Search for New Physics with a Monojet and Missing Transverse Energy in pp Collisions at \(s = 7 \text{ TeV} \)

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.107.201804</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 01 16:57:04 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/70071</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for New Physics with a Monojet and Missing Transverse Energy
in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 24 June 2011; published 10 November 2011)

A study of events with missing transverse energy and an energetic jet is performed using pp collision data at a center-of-mass energy of 7 TeV. The data were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 36 pb$^{-1}$. An excess of these events over standard model contributions is a signature of new physics such as large extra dimensions and unparticles. The number of observed events is in good agreement with the prediction of the standard model, and significant extension of the current limits on parameters of new physics benchmark models is achieved.

DOI: 10.1103/PhysRevLett.107.201804 PACS numbers: 13.85.Rm, 11.25.Wx, 14.80.−j

This Letter describes a search for new physics in the missing transverse energy (E_{T}^{miss}) and jet final state using data corresponding to an integrated luminosity of 36 pb$^{-1}$, collected with the compact muon solenoid (CMS) experiment in pp collisions at a center-of-mass energy of 7 TeV provided by the Large Hadron Collider (LHC). Events containing a single energetic jet (monojet) are selected, although a second jet is allowed. This event signature is predicted in models such as large extra dimensions, based on the scenario by Arkani-Hamed, Dimopoulos, and Dvali (ADD) [1–4], or unparticles [5]. This study focuses on the search for direct production of a graviton G (or unparticle U) balanced by a hadronic jet via the processes $q\bar{q} \rightarrow gG$ (gU), $qg \rightarrow qG$ (qU), and $gg \rightarrow gG$ (qU). Gravitons (unparticles) leave the detector without depositing any energy, and thus result in an apparent transverse energy imbalance in the final state. The primary backgrounds to this signature arise from $Z + \text{jet}$ and $W + \text{jet}$ production, and are estimated from the data.

The ADD model explains the large difference between the electroweak and Planck scales by introducing a number δ of extra spatial dimensions which in the simplest scenario are compactified over a torus of common radius R. The fundamental scale M_D is related to the effective four-dimensional Planck scale M_{Pl} according to the formula $M_{Pl}^2 = M_D^\delta R^\delta$. Gravitons can propagate in the extra dimensions and their production is expected to be greatly enhanced due to the kinematically available phase space in the extra dimensions. The gravitons are weakly coupled with standard model (SM) particles and their presence can only be inferred from E_{T}^{miss}. Searches for invisible particles produced in association with a jet or a photon were performed previously [6–11], and no evidence of new physics was observed. The current lower limits on M_D range from 1.6 TeV/c^2 for $\delta = 2$ [6–9] to 0.95 TeV/c^2 for $\delta = 6$ [10].

Unparticle models postulate a new scale-invariant (conformal) sector which is coupled to the SM particles through a connector sector at a high mass scale. An operator with a general noninteger scale dimension d_U in a conformal sector induces a spectrum of particles with continuous mass. These “unparticles” leave without interacting with the detector, thus manifesting as E_{T}^{miss}. In this analysis, unparticles are assumed to be sufficiently long-lived that they do not decay in the detector. Effects of unparticles below mass scale Λ_U are studied by using an effective field theory. While there have been no direct searches for unparticles, a recent interpretation of CDF results suggests lower limits on Λ_U between 2.11 and 9.19 TeV/c^2 for $1.05 < d_U < 1.35$ [12,13].

The CMS apparatus has pixel and silicon-strip detectors for pseudorapidity of $|\eta| < 2.5$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle relative to the beam direction. Contained in a 3.8 T magnetic solenoid, the tracking detectors provide momentum reconstruction down to about 100 MeV/c with a resolution of about 1% at 100 GeV/c. A highly granular crystal electromagnetic calorimeter (ECAL) extends to $|\eta| < 3.0$, and has an energy resolution of better than 0.5% for photons with a p_T above 100 GeV. A hermetic hadronic calorimeter (HCAL) extends to $|\eta| < 5.0$ with a transverse hadronic energy resolution of about 100%/\sqrt{E_{B}[\text{GeV}]} \times 5%. A muon detector system reconstructs and identifies muons to $|\eta| < 2.4$. A full description of the CMS detector can be found in Ref. [14].

Both ADD and unparticle signal events are generated with the PYTHIA 8.130 Monte Carlo generator [15,16] with Tune 1 and passed through the CMS full simulation via the GEANT4 package [17]. The CTEQ 6.6 M parton distribution functions (PDFs) [18] are used throughout. These models are effective theories and hold only for energies well below...
For a center of mass energy of scattering partons \(\sqrt{s} > M_D(\Lambda_U)\), following [16], the simulated cross sections of the graviton (unparticle) are suppressed by a factor \(M_D^4/\Lambda^4(\Lambda_U)^2\). Since the \(\sqrt{s}\) of these data is lower than the current limits on the \(M_D(\Lambda_U)\), the results are not affected by this treatment. The next-to-leading-order (NLO) QCD corrections to the direct graviton production in ADD model are sizable and dependent on the \(p_T\) of the recoiling parton [19]. For simplicity, the following K factors (\(\sigma_{NLO}/\sigma_{LO}\)), which correspond to a graviton \(p_T\) of several hundred GeV/c, are used: 1.5 for \(\delta = 2\), 3 and 1.4 for \(\delta = 4, 5, 6\). The SM samples of \(Z + \text{jets}\) and \(W + \text{jets}\), top quark pairs and QCD multijets are produced with the LO matrix element event generator MADGRAPH [20] interfaced with PYTHIA 6.420 [21] with tune D6T [22] for parton showering. Double counting by the matrix element calculation and parton showering is resolved by using the MLM matching prescription [23] as implemented in [20].

Data collected by several jet and \(E_T^{\text{miss}}\) triggers are used in this search. These trigger paths are fully efficient for events with a value of \(E_T^{\text{miss}} > 120\) GeV. Events are required to have at least one good quality [24] primary vertex reconstructed within a \(\pm 15\) cm window along the beam axis around the detector center and have a transverse distance from the beam axis no more than 2 cm. Artificial signals in the calorimeter are identified by using criteria based either on energy sharing between neighboring channels or timing requirements and are removed from the further reconstruction [25]. Beam halo and other beam-induced background events are rejected by requiring at least 25% of the tracks in events with ten or more tracks to be well reconstructed [26]. Events identified to contain muons from cosmic rays are also rejected. After these requirements, some beam-related and instrumental backgrounds still remain which are removed by additional cuts described below.

Jets and \(E_T^{\text{miss}}\) are reconstructed using a particle flow technique [27]. The algorithm reconstructs particles in each event, using the information from the tracker, the ECAL, and the HCAL calorimeters and the muon system. These particles are then used as input to the jet clustering algorithm which reconstructs jets using the anti-\(k_T\) algorithm [28] with a distance parameter of 0.5. The missing transverse energy vector is computed as the negative vector sum of the transverse momenta of all particles reconstructed in the event, and has a magnitude denoted by \(E_T^{\text{miss}}\). Jet energies are corrected to particle level using \(p_T\) and \(\eta\)-dependent correction factors. These corrections are derived from Monte Carlo simulation (MC) and are supplemented by a residual correction which is derived by measuring the \(p_T\) balance in dijet events from collision data [29]. To further suppress the instrumental and beam-related backgrounds, events are rejected if less than 15% of the energy of the highest \(p_T\) jet is carried by charged hadrons or more than 80% of this energy is carried by either neutral hadrons or photons. Such jets primarily arise from the instrumental noise where energy deposition is limited to one subdetector. Jets resulting from energy deposition by beam halo or cosmic muons do not have associated tracks and thus events with such energy deposits are also rejected by these cuts. All the events passing these selection cuts were visually inspected and were found to be good \(pp\) collision events. All these data cleanup requirements reject 1.5% of the signal events as defined below.

Muon candidates are reconstructed by finding the compatible track segments in the silicon tracker and the muon detectors and requiring that the track formed using hits on these two track segments is of a good quality [30]. Muon candidates are required to be within \(|\eta| < 2.1\).

Electron candidates are reconstructed starting from a cluster of energy deposits in the ECAL, which is then matched to hits in the silicon tracker. Electron candidates are required to have \(|\eta| < 1.44\) or \(1.56 < |\eta| < 2.5\) to avoid poorly instrumented regions. Electron candidates with significant mismeasurement in the ECAL or consistent with a photon conversion are rejected [31]. Muon and electron candidates are required to originate within 2 mm of the beam axis in the transverse plane. In order to avoid rejecting events in which the muon (electron) originates from a jet, muon and electron candidates are also required to be spatially separated from jets by at least \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.5\). Here \(\Delta \eta\) and \(\Delta \phi\) are differences between the muon (electron) and the jet directions in the pseudorapidity and azimuthal angle (in radians), respectively. An isolation parameter RelIso is defined as the scalar sum of the transverse momenta of tracks and transverse energies in the ECAL and HCAL in a cone of radius \(R = 0.3\) centered at the muon (electron) track direction, excluding the contribution from the candidate, divided by its \(p_T\). Candidates with RelIso values below 0.15 for muons or 0.09 (0.04) for electrons in the central (forward) regions are considered isolated.

The signal sample is selected by requiring \(E_T^{\text{miss}} > 150\) GeV and the most energetic jet \((j_1)\) to have \(p_T(j_1) > 110\) GeV/c and \(|\eta(j_1)| < 2.4\). Events with more than two jets \((N_{\text{jets}} > 2)\) with \(p_T\) above 30 GeV/c are discarded. A second jet \((j_2)\) is allowed as signal events generally contain an initial or final state radiated jet provided its angular distance in azimuth from the highest-\(p_T\) jet satisfies \(\Delta \phi(j_1, j_2) < 2.0\) radians. This angular requirement suppresses the QCD dijet events. Approximately 40% of the selected events have two jets. In order to reduce the background from \(W\) and \(Z\) bosons and top quark decays, events with isolated electrons or muons with \(p_T > 10\) GeV/c are rejected. Events with an isolated track with \(p_T > 10\) GeV/c are also eliminated, as they come primarily from \(\tau\)-lepton decays. A track is considered isolated if the scalar sum of the \(p_T\) of all tracks with \(p_T > 1\) GeV/c in the annulus of 0.02 < \(\Delta R < 0.3\) around its direction is less than 10% of its \(p_T\).
The only significant remaining backgrounds after all requirements are from electroweak processes where the final state includes neutrino(s) and thus has genuine missing transverse energy. Table I lists the number of events selected at each step of the analysis from data and simulation. The predicted event yields in the simulation are in reasonable agreement with those observed in the data.

The $p_T(j_1)$ distribution after all the signal selection cuts is shown in Fig. 1. The SM predictions have been determined using MC simulation and have been normalized to the measured rate in data. The shape of the data distributions is well described by the SM predictions both for the leading jet p_T spectrum and the E_T^{miss} spectrum.

To estimate the number of $Z(\nu \nu) + \text{jets}$ background events, the number of muon events in the M_T window is rescaled by several factors: (i) the correction for contributions other than $W(\mu \nu) + \text{jets}$, extracted from LO MC (0.923 ± 0.071), (ii) the reciprocal of the kinematic and geometric acceptance determined from the simulated sample (2.40 ± 0.12), (iii) inclusive $W(\mu \nu)$ to inclusive $Z(\nu \nu)$ conversion factor, $\sigma(Z(\mu \nu))/\sigma(W(\mu \nu)) \times BR(Z \rightarrow \nu \nu)/BR(Z \rightarrow \mu \mu) = [1/10.74] [32] \times 5.942 [33] = (0.553 ± 0.021), (iv) the violin plot

![violin plot]

FIG. 1 (color online). Distribution of $p_T(j_1)$ (top), and missing transverse energy E_T^{miss} (bottom) requiring $E_T^{\text{miss}} > 150$ GeV, $N_{\text{jets}} \leq 2$, $|\eta(j_i)| < 2.4$, $\Delta \phi(j_1, j_2) < 2$, and lepton veto requirements compared to SM contribution determined using MC simulation. The background is normalized to the measured rate in data. A representative ADD signal (with $M_D = 2$ TeV/c^2, $\delta = 2$) is shown as a dashed red line.

TABLE I. Event yields in data and luminosity-normalized leading-order MC calculations after each analysis cut. Lepton removal eliminates events with isolated electrons, muons, or tracks with $p_T > 10$ GeV/c.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>$W + \text{jets}$</th>
<th>$Z(\nu \nu) + \text{jets}$</th>
<th>$Z(\ell^+ \ell^-) + \text{jets}$</th>
<th>$t\bar{t}$</th>
<th>QCD</th>
<th>Total MC</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T^{\text{miss}} > 150$ GeV/c, jet cleaning</td>
<td>622</td>
<td>259</td>
<td>46.7</td>
<td>90.4</td>
<td>202</td>
<td>1220</td>
<td>1298</td>
</tr>
<tr>
<td>$p_T(j_1) > 110$ GeV/c, $</td>
<td>\eta(j_i)</td>
<td>< 2.4$</td>
<td>583</td>
<td>245</td>
<td>43.4</td>
<td>76.9</td>
<td>201</td>
</tr>
<tr>
<td>$N_{\text{jets}} \leq 2$</td>
<td>446</td>
<td>201</td>
<td>34.3</td>
<td>11.3</td>
<td>74.3</td>
<td>767</td>
<td>778</td>
</tr>
<tr>
<td>$\Delta \phi(j_1, j_2) < 2$</td>
<td>370</td>
<td>182</td>
<td>29.5</td>
<td>9.1</td>
<td>6.3</td>
<td>597</td>
<td>596</td>
</tr>
<tr>
<td>Lepton removal</td>
<td>107</td>
<td>173</td>
<td>0.8</td>
<td>1.7</td>
<td>1.4</td>
<td>284</td>
<td>275</td>
</tr>
</tbody>
</table>

TABLE II. Event yields in data and luminosity-normalized leading-order MC calculations after each analysis cut. Lepton removal eliminates events with isolated electrons, muons, or tracks with $p_T > 10$ GeV/c.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>$W + \text{jets}$</th>
<th>$Z(\nu \nu) + \text{jets}$</th>
<th>$Z(\ell^+ \ell^-) + \text{jets}$</th>
<th>$t\bar{t}$</th>
<th>QCD</th>
<th>Total MC</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_T^{\text{miss}} > 150$ GeV/c, jet cleaning</td>
<td>622</td>
<td>259</td>
<td>46.7</td>
<td>90.4</td>
<td>202</td>
<td>1220</td>
<td>1298</td>
</tr>
<tr>
<td>$p_T(j_1) > 110$ GeV/c, $</td>
<td>\eta(j_i)</td>
<td>< 2.4$</td>
<td>583</td>
<td>245</td>
<td>43.4</td>
<td>76.9</td>
<td>201</td>
</tr>
<tr>
<td>$N_{\text{jets}} \leq 2$</td>
<td>446</td>
<td>201</td>
<td>34.3</td>
<td>11.3</td>
<td>74.3</td>
<td>767</td>
<td>778</td>
</tr>
<tr>
<td>$\Delta \phi(j_1, j_2) < 2$</td>
<td>370</td>
<td>182</td>
<td>29.5</td>
<td>9.1</td>
<td>6.3</td>
<td>597</td>
<td>596</td>
</tr>
<tr>
<td>Lepton removal</td>
<td>107</td>
<td>173</td>
<td>0.8</td>
<td>1.7</td>
<td>1.4</td>
<td>284</td>
<td>275</td>
</tr>
</tbody>
</table>
spectral shape differences in \(W + \text{jets} \) and \(Z + \text{jets} \) for \(p_T(W, Z) > 150 \text{GeV}/c \) \((1.33 \pm 0.14)\), and (v) the efficiency of the lepton veto in the signal region taken from simulation \((0.95 \pm 0.02)\). All uncertainties include both statistical and systematic effects. The number of \(Z(\nu \nu) + \text{jets} \) events in the signal region predicted from \(W(\mu \nu) + \text{jets} \) events is \(176 \pm 30\). A crosscheck is made using an event sample of two opposite-sign muons with invariant mass consistent with that of a \(Z \) boson, and passing the signal selection cuts except the muon veto. In this sample, we observe \(13\) events which, after correcting for reconstruction efficiency, branching ratio, and detector acceptance, gives a prediction of \(162 \pm 45\) for \(Z(\nu \nu) + \text{jets} \) background. Other background contributions to the signal region from QCD, top pair production, and \(Z(\ell^+ \ell^-) + \text{jets} \) production are small and are estimated using Monte Carlo simulation. We assign 100% uncertainty on this estimate. To the check accuracy of the QCD simulation, the event yield in data after relaxing the \(\Delta \phi(j_1, j_2) \) cut to 3.0 was compared with the MC prediction and was found to agree well. In addition, relaxing the \(p_T \) veto cut on additional jets to \(50 \text{GeV}/c \) increases the expected QCD background from 1.4 to only 2.1 events. The estimated number of events from all background sources is \(297 \pm 45\). The uncertainty includes both statistical and systematic sources, with correlations taken into account.

To interpret the consistency of the observed number of events with the background expectation in the context of a model, we set exclusion limits for both the ADD model and the unparticle scenario. The upper limit on the number of non-SM events consistent with the measurements is determined using a Bayesian method \([33, 34]\) with a flat prior for signal and a log-normal density function for the background.

The most important uncertainties related to signal modeling are (i) the jet energy scale, estimated by shifting the jet four vectors by an \(\eta \)- and \(p_T \)-dependent factor \([29]\) yielding a variation of \(3\%–7\%\) \((7.5\%–11.5\%)\) for the ADD (unparticle) signal acceptance, (ii) the jet energy resolution, estimated from a \(\gamma + \text{jet} \) sample \([35]\) and resulting in a \(0.3\%–2.2\%\) \((0.6\%–2.9\%)\) uncertainty on the ADD (unparticle) signal acceptance, (iii) uncertainties on the PDFs, evaluated using a reweighting technique with the CTEQ6M parameterization \([18]\) and resulting in a systematic uncertainty of \(1\%–2\%\) \((3\%–7\%)\) for the ADD (unparticle) signal acceptance, and (iv) a 4% uncertainty on the luminosity measurement \([36]\). The uncertainties for unparticle signal are higher as it has a steeper \(E_T^{\text{miss}}\) spectrum. The total systematic uncertainties, dominated by the jet energy scale uncertainty, range from 6% to 13%.

Exclusion limits at 95% confidence level (C.L.) for the ADD model are given in Table II and are a significant improvement over the previous limits. From the ADD model with \(M_D = 3 \text{ TeV}/c^2\) and \(\delta = 3\), which has signal acceptance of \((9.9 \pm 0.7)\%\), we evaluate a cross-section upper limit for our selection of 18.7 pb and exclude new processes at 95% C.L. above this value that result in events passing our selection cuts and having the same acceptance. For unparticles with \(\text{spin} = 0\), production cross sections above 54 pb are excluded at 95% C.L. for \(d_U = 1.7\) and \(\Lambda_U = 1 \text{ TeV}/c^2\). The limits for other \(d_U\) and \(\Lambda_U\) are comparable and are shown in Fig. 2; for \(d_U = (1.35, 1.40, 1.45, 1.50, 1.60, 1.70)\), unparticles are excluded at 95% C.L. for \(\Lambda_U < (18.9, 8.07, 4.57, 2.90, 1.62, 1.07) \text{ TeV}/c^2\), compared to the expected limits of \((13.4, 6.43, 3.75, 2.38, 1.46, 1.00) \text{ TeV}/c^2\).

In summary, a search is performed for signatures from the ADD and unparticle models in events collected by the CMS experiment from \(pp\) collisions at \(\sqrt{s} = 7 \text{ TeV}\). A final state with an energetic jet and a significant amount of missing transverse energy is analyzed from the first CMS data, corresponding to an integrated luminosity of \(36 \text{ pb}^{-1}\). The QCD multijet background is reduced by several orders of magnitude to a negligible level using topological cuts. Data enriched in \(W(\mu \nu)\) events are used to estimate the \(W + \text{jets} \) and \(Z(\nu \nu) + \text{jets} \) events remaining in the signal region. The data are found to be in agreement with the expected contributions from SM

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(K) factor</th>
<th>LO Exp.</th>
<th>LO Obs.</th>
<th>NLO Exp.</th>
<th>NLO Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.5</td>
<td>2.17</td>
<td>2.29</td>
<td>2.41</td>
<td>2.56</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.82</td>
<td>1.92</td>
<td>1.99</td>
<td>2.07</td>
</tr>
<tr>
<td>4</td>
<td>1.4</td>
<td>1.67</td>
<td>1.74</td>
<td>1.78</td>
<td>1.86</td>
</tr>
<tr>
<td>5</td>
<td>1.4</td>
<td>1.59</td>
<td>1.65</td>
<td>1.68</td>
<td>1.74</td>
</tr>
<tr>
<td>6</td>
<td>1.4</td>
<td>1.54</td>
<td>1.59</td>
<td>1.62</td>
<td>1.68</td>
</tr>
</tbody>
</table>

FIG. 2 (color online). Observed and expected 95% C.L. lower limits on the ADD model parameter \(M_D\) \((\text{in TeV}/c^2)\) as functions of \(\delta\), with and without NLO \(K\) factors applied.

TABLE II. Observed and expected 95% C.L. lower limits on the ADD model parameter \(M_D\) \((\text{in TeV}/c^2)\) as functions of \(\delta\), with and without NLO \(K\) factors applied.
We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CINVESTAV, CONACYT, SEP, and NICPB (Estonia); Academy of Sciences and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NICPB (Hungary); Academy of Finland, ME, and HIP (Croatia); RPF (Cyprus); Academy of Sciences and NSFC (China); COLCIENCIAS (Colombia); MSES (Brazil); MES (Bulgaria); CERN; CAS, MoST, and CAS, MoST, and SPCS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NICPB (Hungary); Academy of Sciences and HIP (Croatia); RPF (Cyprus); Academy of Sciences and NSFC (China); COLCIENCIAS (Colombia); MSES (Brazil); MES (Bulgaria); CERN; CAS, MoST, and APS (China); DST and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
Université de Mons, Mons, Belgium
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
University of Sofia, Sofia, Bulgaria
Institute of High Energy Physics, Beijing, China
State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Universidad de Los Andes, Bogota, Colombia
Technical University of Split, Split, Croatia
University of Split, Split, Croatia
Institute Rudjer Boskovic, Zagreb, Croatia
University of Cyprus, Nicosia, Cyprus
Charles University, Prague, Czech Republic
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
Department of Physics, University of Helsinki, Helsinki, Finland
Helsinki Institute of Physics, Helsinki, Finland
Lappeenranta University of Technology, Lappeenranta, Finland
Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
University of Athens, Athens, Greece
University of Ioannina, Ioannina, Greece
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
University of Debrecen, Debrecen, Hungary
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-EHEP, Mumbai, India
Tata Institute of Fundamental Research-HECR, Mumbai, India
Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milan, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy

Universita’ di Napoli “Federico II,” Napoli, Italy

INFN Sezione di Padova, Padova, Italy

Universita’ di Padova, Padova, Italy

Universita’ di Trento (Trento), Padova, Italy

INFN Sezione di Pavia, Pavia, Italy

Universita’ di Pavia, Pavia, Italy

INFN Sezione di Perugia, Perugia, Italy

Universita’ di Perugia, Perugia, Italy

INFN Sezione di Pisa, Pisa, Italy

Universita’ di Pisa, Pisa, Italy

Scuola Normale Superiore di Pisa, Pisa, Italy

Universita’ di Roma “La Sapienza,” Roma, Italy

INFN Sezione di Torino, Torino, Italy

Universita’ di Torino, Torino, Italy

Universita’ del Piemonte Orientale (Novara), Torino, Italy

INFN Sezione di Trieste, Trieste, Italy

Universita’ di Trieste, Trieste, Italy

Kangwon National University, Chunchon, Korea

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

Korea University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania

Centro de Investigacion y de Estudios Avanzados del IEPN, Mexico City, Mexico

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

University of Auckland, Auckland, New Zealand

University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain

Universidad Autonoma de Madrid, Madrid, Spain

Universidad de Oviedo, Oviedo, Spain

Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universitaet Zurich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas 76706, USA
The University of Alabama, Tuscaloosa, Alabama 35487, USA
Boston University, Boston, Massachusetts 02215, USA
Brown University, Providence, Rhode Island 02912, USA
University of California, Davis, Davis, California 95616, USA
University of California, Los Angeles, Los Angeles, California 90095, USA
University of California, Riverside, Riverside, California 92521, USA
University of California, San Diego, La Jolla, California 92093, USA
University of California, Santa Barbara, Santa Barbara, California 93106, USA
California Institute of Technology, Pasadena, California 91125, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
University of Colorado at Boulder, Boulder, Colorado 80309, USA
Cornell University, Ithaca, New York 14853, USA
Fairfield University, Fairfield, Connecticut 06824, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Florida, Gainesville, Florida 32611, USA
Florida International University, Miami, Florida 33199, USA
Florida State University, Tallahassee, Florida 32306, USA
Florida Institute of Technology, Melbourne, Florida 32901, USA
University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA
The University of Iowa, Iowa City, Iowa 52242, USA
Johns Hopkins University, Baltimore, Maryland 21218, USA
The University of Kansas, Lawrence, Kansas 66045, USA
Kansas State University, Manhattan, Kansas 66506, USA
Lawrence Livermore National Laboratory, Livermore, California 94720, USA
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Minnesota, Minneapolis, Minnesota 55455, USA
University of Mississippi, University, Mississippi 38677, USA
University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
State University of New York at Buffalo, Buffalo, New York 14260, USA
Northeastern University, Boston, Massachusetts 02115, USA
Northwestern University, Evanston, Illinois 60208, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
The Ohio State University, Columbus, Ohio 43210, USA
Princeton University, Princeton, New Jersey 08544, USA
University of Puerto Rico, Mayaguez, Puerto Rico 00680
Purdue University, West Lafayette, Indiana 47907, USA
Purdue University Calumet, Hammond, Indiana 46323, USA
Rice University, Houston, Texas 77251, USA
University of Rochester, Rochester, New York 14627, USA
The Rockefeller University, New York, New York 10012, USA
Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
Texas A&M University, College Station, Texas 77843, USA
Texas Tech University, Lubbock, Texas 79409, USA
Vanderbilt University, Nashville, Tennessee 37235, USA
University of Virginia, Charlottesville, Virginia 22901, USA
Wayne State University, Detroit, Michigan 48202, USA
University of Wisconsin, Madison, Wisconsin 53706, USA

"Deceased.
"Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
"Also at Universidade Federal do ABC, Santo Andre, Brazil.
"Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
"Also at British University, Cairo, Egypt.
"Also at Ain Shams University, Cairo, Egypt.
"Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
"Also at Massachusetts Institute of Technology, Cambridge, MA, USA.