selec-
tively turning specific units ON or OFF. Initial prototypes are tested
experimentally and exhibit 15% static strain, over 300% static
stiffness tunability, and over 100% dynamic resonance tunability.

Index Terms—Actuators, piezoelectric actuators, resonance,
tunable devices.

I. INTRODUCTION

VARIABLE stiffness actuators have the capability to meet
the increased demand for safety, robust locomotion, and

dynamic manipulation. In robots interacting with humans, vari-
able stiffness actuators allow maximum forces to be held to
acceptable levels [1]. In mobile robots, joint compliance ab-
sorbs impulsive forces from the ground and allows a vehicle to
negotiate better on rough terrain. Actuator compliance is also
essential to manipulate objects in unstructured environments,
where the properties of the manipulated object are not known
a priori. Although feedback control is one way of varying task
space stiffness [2], the bandwidth of the control loop is usually
insufficient for rapid and highly dynamic physical interaction.
Therefore, it is desirable to have variable mechanical compli-
ance inherent in the actuator’s physical construction.

Several groups have investigated both constant stiffness and
variable stiffness actuators. In the early work on the elastic
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hand [3] and [4], elastic elements were inserted in an actua-
tor drive train for stable grasping and dexterous manipulation.
The seminal work of Pratt and Williamson [5] demonstrated
the advantages of constant series elasticity to increase shock
tolerance, reduce reflected inertia, and improve force control.
These concepts are still employed in current systems, such as
advanced protheses that utilize both series and parallel elasticity
to enhance force bandwidth [6]. Although constant stiffness in
a drive train is beneficial, additional advantages are obtained
when the stiffness is allowed to vary. A majority of the work
in variable stiffness actuators has been directed to develop new
variable stiffness rotary joints. For example, in [7], the stiffness
of a joint is varied by changing the overlapping area of two
permanent magnets. In [1], a combined spring and belt-drive
system achieves variable stiffness. Contemporary designs using
similar ideas were proposed in [8] and [9]. A theme among these
actuator designs is the requirement of two actuators for a single
degrees of freedom (DOF). Moreover, all the designs employ
standard electromechanical actuators: One actuator allows for
stiffness tunability and another for angular motion.

In the context of robotics, resonance is often addressed sepa-
rately from tunable resonance. Resonance is a condition exhib-
ited by linear (and weakly nonlinear) systems and is a manifesta-
tion of maximal potential and maximal kinetic energy oscillating
180◦ out of phase. For multi-DOF systems, this condition can
occur at multiple frequencies. The frequencies, where resonance
occurs depend upon the distribution of mass and stiffness within
the oscillatory system. In robotics, resonance has been recog-
nized as an important phenomenon that can be used to increase
power transmission to a load, reduce the effort of actuators, and
achieve a large amplitude motion for cyclic tasks, such as run-
ning (e.g., [10], [11]), flapping (e.g., [12], [13]), or fin-based
swimming (e.g., [14]).

Variable stiffness and resonance can be intimately connected
because the ability to vary actuator stiffness provides the abil-
ity to tune a robotic system’s resonant frequencies. Indeed,
some recent work has simulated tunable stiffness as a means
for tuning resonant-like frequencies in multi-DOF manipula-
tors [15]. Other work in actuator design has considered the
constant resonant frequencies in certain material systems such
as piezoelectric (PZT) beam actuators [16] and electrostrictive
polymers [17]. Because of the great importance of both vari-
able stiffness and tunable resonance, there exists a need for an
actuator that can provide both functions.

This paper presents the design, analysis, and testing of a new
linear artificial muscle actuator that incorporates both variable
stiffness and tunable resonant frequencies by using a modu-
lar, cellular architecture. Artificial muscle actuator design is

1552-3098/$26.00 © 2010 IEEE
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considered because of its importance to many areas of
biorobotics that require smooth and natural motions that cannot
be achieved with either linear or rotary electromechanical ac-
tuators. The basic principle of the actuator design is to connect
a plurality of actuator cells in series or parallel (as in natural
muscle) and, then, control stiffness and resonance by turning
units ON to increase compliance and OFF to reduce compliance.
The distribution of stiff versus compliant units within the actu-
ator also determines the mass distribution and, thereby, allows
the resonance properties to be tuned. The cellular architecture
discussed in this paper has been successfully applied by the au-
thors’ group (e.g., [18] and [19]) and is extended here to include
variable stiffness and resonance.

The early conference publications on this work [20] and [21]
had initial theoretical results and only limited experimental val-
idation. This paper presents the complete theoretical analysis
on tunable resonant frequencies and new experiments using an
improved prototype.

This paper first presents the conceptual design and method
for varying stiffness in a cellular actuator based on discrete,
PZT actuator units. In Section II, the effect of distributed mass
in the actuator is then taken into account, which leads to tunable
resonant frequencies. The properties and ranges for tuning res-
onant frequencies are rigorously established using an idealized
analytical model. For experimental comparison and design, the
idealized model is extended to include realistic parasitic effects,
such as damping. Finally, the actuator is experimentally tested.

II. CELLULAR ARCHITECTURE AND VARIABLE

STIFFNESS DESIGN

This section summarizes basic principles of variable stiffness
cellular actuators (VSCAs). Any VSCA implementation must
possess two fundamental characteristics: 1) Cellular units that
have discrete stiffness states that can be selectively switched ON

or ON; and 2) Cellular units that are connected to form an ag-
gregate output. Within this framework, many implementations
are possible. For clarity, a particular PZT-based design will be
described, yet the basic principles of VSCAs are applicable to a
large class of cellular actuators using other smart materials and
structures.

A. PZT Cellular Actuators With Large Strain Amplification

Fig. 1 shows the design concept for a nested-flexure PZT cel-
lular actuator. Each cellular unit consists of a PZT stack and a
special strain-amplification flexure called a double-layer nested
flexure. This mechanism consists of an inner and outer flexure
that amplify displacement by a combined factor of 20. This large
amplification gain of the nested-flexure system is necessary be-
cause PZT has very small inherent strain (i.e., 0.1%).

Fig. 1(a) shows the planar views of the cell design. From
Fig. 1(a), it is observed that as a voltage is applied to the PZT
stacks, the first-layer flexure is pushed outward along thebreak
Y-direction, which results in an outward amplified displacement
in the Z-direction provided that the underformed beam angle θ1
is small. The second-layer flexure is then pushed outward in the
Z-direction by the first layer, which results in a further amplified

Fig. 1. (a) Working principle showing deformed and undeformed flexures in
two planes. (b) Five-cell artificial muscle actuator based on PZT-driven flexures.
The physical prototype uses two NEC Tokin PZT stacks.

Fig. 2. Design of a variable stiffness PZT-based cell. The system consists of
two strain amplification layers. The second-layer flexure incorporates a stroke-
limiting beam.

displacement in the inward X-direction, when θ2 � 1. There-
fore, a contraction force is generated along the X-axis output
as the PZT stacks are activated. This contractile double-layer
flexure design provides motion along the X-axis and allows
the connection of multiple units in series without buckling of
the flexures. The system exhibits small friction, natural axial
compliance, and backdriveability. A thorough description of the
actuator operating principle can be found in [22].

A serial connection of five cells is shown in Fig. 1(b), where
each prototype cell shown to the right has a 20-N blocking force
and 1.5 mm free displacement (which is approximately 15% of
its body length along the X-axis output). The five-cell serial
connection then produces 7.5 mm free displacement.

B. Variable Stiffness Mechanism

Fig. 2 shows a modification to the design in Fig. 1 to achieve
variable stiffness. Outside the second-layer flexure is a rigid
structure that limits the stroke of the output displacement in the
Y -direction. When the PZT is not activated, the output node
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Fig. 3. Compliance versus displacement characteristics and schematic repre-
sentations for a variable stiffness. PZT-actuated cell. (a) Cell in the OFF state.
(b) Cell in the ON state and linear regime. (c) Cell in the ON state and nonlinear
regime.

of the second-layer flexure rests on the stroke-limiting beam.
The output node movement is also limited when an excessive
tensile force acts on the output node. As the applied PZT voltage
increases, the output node is pulled inward and is detached from
the stroke-limiting beam.

Fig. 3 shows the displacement versus compliance character-
istics for a single cell and corresponding schematic represen-
tations of a cell at various points along the operating curve. In
the schematic representations (a)–(c), the outermost thin lines
indicate the stroke limiter, while the vertical thick line repre-
sents the output node of the flexure. The schematics show all of
the stiffness within the cell lumped into a single element with a
constant value k. Similarly, all of the mass of a cell is lumped
into a single mass element m, and damping effects are neglected
to simplify the initial analysis.

As the PZT-induced force fp increases, inward displacement
also increases and the thick vertical line detaches from the lim-
iter. For the ideal cell, the equivalent compliance seen at the
output node is 1/k. The nonlinearity in the actual compliance
curve occurs because of the geometric nonlinearity of the flex-
ure that becomes more pronounced as the cell contracts. The
nonlinearity is often negligible during typical operation of the
PZT-based system.

Note that it is also possible to design the stroke-limiting sys-
tem so that the stroke is limited only after the maximum contrac-
tion is achieved. This would provide a compliance characteristic
that drops to zero upon achieving maximum contraction. Such a
cell would be actively OFF and passively ON rather than actively
ON and passively OFF. For brevity, this paper only consider cells
that are actively ON and passively OFF.

C. Serial, Parallel, and Antagonistic Connections

The aforementioned cellular units can be connected in series,
parallel, or antagonistic configurations, creating diverse stiffness
characteristics as a collective sum. The most fundamental VSCA
is a serial connection of N units. This arrangement is referred
to as a strand. For simplicity, assume that the stiffness of an OFF

state unit is infinitely large, while stiffness in the ON state is a
constant k. If n units are ON and the others are OFF, then the

Fig. 4. (a) Parallel arrangement of cellular units. Note that one end of the ac-
tuator is shown connected to ground only for clarity, but myriad other boundary
conditions are possible. (b) Antagonistic pairing of actuator strands.

resultant stiffness of an N -unit strand reduces to

kS =
k

n
, 1 ≤ n ≤ N. (1)

Next, consider a parallel arrangement of strands. As shown in
Fig. 4(a), Np strands of N serially connected units may be
arranged in parallel. If the ith strand of serially connected units
has stiffness kS,i , the resultant stiffness of the entire system is
given by

kP =
Np∑
i=1

kS,i . (2)

To accommodate the stiffness to a desired value, one can deter-
mine the number of parallel strands Np and the number of ON

units ni in each strand of serial units.
The Np strands can be divided into two sets of strands to form

an agonist–antagonist arrangement, as shown in Fig. 4(b). Both
the agonist and antagonist strands contribute to an output stiff-
ness as a direct sum: kout = kP,ag + kP,an . The antagonistic
arrangement allows for varying stiffness independent of posi-
tion, as in the case of natural skeletal muscles [23]. However,
unlike skeletal muscles, the stiffness seen at the output of a
VSCA will decrease as more cells are activated. Therefore, the
limitation of the VSCA technique is that large displacements
and large stiffness cannot be obtained simultaneously because
many units must be in the ON (compliant) state to accommodate
large displacements.

III. TUNABLE RESONANT FREQUENCIES

A. Principle

As demonstrated for varying stiffness, the resonant frequen-
cies of a collection of cellular units can also be varied by exploit-
ing the cellular architecture. The key behavior is that turning on
a specific number of units to achieve a desired static stiffness
still allows for numerous ON–OFF unit combinations, each of
which exhibits different vibration modes with different reso-
nant frequencies. Although the total number of ON state units
remains the same, the resonant frequencies may vary signifi-
cantly depending upon the location of the ON units within the
actuator.

To illustrate the basic concept, recall the simplified dynamic
model shown in Fig. 3. Consider three of these units connected
serially. Suppose that two out of the three units are turned ON

so that the static stiffness of the serial connection is kS = k/2.
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Fig. 5. Comparison of static and dynamic behavior for all possible ON–OFF

distributions for three serially connected units having two units activated.

TABLE I
FIRST AND SECOND NATURAL FREQUENCIES OF EACH

OF THE THREE CONFIGURATIONS

There are three unique ways to select two units to turn ON,
and they are shown in the upper portion of Fig. 5. Depending
upon which two units are ON, the assembly dynamic behavior
is different, while the static behavior is the same.

Since all of the actuator configurations in Fig. 5 have two
DOF, each configuration has two distinct vibration modes with
distinct resonant frequencies. Table I shows the normalized
resonant frequencies for each of the three ON–OFF states hav-
ing n = 2. The second mode of configuration (1) OFF–ON–ON

provides the highest resonant frequency overall (1.62
√

k/m),
while the lowest resonant frequency (0.47

√
k/m) occurs for the

first mode of the ON–ON–OFF configuration. In each case, the
OFF-unit mass creates a different dynamic system and, thereby,
changes the resonant frequencies.

Since all three cases have the same static stiffness kS , but
different resonance properties, this example demonstrates that
actuator stiffness and resonant frequencies can be independently
changed. Although the resonant frequencies do not vary contin-
uously, multiple choices are available for different task require-
ments and, as the number of cellular units increases, the number
of possible stiffness levels and resonant frequencies also in-
creases. The next section establishes the model to determine
resonant frequency bounds of N serially connected units.

B. Basic Model of Serial Connection Dynamics

Consider a single serially connected strand of N cellular
units. Suppose that n units are in ON state so that n springs
are detached from the stroke limiters. This creates an n-DOF

Fig. 6. Idealized dynamic model for an N -unit strand of cells having n units
activated.

system with each DOF corresponding to a single lumped mass
that moves independently along a single axis. This means that
(N − n) OFF-state units are rigidly connected to other units, as
illustrated in Fig 6. Let xi be the position of the ith combined
masses and x be a vector collectively representing the n lumped-
mass displacements: x = [x1 , x2 , . . . , xn ]T .

The ith lumped mass consists of li cellular units with total
mass of lim with li ∈ N. From Fig. 6, the equations of unforced
motion are obtained as follows:

limẍi = −2kxi + kxi−1 + kxi+1 , 2 ≤ i ≤ n − 1 (3)

and for i = 1 and i = n

l1mẍ1 = −2kx1 + kx2 , lnmẍn = −kxn + kxn−1 . (4)

These equations can be arranged into vector–matrix form

Mẍ + Kx = 0 (5)

where M = m · diag(l1 , l2 , . . . , ln )
�
=mL, and

K = k

⎛
⎜⎜⎜⎝

2 −1 0

−1 2
. . .

. . . 2 −1
0 −1 1

⎞
⎟⎟⎟⎠

�
= k · S. (6)

One important assumption of the model is that the longitudinal
vibrations in a strand are the dominant dynamic behavior for
the actuator. This assumption will be addressed in the practical
system through an application of preload tension, as discussed
in Section V.

C. Maximum and Minimum Resonant Frequencies for
a Specified Static Stiffness

The model developed in Section II-C can now be utilized to
determine how widely the resonant frequencies can be tuned,
while satisfying the static stiffness requirement, i.e., a specified
number of ON units n. For the model in (5), the squared resonant
frequencies of the n-DOF mass–spring system are given by the
eigenvalues of matrix product M−1K

ω2
i = λi(M−1K) =

k

m
λi(L−1S), 1 ≤ i ≤ n. (7)

The n eigenvalues of the matrix are ordered from the minimum
to the maximum and written as follows:

λmin(M−1K) ≤ λ2(M−1K) ≤ · · · ≤ λmax(M−1K). (8)
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For a fixed number of ON-state units n, the stiffness matrix
K remains the same regardless of the arrangement of ON–OFF

units. The mass matrix M on the other hand, varies depend-
ing on the ON–OFF arrangement within the strand. Therefore,
the aforementioned λmin (λmax ) can be further decreased (in-
creased) by changing the ON–OFF unit configurations, thereby
changing the mass matrix.

Given a specific static stiffness kS , which will uniquely de-
termine n, consider the set of all mass matrices associated with
the possible distributions of N cells into n clusters of masses

Mn =

{
M = m · diag(l1 , . . . , ln )

∣∣∣∣∣
n∑

i=1

li = N − p

p = 0, . . . , N − n; li ∈ N

}
, n = 1, 2, . . . , N. (9)

The number of possible arrangements of n ON units within a
strand is equivalent to the cardinality of Mn and is

(
N
n

)
.

If the first p units are turned OFF, then they become fixed to
the base structure and do not participate in the dynamics. With
p units OFF at the base, the total number of ON units is then
(N − p), where p can take on values 1, 2, . . . , (N − n). Thus,
the subset of Mn , which is defined by p = 0 in (9), is the set
of all possible mass matrices assuming that the first unit in the
strand is in the ON state so that all cell masses are dynamically
participating.

Let σmin(n) be the minimum of the positive square root of
λmin(M−1K) with respect to all M ∈ Mn

σ2
min(n) = min

M∈ Mn

λmin(M−1K). (10)

σmin(n) provides the lowest resonant frequency among all the
ON–OFF unit distributions having n ON-state units.

Recall that the minimum eigenvalue of M−1K is given by
the minimum of the Rayleigh quotient

λmin(M−1K) = min
x∈Rn

xT Kx
xT Mx

. (11)

Similarly, the highest resonant frequency is given by

σ2
max(n) = max

M∈Mn

λmax(M−1K)

= max
M∈Mn

(
max
x∈Rn

xT Kx
xT Mx

)
. (12)

Using (12), one can prove the following proposition concern-
ing the highest resonant frequency σmax(n) and the ON–OFF unit
distribution that provides σmax(n).

Proposition 1: Let M = mL and K = kS be, respectively,
the n × n mass and stiffness matrices of N serially-connected
cellular units among which n units are active (turned ON). The
highest resonant frequency occurs when the first N − n units
are turned OFF. This maximum frequency is given by

σmax(n) =

√
k

m
λmax(S). (13)

Proof: Since xT Mx ≥ mxT Ix ∀M ∈ Mn and ∀x ∈ R
n

λmax(M−1K) = max
x∈Rn

xT Kx
xT Mx

≤ max
x∈Rn

kxT Sx
mxT Ix

=
k

m
λmax(S).

Therefore

arg max
M∈ Mn

λmax(M−1K) = diag(m,m, . . . , m).

Hence, the arrangement where the first (N − n) units are turned
OFF [i.e., p = (N − n) in (9)] yields σmax(n). �

To address the lowest possible resonant frequency configura-
tion, first consider the following two lemmas:

Lemma 1: The fundamental mode of a fix-free vibrating sys-
tem as shown in Fig. 6 has nodal displacements that satisfy
0 ≤ x1 ≤ x2 ≤ · · · ≤ xn .

Lemma 2: Consider the scalar function defined by

J(l1 , l2 , . . . , ln )
�
=xT diag(l1 , l2 , . . . , ln )x (14)

where the li satisfy the conditions in (9), and the vector x has
elements that are monotonically increasing

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn . (15)

The scalar function J is maximized when l1 = 1, l2 =
1, . . . , ln−1 = 1, ln = N − n + 1.

A proof of Lemma 1 can be found in [24], while a proof of
Lemma 2 is given in the Appendix; both may be used in the
following proposition for σmin(n).

Proposition 2: The arrangement having all the inactive units
placed at the unconstrained end of the serial connection gives
the lowest undamped resonant frequency σmin(n).

Proof: By Lemma 1, the first mode shape can be considered
positive and monotonically increasing. Therefore

min
M∈Mn

kxT Sx
xT Mx

= min
M∈Mn

0≤x1 ≤···≤xn

kxT Sx
xT Mx

= min
0≤x1 ≤···≤xn

kxT Sx
xT M0x

where M0
�
= m · diag(1, 1, . . . , N − n + 1) by Lemma 2. This

represents the case, where all of the inactive units are placed at
the unconstrained end. �

In many practical situations, the first (i.e., fundamental) mode
is the most readily excited. Therefore, to establish a range for
the fundamental frequency tunability, the highest value for the
first resonant frequency will be given the notation σmax,first(n)
and defined as follows:

σ2
max,first(n) = max

M∈Mn

λmin(M−1K)

= max
M∈Mn

(
min
x∈Rn

xT Kx
xT Mx

)
. (16)
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Corollary to Proposition 2: The arrangement having the first
(N − n) units turned OFF gives the highest possible value for
the first undamped resonant frequency σmax,first(n).

Proof: The proof follows from the proof of Proposition 1,
since ∀M ∈ Mn and ∀x ∈ R

n , xT Mx ≥ mxT Ix. Hence

λmin(M−1K) = min
x∈Rn

xT Kx
xT Mx

≤ min
x∈Rn

kxT Sx
mxT Ix

=
k

m
λmin(S).

Therefore, the same configuration as Proposition 1 gives the
highest resonant frequency of the first mode. �

D. Global Maximum and Minimum Resonant Frequencies

The aforementioned analysis provides the highest and lowest
resonant frequencies for a fixed n, i.e., a given static stiffness.
If instead the synthesis objective is to achieve the highest or
the lowest resonant frequency regardless of the static stiffness,
then the highest and lowest bounds can be further extended by
considering all possible values of n varying from 1 to N .

The global minimum Σmin(N) is then defined with an addi-
tional minimization over n

Σ2
min(N) = min

1≤n≤N

{
min

M∈Mn

{
λmin(M−1K)

}}

= min
1≤n≤N

{
σ2

min(n)
}

. (17)

A similar expression is obtained for the global maximum
Σmax(N). For the maximum, the following definition and
lemma are required.

Definition: For the eigenvalue problem

Kx = λMx (18)

with M,K ∈ R
N ×N , the associated rth reduced eigenvalue

problem is

K(r)x(r) = λ(r)M(r)x(r) , r = 0, 1, . . . , N − 1 (19)

where M(r) and K(r) are obtained by deleting the first r rows
and first r columns in M and K, respectively.

Lemma 3: The eigenvalues of the rth reduced eigen-
value problem λ

(r)
i , i = 1, 2, . . . , (N − r) and the eigenval-

ues of the (r + 1)st reduced eigenvalue problem λ
(r+1)
j , j =

1, 2, . . . , (N − r − 1) satisfy the following relation:

λ
(r)
1 ≤ λ

(r+1)
1 ≤ λ

(r)
2 ≤ λ

(r+1)
2 ≤ · · ·

≤ λ
(r)
N −r−1 ≤ λ

(r+1)
N −r−1 ≤ λ

(r)
N −r . (20)

Lemma 3 can be proved using the technique found in [25],
while a proof for the more general case of Jacobi matrices can
be found in [26]. Now, the following proposition may be proved.

Proposition 3: A serial strand of N units takes the globally
maximum resonant frequency Σmax(N) at a configuration where
all the N units are turned ON.

Fig. 7. Comparison of the minimum resonant frequency for the case with (top)
n units ON and with (bottom) (n + 1) units ON.

Proof: From Proposition 1, the maximum resonant frequency
for a given n, σmax(n) occurs when the first (N − n) units are
turned OFF, i.e., fixed to the base structure. The associated mass
matrix is given by deleting the first (N − n) rows and the first
(N − n) columns of the N × N identity matrix multiplied by
m: mIN . The stiffness matrix is similarly obtained by deleting
the first (N − n) rows and the first (N − n) columns of the N ×
N stiffness matrix given in (6). Therefore, the global maximum
of the resonant frequency can be found by comparing the largest
eigenvalues of all the reduced eigenvalue problems in (19) with
r = 1, 2, . . . , N − 1.

Setting r = N − 1 in Lemma 3 gives λ
(N −1)
1 ≤ λ

(N −2)
2 .

Repeatedly applying Lemma 3 for r = N − 2, N − 3, . . . , 1
yields

λ
(N −1)
1 ≤ λ

(N −2)
2 ≤ · · · ≤ λ

(1)
N −1 ≤ λ

(0)
N . (21)

The final eigenvalue in (21) λ
(0)
N is the maximum eigenvalue

of M−1K for the original N × N matrices K = kS and M =
mIN . Therefore

Σ2
max(N) = λmax

[
(mIN )−1K

]
=

k

m
λmax(S)

= λ
(0)
N

≥ λ
(r)
N −r , r = 1, 2, . . . , N (22)

which concludes the proof. �
Corollary to Proposition 3: As N increases, the globally

maximum resonant frequency of an N unit strand increases
monotonically

Σmax(N) ≤ Σmax(N + 1). (23)

Proof: Considering M and K of sufficiently large dimension
and applying Lemma 3 immediately proves the corollary. �

To obtain the global minimum Σmin(N), recall Proposition 2.
The lowest resonant frequency for a given n occurs when the
last (N − n) units are turned OFF, i.e., creating a lumped mass
of m(N − n + 1) at the free end. Therefore, the question is how
many units must be lumped together at the free end to minimize
the resonant frequency. This can be solved by comparing the
lowest eigenvalue of a strand with (N − n) OFF units at the free
end to the case with (N − n − 1) OFF units. This situation is
depicted in Fig. 7.
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The lower portion of Fig. 7 shows the case with (n + 1) units
ON with a stiffness of g connecting the nth and the (n + 1)th
unit. The stiffness of g is assumed to have a lower bound value of
k so that k ≤ g < ∞. As g → ∞, the vibrating system behaves
as if n units are ON, and as g → k, the vibrating system behaves
as if n + 1 units are ON. Using this definition of the stiffness
g, it can be shown that σmin(n) ≥ σmin(n + 1), which leads to
the following proposition.

Proposition 4: A serial strand of N units takes the global
minimum resonant frequency Σmin(N) at a configuration where
all the N units are turned ON.

Proof: For the (n + 1)th order system, define the mass ma-
trix M = m · diag(1, 1, . . . , 1, N − n) and define the stiffness
matrix K′ as follows:

K′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k −k 0

−k
. . .

. . .

. . . 2k −k
−−−−−−−−−−−−−

−k k + g −g
0 −g g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

The quadratic form xT K′x can be written as two separate scalar
functions

xT K′x = Φ(x1 , x2 , . . . , xn , k) + g(xn+1 − xn )2 (25)

where Φ(x1 , x2 , . . . , xn , k) is a positive function for any
nonzero xi with i = 1, 2, . . . , n. Note that g is factored out
in the second scalar function. Hence, ∀x ∈ R

n+1

xT K′x
xT Mx

=
Φ(x1 , x2 , . . . , xn , k) + g(xn+1 − xn )2

xT Mx

≥ Φ(x1 , x2 , . . . , xn , k) + k(xn+1 − xn )2

xT Mx

=
xT Kx
xT Mx

. (26)

Now let x∗ denote the fundamental mode shape for the system
having a stiffness matrix K′. Then, using (26) and the properties
of the Rayleigh quotient, it follows that

λmin(M−1K′) =
x∗T K′x∗

x∗T Mx∗

≥ x∗T Kx∗

x∗T Mx∗

≥ min
x∈Rn + 1

xT Kx
xT Mx

= λmin(M−1K). (27)

The aforementioned inequality shows that the case having
only n units ON will have a higher fundamental frequency than
the case with n + 1 units ON because the case having only
n units ON is a special case of the system with the stiffness
matrix K′ when g → ∞. Therefore, σmin(n) ≥ σmin(n + 1)
for n = 1, . . . , N − 1, from which it immediately follows that

σmin(1) ≥ σmin(2) ≥ · · · ≥ σmin(N) = Σmin(N). (28)

Fig. 8. Theoretical propositions for N = 5. All possible resonant frequen-
cies are shown as well as numerical bounds on the minimum and maximum
achievable resonant frequencies for N = 5.

This result shows that turning all units ON leads to the global
minimum resonant frequency. �

A numerical illustration of Propositions 1–4 is offered in
Fig. 8 for N = 5. Fig. 8 shows the locations of all possible
resonant frequencies as triangles. The maximum and minimum
bounds indicated by the uppermost and lowermost solid lines
are the resonant frequencies based on the configurations in
Propositions 1 and 2, respectively, i.e., the uppermost points
on the solid lines are achieved by placing all OFF units next to
the base structure, while the lowermost points are achieved by
placing all OFF units at the free end. Note that as n increases
toward the maximum value of N = 5, the upper and lower
resonant frequency bounds monotonically approach the limits
specified by Propositions 3 and 4, where all units are ON. As n
increases, the reduction in the absolute slope of the overall upper
and lower resonance bounds implies that including more than
N ≈ 5 units in a strand does not significantly improve the range
of attainable resonant frequencies, although it would increase
the static stiffness tuning range.

The darker region in Fig. 8 indicates the tunable range of
the first resonance only. This region’s upper bound is dictated
by the Corollary to Proposition 2. As given in Proposition 1,
the configurations for highest first resonance have all OFF units
placed at the base. The general trend of this first-mode region is
a downward and narrowing behavior.

A further note regarding the theoretical resonance tunability
is that there is a gap between the first mode and higher modes for
n ≥ 2. For a given n, this spacing creates a band of frequencies
over which no resonance can occur. However, if all values of
n are considered, the overall modal density is fairly uniform
between the global limits Σmin(N) and Σmax(N).

E. Maximal Tuning for Long Strands

The previous propositions establish the conditions un-
der which maximum and minimum resonant frequencies are
achieved for finite N . In this section, the case, where N → ∞
is considered to establish the maximal tunability using the
proposed actuation method. Given an N , Propositions 3 and
4 indicate that Σmin(N) and Σmax(N) are given by

√
k/m
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Fig. 9. Idealized dynamic model for an N -unit strand of cells rigidly connected
to a spring–mass load and having n units activated.

multiplied by the positive square root of the maximum and min-
imum eigenvalues of S ∈ R

N ×N having the form defined in
(6). As described in [24], the eigenvalues for S can be written
in closed form

λi(S) = 4 sin2
(

(2i − 1)π
2(2N + 1)

)
, i = 1, 2, . . . , N. (29)

Therefore, the following two propositions bound Σmax(N) and
Σmin(N) for all N .

Proposition 5: The maximum undamped resonant frequency

Σmax(N) has a least upper bound of 2
√

k
m .

Proof: Applying (29) with i = N yields

Σmax(N) = 2

√
k

m
sin

(
1 − (1/2n)
2 + (1/N)

π

)
. (30)

Let us consider N → ∞ gives an upper bound of 2
√

k/m. �
Proposition 6: The minimum undamped resonant frequency

Σmin(N) has a greatest lower bound of 0.
Proof: Applying (29) with i = 1 yields

Σmin(N) = 2

√
k

m
sin

(
1

2(2N + 1)
π

)
. (31)

Let us consider N → ∞ gives a lower bound of 0. �

F. Loading Effects

While the system shown in Fig. 6 possesses fixed-free bound-
ary conditions, practical applications entail a load-end condi-
tion. A simple extension of the model in Fig. 6 is provided in
Fig. 9, which shows the addition of a mass and spring load con-
nected rigidly to the nth node. The load mass and stiffness will
dictate the following dimensionless ratios:

γm
�
=

mL

m
(32)

and

γk
�
=

kL

k
. (33)

As γm → 0 and γk → 0, the system in Fig. 9 approaches the
system of Fig. 6, and the theoretical conclusions in Section III-
C–E apply directly. In this section, the effects of the load ratios
on the static and dynamic tuning properties are considered.

The static behavior of a loaded cell strand can be classified
by the tunability of the output stiffness, which will be defined
as follows:

%Static tunability =
(

max(cS ) − min(cS )
min(cS )

)
× 100

=
(

N − 1
1 + γkN

)
× 100 (34)

Fig. 10. Static tunability as a function of the load stiffness ratios for N = 2,
3, and 5.

where cS is the equivalent compliance as viewed by forces
applied at the nth node. A plot of the static tunability as a
function of N and γk is shown in Fig. 10. Beyond γk ≈ 1.5,
the tunability drops below 50% even for the larger N values.
In general, the static tunability is greatly reduced if the load
stiffness exceeds approximately 0.5k, where the curvature of
the tunability curves nears its maximum.

The dynamic behavior of a strand of cells is characterized
by the ability to tune resonant frequencies. The new dynamic
model is the same as described previously but with M = m ·
diag(l1 , l2 , . . . , ln + γm ) and the (n, n) entry of K given by
k(1 + γk ). In practical applications, the first (i.e., fundamental)
mode is the most readily excited. Therefore, the tunability of
the dynamic system’s fundamental frequency will be defined as
follows:

%Dynamic tunability =
(

σmax,first(1) − Σmin

Σmin

)
× 100.

(35)
A plot of (35) is provided in Fig. 11 for N = 2 to 5. Fig. 11

shows that the tunability decreases as γm and γk increase. How-
ever, for low values of γk , increasing γm has a very weak effect
on tunability. Likewise, for low γm , the tunability is only a weak
function of γk . The dynamic tunability also increases as N is
increases. Overall, the frequency spacing between possible fun-
damental modes decreases as the stiffness and mass of the load
increase or as N decreases.

Based on numerical evaluation, the propositions previously
described remain valid except under the condition when N = 2
and γk = γm + 1. In this case, the configuration having n = 1
unit ON with the first unit remaining OFF (i.e., grounded) and
the case having n = N = 2 (i.e., all units ON) both achieve a
minimum fundamental frequency of Σmin =

√
k/m. Overall,

the loading effects illustrate that this cellular tuning method is
most effective when N is large and the actuator is scaled such
that γk and γm remain within the high tunability regions of
Fig. 11.
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Fig. 11. Fundamental frequency tunability as a function of the load stiffness and mass ratios for N = 2, 3, 4, and 5.

IV. IMPLEMENTATION OF A PIEZOELECTRIC-BASED VARIABLE

STIFFNESS CELLULAR ACTUATOR

The analysis in Section III provides useful insight into the
mechanism of variable resonant frequencies and the associated
tunable range under idealized conditions. This section will con-
sider a specific implementation of the VSCA and extend the
previous analysis to account for parasitic dynamics including
additional mass, damping, and compliance of the stroke limiter
for the PZT-based cell design. An image of the PZT-based cell
(without the stroke limiter) is given in Fig. 1(b). Each cell has a
20-N blocking force and 1.5 mm free displacement.

A. Single-Cell Dynamic Model

A detailed lumped-parameter model for the specific PZT-
based VSCA cell is shown in Fig. 12 for the ith cell in a strand.
This model is a necessary extension of the idealized model be-
cause it includes the parasitic effects of stroke-limiter mass,
stroke-limiter stiffness, and flexure damping that are present
in the implemented system. Moreover, the new detailed model
allows for a straightforward translation from the actual cell con-
struction to the lumped-parameter representation. The stroke-
limiter mass is lumped in to the element m, while the finite
stroke-limiter stiffness is given by K. The flexure stiffness is
spatially divided into two springs of equal value 2k on each
side of the large suspended mass M . The stiffness 2k does vary
slightly with displacement, but this variation is assumed to be

Fig. 12. Single-cell model that includes the parasitic effects of the mass m
and stiffness K in the stroke-limiting beam as well as flexure damping b.

small for the purpose of model development. The damping ef-
fects of the flexures are assumed to be viscous in nature and
modeled using a dashpot with a constant value of b. The damp-
ing of the flexures as well as any damping in the load will shift
the resonant frequencies away from their undamped counter-
parts. However, this shift is small, provided that b is relatively
small. The PZT-generated force at the output of the second layer
is now denoted by fp,i .

Each cell requires three generalized coordinates to describe
its configuration with respect to an inertial reference frame. The
first coordinate xi determines the position of the stroke-limiter
mass. The second coordinate Xi determines the position of the
second-layer unit suspended mass. The third coordinate xJ i

determines the location of the output node junction. Note that if
another cell is connected to the output node, then xJ i = xi−1 .
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Fig. 13. Model of an assembled strand of PZT-driven cellular units connected
to a general spring–mass–damper load.

TABLE II
MODEL PARAMETERS

B. Assembled System Behavior

Consider an arbitrary strand of cells having length N, as
shown in Fig. 13. The strand is connected to a load mass mL ,
which is further connected to ground through a parallel arrange-
ment of a spring and dashpot having values of kL and bL . The
arrangement depicted in Fig. 13 represents the usage of the
actuator described in Section V.

Within the actuator, each cellular unit behaves according to
the lumped model in Fig. 12. For the low frequency or static
behavior, mass and damping in the dynamic model may be
neglected, yielding a series compliance of

cS (n,N) =
n

k
+

(N − n)
K + k

(36)

where the first term is consistent with the idealized model in
(1) and the second term accounts for the finite stiffness of the
stroke-limiting beams.

If the effects of mass and damping are included, then the
dynamic model for a serial chain of units, as well as the dynamic
models presented in [20] and [21], can be written in the standard
vibratory form as follows:

Mq̈ + Bq̇ + K(t)q = Q(t). (37)

The vector q contains the generalized coordinates of the strand,
while the vector Q(t) contains the piezoelectrically generated
forces fp,i(t) acting within each cell. For simplicity, these forces
are taken as the voltage applied to the cell VPZT ,i , scaled by an
constant electromechanical transduction factor κ [21].

The parameters of the physical system used in the theoretical
model are given in Table II. The stiffness parameters were taken
from finite-element simulation, while the transduction constant

Fig. 14. Experimental apparatus for measuring static and dynamic properties
of a five-cell system.

κ was obtained from the dc response of the assembled system
described in Section V. As is standard practice in vibration
models, the damping b was used as a free parameter. Therefore,
the damping constant b was tuned to match the experimentally
observed resonant peak amplitudes.

C. Cell-Switching Conditions

One important requirement for the implementation of the
PZT-based VSCA system is that the combination of load and
driving conditions allows the cells to turn ON or OFF without
making inadvertent state transitions. The condition for turning a
cell ON may be stated in terms of the applied voltage as follows:

Vmin ≤ VPZT ≤ Vmax (38)

where Vmax is the maximum voltage as specified by the material
manufacturer, and Vmin is taken as the maximum value of the
time-varying voltage Vswitch(t), where switching from ON to
OFF first occurs

Vmin = max
0≤t≤T

Vswitch(t). (39)

Note from (39) that the minimum voltage is selected for a
given usage duration T . Note also that Vswitch(t) arises from
the time-varying forces at the cell–cell connection points. The
minimum ON voltage is reduced when the transduction constant
κ is increased or the overall preload tension in the strand is
decreased.

V. EXPERIMENTAL RESULTS

A. Static Stiffness Tunability

To demonstrate that the static tunability obeys (36), the stiff-
ness of a serial chain having N = 5 was measured using the
experimental apparatus shown in Fig. 14. With N = 5, there
are 25 = 32 possible arrangements of ON–OFF units. As shown
in Fig. 14, the serial chain was connected to a voice coil actua-
tor and preload tension springs. Units were turned ON or OFF by
applying voltages of 150 and 0 V, respectively. Voltages were
generated using a Cedrat CA-45 amplifier. The ON–OFF switch-
ing was performed with a manual switchboard. With the voice
coil actuator, a 1-N peak–peak sinusoidal force was applied at
0.5 Hz about the preload force of 8 N. In general, some preload
force is necessary to ensure that the units remain OFF when they
receive a zero voltage input, and that nonlongitudinal vibration
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Fig. 15. Experimentally measured compliance compared with the predicted
values based on theoretical stiffness.

modes remain at high frequencies. Forces were measured using
a Transducer Techniques load cell, while strand displacements
were measured using a MicroEpsilon laser displacement sensor.
All measured signals were sampled at 1 kHz with a National
Instruments data-acquisition board.

The results for the static experiment are shown in Fig. 15. For
each n, there were

(
N
n

)
measured data points. Each compliance

data point was generated from a least squares fit to the force
versus displacement data. According to (36), the equivalent se-
ries compliance is constant for a fixed value of n. However, in
the real system, there are variations in the series compliance
for a given n due to individual cell differences. The mean and
standard deviations of the measured data were computed for
each value of n. In Fig. 15, the mean is indicated by a circle,
while the vertical bars represent one standard deviation about
the mean. The solid staircase line is the predicted compliance
based on (36). The main cell–cell difference occurs in the slight
dimensional variation of the second-layer flexure angle, which
can have a notable influence on the stiffness k. Other causes
of stiffness variation are the slight geometric nonlinearity of
the flexure and the variation in ON versus OFF stiffness of the
PZT stacks. Despite these sources of variation, the mode l and
the data agree well over the entire range of ON–OFF cases, and
both illustrate the large tunable range for static compliance. For
the experimentally considered case of N = 5, the compliance
tunability computed from (34) is over 350%.

B. Resonant Frequency Tunability

This experimental section reinforces and illustrates the the-
oretical concepts developed in Sections III and IV. Frequency
response tests were conducted for a VSCA with N = 3. The
case with N = 3 units provides 23 − 1 = 7 possible cases that
can be clearly illustrated on frequency response plots. The ex-
perimental apparatus is the same as that shown in Fig. 14 only
oriented so that gravity is acting along the strand.

A chirp voltage input was used to obtain the frequency re-
sponse characteristics of the actuator. The chirp signal ranged
from 5 to 150 Hz and contained a dc offset of 145 V to as-

Fig. 16. Experimental results demonstrating the variable resonance concept
for three serially connected units. (a) Cases with one unit ON. (b) Cases with
two units ON. (c) Cases with all three units ON.

sure that the conditions in (38) were satisfied. The peak-to-peak
voltage amplitude was 10 V.

The theoretical and experimental models are compared in
Fig. 16 for all of the seven possible cases. Each case is given a
binary number, where the most significant bit denotes the unit
connected to ground and the least significant bit denotes the
unit connected to the load. The gain in the frequency response
is normalized with respect to the dc displacement. Therefore,
the vertical axes in Fig. 16 represent the frequency-dependent
amplification of displacement. The average measured amplifi-
cation at the fundamental resonance was 17.8 with a standard
deviation of 4.4. When comparing the fundamental frequency
location between the model and the experimental results, the
coefficient of determination is very high (R2 = 0.993) for the
entire tuning range of nearly 38 Hz.

For the loaded strand, the load mass and stiffness ratios can be
computed from the parameters in Table II as γm = 21.9/26.0 =
0.84 and γk = 0.23/16.2 = 0.014. From Fig. 11 for the case
with N = 3, the tunability as predicted by the idealized model
is over 100%. Furthermore, as indicated by theoretical propo-
sitions, the lowest fundamental frequency (Σmin = 37.5 Hz)
was obtained in the [1 1 1] case, while the highest fundamental
resonant frequency (σmax,first(1) = 75.2 Hz) was obtained was
in the [0 0 1] case. The computation of the dynamic tunability
from (35) yields a value of over 100%, which agrees well with
the idealized model.

C. Discussion

The experimental results presented in this section illustrate
three key features of the VSCA approach.
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1) The VSCA approach allows for a wide tunability of
both the static stiffness and the first resonant peak in an
assembled system. For the experimental system having
only N = 3 units, the tunability exceeds 100%. The tun-
ability is also increased as N becomes larger and as higher
modes are excited.

2) The results show the high degree of dynamic displace-
ment amplification (≥5) when there is low damping in
the system. Hence, the preexisting large static amplifica-
tion produced by the nested flexures is augmented in the
VSCA approach such that resonant peaks occur over a
wide range of frequencies useful for robotic locomotion
and manipulation.

3) The experimental results and the model prediction are
in close agreement for nearly all cases tested. The small
model residuals, especially near resonance, validate lin-
earity assumptions and demonstrate a sound model for
the dominant energy storage and dissipation modes in the
driven system.

VI. CONCLUSION

This paper presented two main contributions: 1) quantifica-
tion of the essential theoretical properties of VSCAs; and 2) the
implementation and testing of a novel PZT-based VSCA de-
sign. The change in both stiffness and resonant frequencies is
achieved by selectively turning variable stiffness units ON or
OFF within a serial strand. Experiments and models illustrate
the shift in resonant frequency based on a simple change in
ON–OFF configuration.

The PZT-based actuators considered in this paper will be
valuable in many biorobotics applications because they achieve
static strain that is commensurate with skeletal muscle (10%–
20%) and their strain is further amplified under resonance condi-
tions. Furthermore, VSCA designs based on PZT actuator cells
are durable, low power, and high-bandwidth devices. One par-
ticular advantage of PZT is its near-zero power consumption
when holding a load in dc.

The tunability of the PZT actuator also holds particular
promise as an energy harvesting device. Harvesting devices that
vary resonant frequency do exist (e.g., [27], [28]), but such
systems require an additional actuator to tune the resonant fre-
quency. The cellular PZT system described in this paper pro-
vides a means for easily tuning resonance over a wide range in
real time without the use of additional actuators. This may be
very advantageous for mobile robots capable of passively gath-
ering energy from their environment (e.g., fish robots within a
flow).

Our group is presently exploring application areas for our
VSCA technology include deep-sea robotics and nuclear-
reactor-inspection robots. Further extensions of the technology
include using cells with differing stiffnesses to achieve more
uniform modal density across the tuning range. The theoret-
ical treatment may also be extended to include parallel and
antagonistic strands. Overall, the ongoing development of this
actuator is expected to create opportunities for utilizing both

variable stiffness and variable resonance actuation in robotics
applications.

APPENDIX

Proof of Lemma 2: Suppose that Lemma 2 is not true,
i.e., there exist positive integers l′1 , l′2 , . . . , l′n such that
J(l′1 , l′2 , . . . , l′n ) > J(1, 1, . . . , 1, N − n + 1). Then, this
implies

l′1x
2
1 + l′2x

2
2 + · · · + l′n−1x

2
n−1 + l′nx2

n

> x2
1 + x2

2 + · · · + x2
n−1 + (N − n + 1)x2

n . (A1)

Using the constraint l′n = N − p −
∑n−1

i=1 l′i allows (A1) to be
rewritten as follows:(

l′1 − 1
1 − n + p +

∑n−1
i=1 l′i

)(
x1

xn

)2

+

· · · +
(

l′n−1 − 1
1 − n + p +

∑n−1
i=1 l′i

)(
xn−1

xn

)2

> 1. (A2)

The aforementioned inequality can be more strictly stated as
follows: (

1 − n +
∑n−1

i=1 l′i
1 − n + p +

∑n−1
i=1 l′i

)(
xn−1

xn

)2

> 1 (A3)

which is a contradiction because of (15). �
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