Impaired Striatal Akt Signaling Disrupts Dopamine Homeostasis and Increases Feeding

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1107633108</td>
</tr>
<tr>
<td>Publisher</td>
<td>Proceedings of the National Academy of Sciences (PNAS)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Feb 08 21:31:49 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/70026</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
A homing endonuclease and the 50-nt ribosomal bypass sequence of phage T4 constitute a mobile DNA cassette

Richard P. Bonocora¹, Qinglu Zeng¹,², Ethan V. Abel³, and David A. Shub⁴

Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222

Edited* by Marlene Belfort, Wadsworth Center, Albany, NY, and approved August 23, 2011 (received for review May 25, 2011)

Since its initial description more than two decades ago, the ribosome bypass (or “hop”) sequence of phage T4 stands out as a uniquely extreme example of programmed translational frameshifting. The gene for a DNA topoisomerase subunit of T4 has been split by a 1-kb insertion into two genes that retain topoisomerase function. A second 50-nt insertion, beginning with an in-phase stop codon, is inserted near the start of the newly created downstream gene 60. Instead of terminating at this stop codon, approximately half of the ribosomes skip 50 nucleotides and continue translation in a new reading frame. However, no functions, regulatory or otherwise, have been imputed for the truncated peptide that results from termination at codon 46 or for the bypass sequence itself. Moreover, how this unusual mRNA organization arose and why it is maintained have never been explained.

We show here that a homing endonuclease (MobA) is encoded in the insertion that created gene 60, and the mobA gene together with the bypass sequence constitute a mobile DNA cassette. The bypass sequence provides protection against self-cleaveage by the nuclease, whereas the nuclease promotes horizontal spread of the entire cassette to related bacteriophages. Group I introns frequently provide protection against self-cleaveage by associated homing endonucleases. We present a scenario by which the bypass sequence, which is otherwise a unique genetic element, might have been derived from a degenerate group I intron.

mobA Is a Site-Specific Endonuclease That Nicks T2 DNA Close to the Insertion Site of the T4 Bypass Sequence. Thinking that one of the insertions initially identified by Repoila et al. (9) might encode an intact mobA gene, we sequenced the PCR products of the gene 39/60 regions of two of them (phages Pol and SKX, provided by Henry Krisch, Laboratory of Microbiology and Molecular Genetics, CNRS, Toulouse, France) and resequenced this region from phage T4. Surprisingly, the insertions in all three phages are almost identical, encoding a single ORF of 271 amino acids (including both the mobA H-N-H domain and g60.1) that is highly similar to the other phage T4 H-N-H family homing endonucleases (2 Fig. 2). The SKX and Pol mobA sequences are identical; the only differences from the T4 sequence are a synonymous G-to-A third position substitution in codon 156 and an A-to-G substitution at the second position of codon 169, changing threonine to alanine.

Free-standing homing endonucleases (i.e., those not encoded within a group I intron or intein) cleave the DNA of close relatives lacking the endonuclease gene, usually in a gene adjacent to the site of endonuclease gene insertion (12–14), and are copied into the recipient genome via recombination-mediated DNA repair, a process that has been called “homing” (for recent reviews, see refs. 14 and 15). Therefore, we tested the protein product of the mobA gene for endonuclease activity on DNA from phage T2, which has an uninterrupted gene 39.

The mobA gene of phage T4 was expressed in vitro using cell-free extracts and also in vivo by induction of plasmid expression vector pMobA. Incubation of either protein preparation with a...
PCR-amplified region of T2 gene 39 generated a specific nick on the template (bottom) strand (Figs. 3 and 4B), but the proteins were inactive on the homologous T4 sequence (Fig. 4B). Introduction of a UAG stop codon at Tyr195 (Fig. 2) abolished activity (Fig. 3). To confirm that this activity was indeed encoded in T4 (and not in some other phage contaminant), we used DNA from a mutant T4 phage in our collection that has a deletion (saΔ9) (16) located distantly from the g39/60 locus as template for in vitro protein synthesis. This protein product displayed similar nuclease activity on T2 DNA as when our wild-type T4 DNA was used to program the reaction (Fig. 3). Nucleotide resolution mapping of the cleavage position showed that MobA cleaves T2 DNA 19 bp upstream of the insertion site of the bypass sequence in T4 gene 60 (Fig. 4A and C).

Function of the Bypass Sequence Is Prevention of Self-Cleavage by MobA. The close association of the cleavage site and the bypass insertion site suggested that the bypass sequence might play a role in preventing MobA from cleaving the DNA at that site. To test this hypothesis, we constructed a series of phage T4 mutants in which the bypass sequence was deleted or replaced with different sequences. We found that deletion of the bypass sequence (Fig. 4A and C) resulted in MobA cleaving the DNA at a site that was 19 bp upstream of the insertion site in T4 gene 60. In contrast, when we replaced the bypass sequence with a sequence encoding a stop codon (Fig. 4A and C), MobA cleaved the DNA at the insertion site in T4 gene 60, indicating that the presence of the bypass sequence prevents MobA from cleaving the DNA at that site.

Fig. 1. Insertions in the phage T4 genes for the large subunit of topoisomerase II. (A) The parts of the T4 sequence that are homologous to phage T2 gene 39 are shown as open boxes. The carboxyl-terminal 43 amino acids of T4 gene 39 and the amino-terminal 30 amino acids of gene 60 are contributed by the insertion (gray bars), and the presumed mobA homing endonuclease pseudogene and gene 60.1 are depicted as a black bar. An early phage transcription start site (P0), start and stop codons, and Shine/Dalgarno (S/D) sequences are indicated. The 50 nt untranslated bypass or Hop sequence (solid line) inserted after codon 46 of gene 60 begins with an in-frame stop codon. The schematic is not drawn to scale. (B) Amino acid sequences surrounding sites of insertion. The position of the 1-kb insertion containing mobA is indicated by an open triangle, with the number of additional amino acid residues added to the end of truncated gene 39 and the beginning of newly created gene 60 indicated in brackets. The insertion of the 50-bp bypass sequence is indicated by a solid triangle, with an asterisk showing positions of conserved active site residues. Homologous sequences from other members of the T4 superfamily and Saccharomyces cerevisiae are shown for comparison. Sequences were aligned with ClustalW1.8 (3). Identities and similarities of amino acid residues are outlined with Boxshade using default parameters (http://sourceforge.net/projects/boxshade/).

Fig. 2. Alignment of H-N-H family endonucleases of phage T4. Sequence of MobA (old) is as reported in accession no. NC_000866. All other sequences are as reported in T4 genomic sequence accession no. HM_137666. The beginning of putative gene product 60.1, within the MobA reading frame, is indicated by an open triangle. The location of the tyrosine to amber nonsense mutation at codon 195 is indicated by an asterisk. Alignment and shading were performed as in Fig. 1.
a role in protecting the T4 genome from self-cleavage by MobA. However, in addition to the bypass, there are 13 individual base-pair differences between T2 and T4 in this region that might account for the cleavage specific (17) (Fig. 4C).

To establish whether protection against self-cleavage was provided by these sequence polymorphisms, the bypass sequence, or by both, target DNA sequences were constructed whereby the bypass was removed from the T4 sequence or inserted into the corresponding T2 sequence. Cleavage occurred in both phage sequences lacking the bypass but was prevented by the presence of the bypass (Fig. 4B), demonstrating that the bypass sequence is both necessary and sufficient for protection against cleavage by MobA.

Hop, Skip, and Jump: MobA Mobilizes the Bypass Sequence for Horizontal Gene Transfer. These properties of MobA and the existence of virtually identical 1-kb insertions in phages T4, Pol, and SKX suggest that mobA and the gene 60 bypass might function together as a nuclease-activated mobile genetic element. Unregulated expression of MobA is lethal to Escherichia coli (our early attempts to clone wild-type mobA failed, yielding only mutant sequences until the tightly regulated expression plasmid pBAD was used, generating plasmid pMobA). Therefore, to demonstrate horizontal transfer to phage T2, we used a two-plasmid system (18). The donor plasmid was pT4Δ(39–60ΔmobA) (the T4 gene 39/60 locus, with codons 15–132 of mobA deleted) and wild-type MobA was provided by induction of plasmid pMobA. Screening of progeny from infected cells for the bypass sequence was derived from a group I intron that engaged in collaborative homing with free-standing endonuclease MobA. The results presented here provide an explanation for the function (prevention of self-cleavage by MobA) and persistence (spread by horizontal gene transfer) of the ribosome bypass sequence. However, we still have no convincing evidence for how this remarkable element came to be inserted into gene 60 in the first place. Although programmed translational frameshifts of one or a few nucleotides have been repeatedly encountered in bacteria and eukaryotes, nothing remotely close to the 50-nt ribosomal hop in T4 gene 60 has been substantiated in any other biological system (20). One possible scenario, consistent with the rarity of bypassing, is suggested by similarities of this system to the recently described phenomenon of “collaborative homing” of homing endonucleases and group I introns (13).

Intron-encoded homing endonucleases are protected from cleaving their own genomes by disruption of the DNA-binding/cleavage site by the intron (15) (Fig. 5A), whereas most intronless (or free-standing) homing enzymes have sequence polymorphisms at their target sites that prevent cleavage (17) (Fig. 5B). In collaborative homing, an intron (lacking its own homing endonuclease gene) is inserted into the target sequence of a free-standing homing endonuclease, thereby preventing self-cleavage by the enzyme (13) (Fig. 5C). When a related sensitive DNA sequence is cleaved, both the intron and endonuclease gene are incorporated into the recipient during recombination-dependent DNA repair. The relationship between mobA and the bypass sequence appears to be a variation of the collaborative homing theme (Fig. 5D), which raises the interesting possibility that the bypass may once have been a functional group I intron.

Despite the lack of sequence relatedness between the bypass sequence and any known intron, there are suggestive similarities in their structures and insertion sites. Like the bypass sequence, the 5′ ends of many bacteriophage introns begin with an in-frame stop codon, which is part of the base-paired stem (P1) with which all group I introns begin (21, 22). Furthermore, like the insertion sites of most group I introns (12, 23–25), the bypass sequence is inserted into a highly conserved sequence of an essential protein, the Mg2+–binding region at the active site of type II topoisomerases (26) (Fig. 1B).

These considerations, together with the results presented here, lead us to propose the following hypothesis as a plausible scenario for origin of the bypass. It is possible that the bypass sequence was derived from a group I intron that engaged in collaborative homing with free-standing endonuclease MobA. The intron may have suffered a large deletion that prevented splicing but, adventitiously, the conformation of the remaining RNA (8) may have permitted ribosomal bypassing. Unlike most other “essential” T4 genes, conditional lethal mutations in gene 39 still allow a significant yield of progeny phage under non-permissive conditions (27). So, despite the negative selection

Fig. 3. Activity of in vitro-synthesized MobA protein. Substrate DNA was made by PCR of T2 gene 39 DNA with only one primer labeled at its 5′ end in each reaction. Template DNAs for the in vitro transcription were wild type T4 (wt), a mutant T4 strain with deletion distant from the mobA gene (saΔ9), and T4 containing a tyrosine-to-amber nonsense mutation at codon 195 of mobA (Y195am) (Fig. 2). Control reactions were either in vitro protein synthesis reactions carried out without addition of template DNA (Mock) or with no protein synthesis reaction added (NP) in the endonuclease assay.

Positions of end-labeled DNA size standards (in kb) are on the left.
implied by reduced translation efficiency, the bypass could have been maintained because of its essential relationship with mobA, with continued selection favoring increased efficiency of ribosome hopping. In this context, it is interesting to note that a portion of the nascent gp60 peptide chain upstream of the bypass sequence, which is required for efficient ribosome hopping (6, 7), is not homologous to a segment of the original gene (39), but is contributed as part of the 1-kb insertion that includes mobA (Fig. 1A).

mobA is one example of a homing endonuclease-like gene that disrupts the coding sequence of an essential gene without destroying its function (1), and two other examples have recently been described in phages belonging to the T4 superfamily. In one case, a GIY-YIG family endonuclease gene disrupts DNA polymerase (28, 29); in the other case, a H-N-H family endonuclease gene disrupts the large subunit of ribonucleotide reductase (30). In all three cases, the products of the split genes reunite to form enzymatically active proteins. In the ribonucleotide reductase case, this requires peptide sequences that had been added to the ends of the split proteins at the site of the endonuclease gene insertion (31). The C terminus of T4 gp39 and the N terminus of gp60 also have extensive amino acid sequences (43 and 30 residues, respectively) that are absent in the intact homologs (Fig. 1B), and it has been suggested (31) that these may also play a role in assembly of the split proteins into an active enzyme.

Table 1. Homing frequency

<table>
<thead>
<tr>
<th>Expression plasmid*</th>
<th>Experiment</th>
<th>0</th>
<th>0.00002</th>
<th>0.0002</th>
<th>0.002</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMobA</td>
<td>1</td>
<td>97</td>
<td>99</td>
<td>94</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>88</td>
<td>98</td>
<td>92</td>
<td>54</td>
</tr>
<tr>
<td>pF-CphI</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pBAD</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*Cells also contain the donor plasmid pT4 (39-60ΔmobA).

Fig. 5. Modes of protection against self-cleavage by homing endonucleases. (A) Homing endonuclease gene (HEG) encoded within a group I intron. The intron interrupts the sensitive binding/cleavage site (C). (B) HEG inserted intercistronically, resistance due to sequence differences at the binding/cleavage site (●). (C) HEG inserted intercistronically. Resistance is due to group I intron inserted into sensitive binding/cleavage site. (D) mobA inserted within an ancestral gene 39. Resistance is due to insertion of bypass sequence (Hop) within the sensitive binding/cleavage site. Group I introns, dark bars; homing endonuclease genes, shaded boxes; target genes without insertions, clear boxes; intergenic spaces, thin lines.
We have shown here that mobA can be spread by horizontal transmission, and it is likely that other similar constructs will also be shown to practice homing. Recent metagenomic analysis of environmental DNA samples has yielded additional examples of genes split by insertion of putative homing endonucleases (32), indicating that the infectious splitting of essential proteins may be a more common phenomenon than previously thought.

Materials and Methods

Oligonucleotides. Restriction sites are underlined in the sequences listed below.

```
ym001: AAATATACAAGCTCATATAGGGACGATCAGACCTGGAGACATA- 
TATGATACGAAAAAATCTATAATG (nond coding sequence containing 
a T7 promoter and ribosome binding site is in italics); 
ym003: GAGAAGTAAATAGCAGGCAC; 
M13Rev: CAGGAAACCAAAGGACGTAC; 
M13Fwd: TGTAAAACGACGGCCAGT; 
EVA7: GGCTCATGATATAAGCGAATTACGAAAAAATCTATAATG; 
EVA8: CCGAAATCTTATTTTTTATCATCAAACGCTGAAAGA; 
g39.5: CCGAAAACCAAAGGACGTAC; 
T2T4-3: TACCTCAATGTTCTAGITACTTTACACAGATTTGAGTTATGAGTAAAG; 
mobA8: TATATA
```

Plasmid Construction. For expression of MobA, T4 mobA was amplified by PCR with KOD HiFi DNA polymerase (Novagen) using primers EVA7 and EVA8, digested with Pflg and EcoRI and ligated into similarly digested pBAD/Myc-HisA vector (Invitrogen) to create pMobA. The 50-bp ribosomal bypass from bacteriophage T4 gene 60.

```
Plasmid pMobATS#4 was constructed by amplification of the T2 gene 39 with primers MobA10 and MobA11 and cloned in pBSM13+. pT4(mobA) (donor) and either pMobA, pF-CphI, or pBAD/Myc-HisA (the empty expression plasmid) were spotted onto the plates and incubated overnight at 30 °C. The dilution that had almost cleared was scraped off, mixed with 1 mL buffered saline, shaken at 37 °C for 1 h, and diluted for single plaques on H plates. Plaques were transferred to a gridded lawn, and homing products were detected by plaque hybridization (17) using oligo lells were harvested by centrifugation at 6,000 × g for 20 min, resuspended in equal volume ice-cold lysis mixture (50 mM Tris HCl, pH 7.2, 1 mM EDTA, 1 mM PMFS, 2 μg/mL leupeptin, and 200 mM KCl), sonicated to complete lysis and used directly in endonuclease assays.

Generation of DNA Substrates. Individually 5’ end-labeled targets were generated by 5’ end labeling (with [γ-32P]ATP and T4 polynucleotide kinase) one of the oligonucleotides before use in PCR together with an unlabeled primer partner (34). PCR was performed with Taq DNA polymerase as described above.

Endonuclease Assays. Endonuclease assay reactions (10 μL) containing 2 μL crude cell extract and 4 μL DNA substrate were incubated at 30 °C for 30 min in 0.05 M NaCl, 0.05 M Tris (pH 7.5), and 0.5 μg poly(dI-dC). Reaction products were extracted with an equal volume of phenol before separation on a 4% denaturing polyacrylamide gel.

Cleavage Site Mapping. The location of the MobA cleavage site was mapped, as previously described (34), on the bottom strand of the T2 gene 39 using substrate amplified from pMobATS#4 with labeled M13Fwd primer and unlabeled M13Rev primer. PCR amplification, 5’ end labeling, and endonuclease conditions were the same as described above. Cleavage products were separated by electrophoresis on 4% denaturing polyacrylamide gel next to sequencing ladders generated using the same template DNA and labeled primers.

Plasmid to Phage Homing. Plasmid-to-phage homing assays were performed as described by Quirk et al. (18). Briefly, E. coli LMG194 cells harboring plasmids pMobA (donor) and either pHW53 or pBAD/Myc-HisA (the empty expression plasmid) were induced with increasing concentrations of l-arabinose on H agar plates at 30 °C for 2 h. Serial dilutions of T2 phage were spotted onto the plates and incubated overnight at 30 °C. The dilution that had almost cleared was scraped off, mixed with 1 mL buffered saline, shaken at 37 °C for 1 h, and diluted for single plaques on H plates. Plaques were transferred to a gridded lawn, and homing products were detected by plaque hybridization (17) using oligo

ACKNOWLEDGMENTS. This work was supported by the Northeast Biodefense Center through National Institutes of Health Grant U54-AI057158 and by a research development award from the College of Arts and Sciences, University at Albany.

1. Huang WM, Wei LS, Casjens S (1985) Relationship between bacteriophage T4 and T6 and bacteriophage T2. To provide sequence homology for recombination with phage T2. To create pT4dhop, which has T2hop2, and T2hop1. The product was digested with PstI and SacI and ligated into pBSM13+ (Stratagene) to generate pT2hop. pT4dhop, which has T4dhop2:TCCGAGCAGAGAAGGATAAATAGAACCTAATCCATCGTGATCTG-TCATGA; and T4dhop4:GGACTATGGACGACGATCAGACCTGGAGACATA-TATGATACGAAAAAATCTATAATG.

2. Bonocora et al.


7. Repoila F, Tétart F, Bouet JY, Krisch HM (1994) Genome polymorphism in the T-even bac-

8. Repola F, Tettar T, Bouet JY, Krisch HM (1994) Genome polymorphism in the T-even bac-

9. Repoila F, Tettar T, Bouet JY, Krisch HM (1994) Genome polymorphism in the T-even bac-

10. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD (2010) Genomes of the T4-related bac-
