Search for the Standard Model Higgs Boson in the Decay Channel HZZ4l in pp Collisions at s=7TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.108.111804

Publisher
American Physical Society

Version
Final published version

Accessed
Mon Apr 25 01:05:13 EDT 2016

Citable Link
http://hdl.handle.net/1721.1/70505

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms
Search for the Standard Model Higgs Boson in the Decay Channel $H \rightarrow ZZ \rightarrow 4l$ in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al.*
(CMS Collaboration)
(Received 9 February 2012; published 13 March 2012)

A search for a Higgs boson in the four-lepton decay channel $H \rightarrow ZZ$, with each Z boson decaying to an electron or muon pair, is reported. The search covers Higgs boson mass hypotheses in the range of $110 < m_H < 600$ GeV. The analysis uses data corresponding to an integrated luminosity of 4.7 fb$^{-1}$ recorded by the CMS detector in pp collisions at $\sqrt{s} = 7$ TeV from the LHC. Seventy-two events are observed with four-lepton invariant mass $m_{4l} > 100$ GeV (with 13 below 160 GeV), while 67.1 ± 6.0 (9.5 ± 1.3) events are expected from background. The four-lepton mass distribution is consistent with the expectation of standard model background production of ZZ pairs. Upper limits at 95% confidence level exclude the standard model Higgs boson in the ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. Small excesses of events are observed around masses of 119, 126, and 320 GeV, making the observed limits weaker than expected in the absence of a signal.

The standard model (SM) of electroweak interactions [1–3] relies on a scalar particle, the Higgs boson, associated with the field responsible for the spontaneous electroweak symmetry breaking [4–9]. The existence of the Higgs boson has yet to be established experimentally, while its mass, m_H, is not fixed by the theory. Direct searches for the Higgs boson in the mass range of 162–166 GeV [11], at 95% C.L. Indirect constraints from precision measurements favor the mass range of $m_H < 158$ GeV [12,13] at 95% C.L. The inclusive Higgs boson production followed by the decay $H \rightarrow ZZ$ is expected to be one of the main discovery channels at the CERN proton-proton (pp) Large Hadron Collider (LHC) for a wide range of m_H values. Using the $H \rightarrow ZZ$ and the $H \rightarrow WW$ decay channels, the ATLAS collaboration has excluded at 95% C.L. the mass ranges of 145–206 GeV, 214–224 GeV, and 340–450 GeV [14–16].

In this Letter, an inclusive search in the four-lepton decay channel, $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell'^+ \ell'^-$ with $\ell, \ell' = e$ or μ, abbreviated as $H \rightarrow 4\ell$, is presented. The analysis is designed for a Higgs boson in the mass range of $110 < m_H < 600$ GeV. It uses pp data from the LHC collected at $\sqrt{s} = 7$ TeV by the Compact Muon Solenoid (CMS) experiment during 2010 and 2011. The data correspond to an integrated luminosity of 4.7 fb$^{-1}$. The search relies solely on the measurement of leptons, and the analysis achieves high lepton reconstruction, identification, and isolation efficiencies for a $ZZ \rightarrow 4\ell$ system composed of two pairs of same-flavor and opposite-charge isolated leptons, e^+e^- or $\mu^+\mu^-$, in the measurement range of $m_{4l} > 100$ GeV. One or both of the Z bosons can be off-shell. The background sources include an irreducible four-lepton contribution from direct ZZ (or $Z\gamma^*$) production via $q\bar{q}$ annihilation and gg fusion. Reducible contributions arise from $Zb\bar{b}$ and $t\bar{t}$ where the final states contain two isolated leptons and two b jets producing secondary leptons. Additional background of instrumental nature arises from $Z +$ jets events where jets are misidentified as leptons.

Particles produced in the pp collisions are detected in the pseudorapidity range of $|\eta| < 5$, where $\eta = -\ln (\tan (\theta/2))$ and θ is the polar angle with respect to the direction of the proton beam. The CMS detector comprises a superconducting solenoid, providing a uniform magnetic field of 3.8 T in the bore, equipped with silicon pixel and strip tracking systems ($|\eta| < 2.5$) surrounded by a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL) ($|\eta| < 3.0$). A steel and quartz-fiber Cherenkov calorimeter extends the coverage ($|\eta| < 5$). The steel return yoke outside the solenoid is instrumented with gas detectors used to identify muons ($|\eta| < 2.4$). A detailed description of the detector is given in Ref. [17].

Monte Carlo (MC) samples for the SM Higgs boson signal and for background processes are used to optimize the event selection and to evaluate the acceptance and systematic uncertainties. The Higgs boson signals from gluon-fusion ($gg \rightarrow H$), and vector-boson fusion ($q\bar{q} \rightarrow qgH$), are generated with POWHEG [18] at next-to-leading order (NLO) and a dedicated generator from Ref. [19]. Additional samples of, WH, ZH, and $t\bar{t}H$ events are generated with PYTHIA [20]. Events at generator level...
are reweighted according to the total cross section \(\sigma(pp \rightarrow H) \), which contains contributions from gluon fusion up to next-to-next-to-leading order (NNLO) and next-to-next-to-leading log taken from Refs. [21–32] and from the weak-boson fusion contribution computed at NNLO in Refs. [24,33–37]. The total cross section is scaled by the branching fraction \(B(H \rightarrow 4\ell) \) calculated with PROPHET48 which includes NLO QCD and electroweak corrections and all interference effects at NLO [24,38–41], in particular, effects specific to the weak corrections and all interference effects at NLO in Refs. [24,33–37]. The total cross section is

\[\sigma(pp \rightarrow H) \]

produced via channels, and rises from about 97.5% at \(B(Zb) \) faced with PYTHIA. All events are processed through a default set of parton distribution functions (PDF) used to

\[\text{generate for NLO generators. All generated samples are inter-} \]

acted with PYTHIA with cross sections rescaled to NLO predictions. The \(gg \rightarrow ZZ \) contribution is generated with GG2ZZ [42]. The \(Zb, Zc, Zt, Zv, \text{ and } Z + \text{ light jets} \) samples are generated with MADGRAPH [43] with cross sections rescaled to NNLO prediction for inclusive \(Z \) production. The \(t\bar{t} \) events generated at NLO with POWHEG. The generation takes into account the internal initial state and final state radiation effects which can lead to the presence of additional hard photons in an event. For leading-order generators, the default set of parton distribution functions (PDF) used to produce these samples is CTEQ6L [44], while CT10 [45] is used for NLO generators. All generated samples are interfaced with PYTHIA. All events are processed through a detailed simulation of the CMS detector based on GEANT4 [46] and are reconstructed with the same algorithms that are used for data.

Collision events are selected by the trigger system that requires the presence of a pair of electrons (a pair of muons) with transverse energy (transverse momenta) for the first and second lepton above 17 and 8 GeV, respectively. The trigger efficiency within the acceptance of this analysis is greater than 99% for signal in the 4e and 4\(\mu \) channels, and rises from about 97.5% at \(m_H = 120 \text{ GeV} \) to above 99% at \(m_H > 140 \text{ GeV} \) in the 2e2\(\mu \) channel, within the acceptance of this analysis.

Electrons are reconstructed within the geometrical acceptance, \(|\eta| < 2.5\), and with \(p_T > 7 \text{ GeV} \), by combining information from the ECAL and inner tracker [47,48]. Electron identification selection requirements rely on electromagnetic shower-shape observables and on observables combining tracker and calorimeter information. The selection criteria depend on \(p_T, |\eta| \), and a categorization according to observables sensitive to the amount of brems- strahlung emitted along the trajectory in the inner tracker. Muons are reconstructed [49] within \(|\eta| < 2.4 \) and \(p_T > 5 \text{ GeV} \), using information from both the inner tracker and the muon spectrometer. The inner tracker is required to be composed of more than 10 tracker-layer hits [17] to ensure a precise measurement of the momentum. The efficiencies are measured in data, using a tag-and-probe technique [50] based on an inclusive sample of \(Z \) events. The measurements are performed in several ranges in \(p_T \) and \(|\eta| \). The product of reconstruction and identification efficiencies for electrons in the ECAL barrel (endcaps) varies from about 68% (62%) for \(7 < p_T < 10 \text{ GeV} \) to 82% (74%) at \(p_T \approx 10 \text{ GeV} \), and reaches 90% (89%) for \(p_T \approx 20 \). It drops to about 85% in the transition region, \(1.44 < |\eta| < 1.57 \), between the ECAL barrel and endcaps. The muons are reconstructed and identified with efficiencies above \(\approx 98\% \). Lepton candidates are defined with a loose constraint on their isolation, by requiring the sum of the transverse momenta of tracks \(i \) within a cone around the lepton \(\ell \) of

\[\Delta R = \sqrt{(\eta^i - \eta^\ell)^2 + (\phi^i - \phi^\ell)^2} < 0.3 \]

where \(\phi \) is the azimuthal angle, to have \(\sum p_T_{track}/p_T^\ell < 0.7 \). The lepton isolation efficiency for identified leptons with this very loose definition of isolation is found to be greater than 99%.

We first require a \(Z \) candidate formed with a pair of lepton candidates satisfying \(50 < m_{1,2} < 120 \text{ GeV} \), \(p_T^\ell > 20 \text{ GeV} \), and \(p_T^{\ell'} > 10 \text{ GeV} \). The \(p_T \) thresholds ensure that the leptons are on the high-efficiency plateau for the trigger. The lepton pair is required to be well isolated using a combination of the tracker, ECAL, and HCAL information. The sum of the combined relative isolation \(R_{iso} \) for the two leptons is required to satisfy \(R_{iso}^1 + R_{iso}^2 < 0.35 \), where for each lepton, \(R_{iso} = (1/p_T^\ell) \times (\sum p_T_{track} + \sum E_T_{ECAL} + \sum E_T_{HCAL}) \), with sums running over the charged tracks \(i \), and the \(E_T \) from energy deposits in cells \(j \) and \(k \) of the ECAL and HCAL within a cone of radius \(\Delta R < 0.3 \), respectively. The footprint of the lepton object (a measured track for muons, or a combination of a track and a cluster of ECAL energy deposits for electrons) is removed from the isolation sum. The combined isolation efficiencies measured with data using the tag-and-probe technique are found to be \(>99\% \) for muons and between 94% and 99% for electrons. The isolation is made largely insensitive to the number of overlapping \(pp \) interactions by correcting for the average energy flow [51] per unit area measured as a function of the number of primary vertices. The ratio of the efficiencies measured with data and with simulated \(Z \rightarrow \ell \ell \) events is found to be consistent with unity. The significance of the signed impact parameter (SIP) of each lepton relative to the event vertex, \(\text{SIP}_{3D} = \frac{IP}{\sigma_{IP}} \), where IP is the impact parameter in three dimensions and \(\sigma_{IP} \) the associated uncertainty, is required to satisfy \(|\text{SIP}_{3D}| < 4 \). The \(\ell^+ \ell^- \) pair with reconstructed mass closest to the nominal \(Z \) boson mass is retained and denoted \(Z_1 \). The \(Z_1 + X \) data set thus defined is used below to estimate the \(ZZ \) rates. In the next step, a subset of events is identified with at least a third lepton candidate. The \(Z_1 + \ell \) events are used to measure misidentified lepton rates. A subset of events with at least a fourth lepton candidate of any flavor or charge is then identified. Together, the \(Z_1 + \ell \) and \(Z_2 + \ell \ell' \) samples are used below to estimate the remaining reducible \((Zb\bar{b}, t\bar{t}) \) and instrumental \((Z + \text{light jets}) \) backgrounds. For the signal, we select a second lepton pair.
denoted \(Z_2 \), from the remaining same-flavor \(\ell^+ \ell^- \) combinations, by requiring \(m_{Z_1} > 120 \) GeV, with the restriction \(m_{4\ell} > 100 \) GeV. For the \(4\ell \) and \(4\mu \) final states, at least three of the four combinations of opposite-sign pairs must satisfy \(m_{4\ell} > 12 \) GeV. If more than one \(Z_2 \) candidate satisfies all criteria, the ambiguity is resolved by choosing the leptons of highest \(p_T \). The isolation and impact parameter are used to further suppress the remaining backgrounds. We require for any combination of two leptons \(i \) and \(j \), irrespective of flavor or charge, that \(R_{iso}^{i} + R_{iso}^{j} < 0.35 \) and also impose \(|\text{SIP}_{3D}| < 4 \) for each of the four leptons.

Finally, to select the four-lepton signal candidates, we require that the \(Z_1 \) and \(Z_2 \) masses satisfy \(m_{Z_1}^{min} < m_{Z_1} < 120 \) GeV and \(m_{Z_2}^{min} < m_{Z_2} < 120 \) GeV, with \((m_{Z_1}^{min}, m_{Z_2}^{min}) = (50, 12) \) GeV defining the baseline selection and \((m_{Z_1}^{min}, m_{Z_2}^{min}) = (60, 60) \) GeV defining the high-mass selection. The baseline selection is used to search for the Higgs boson, and the high-mass selection is used to measure the ZZ cross section.

The event yields are found to be in good agreement with the MC background expectation at each step of event selection. The ZZ and \(Z + X \) backgrounds dominate after the full event selection. The overall signal detection efficiency for the \(4\ell \) (\(4\mu \), \(2e2\mu \)) channel is evaluated by MC simulation and increases from \(\approx 21\% \) (\(59\% \), \(35\% \)) at \(m_H = 120 \) GeV to \(\approx 35\% \) (\(71\% \), \(50\% \)) at \(m_H = 140 \) GeV, reaching a plateau at \(\approx 51\% \) (\(81\% \), \(63\% \)) at \(m_H = 200 \) GeV, and then slowly rising to \(\approx 60\% \) (\(83\% \), \(72\% \)) at \(m_H = 350 \) GeV. The relative mass resolution estimated from MC signal samples is about 2.1\% (1.1\%, 1.6\%) for \(4\ell \) (\(4\mu \), \(2e2\mu \)).

The small number of observed events precludes a precise direct evaluation of background by extrapolating from mass sidebands. Instead, we rely on MC calculations to evaluate the number of events expected from the ZZ background. The cross section for ZZ production at NLO, through the dominant process of \(q\bar{q} \) annihilation and through \(gg \) fusion, is calculated with MCFM [52–54]. The theoretical uncertainties are computed as a function of \(m_{4\ell} \), varying both the QCD renormalization and factorization scales and the PDF set following the PDF4LHC recommendations [55–59]. The uncertainties for the QCD and PDF scales for each final state are on average 8\%. The number of predicted ZZ \(\rightarrow 4\ell \) events and their uncertainties after the baseline selection are given in Table I. As a consistency check, an evaluation is made based on a normalization to the measured inclusive single-Z production, a procedure discussed in Refs. [60,61]. The measured rate of single Z bosons defined in this analysis is used to predict the total ZZ rate; making use of the ratio of the theoretical cross sections for ZZ and \(Z \) production, and the ratio of the reconstruction and selection efficiencies for the four-lepton and two-lepton final states. The results are in agreement with the ZZ rates reported in Table I within uncertainties.

<table>
<thead>
<tr>
<th>Channel</th>
<th>4e</th>
<th>4(\mu)</th>
<th>2e2(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ background</td>
<td>12.27 ± 1.16</td>
<td>19.11 ± 1.75</td>
<td>30.25 ± 2.78</td>
</tr>
<tr>
<td>(Z + X)</td>
<td>1.67 ± 0.55</td>
<td>1.13 ± 0.55</td>
<td>2.71 ± 0.96</td>
</tr>
<tr>
<td>All background</td>
<td>13.94 ± 1.28</td>
<td>20.24 ± 1.83</td>
<td>32.96 ± 2.94</td>
</tr>
<tr>
<td>(m_H = 120) GeV</td>
<td>0.25</td>
<td>0.62</td>
<td>0.68</td>
</tr>
<tr>
<td>(m_H = 140) GeV</td>
<td>1.32</td>
<td>2.48</td>
<td>3.37</td>
</tr>
<tr>
<td>(m_H = 350) GeV</td>
<td>1.95</td>
<td>2.61</td>
<td>4.64</td>
</tr>
</tbody>
</table>

To estimate the reducible (Zb\(\bar{b} \), t\(\bar{t} \)) and instrumental (Z + light jets) backgrounds, a region well separated from the signal region is defined by relaxing and inverting some selection criteria and verifying that the event rates change according to MC expectation. The event rates measured in the background control region are then extrapolated to the signal region. The control region for \(Z + X \), where \(X \) stands for \(bb, \bar{c}c, \bar{g} \) or light quark jets, is obtained by relaxing the isolation and identification criteria for two additional reconstructed lepton objects indicated as \(\ell_{\text{rec}o} \ell_{\text{rec}o} \). The additional pair of leptons must have like sign charge (to avoid signal contamination) and same flavor (\(e^+e^-, \mu^+\mu^-, \bar{e}e, \bar{\mu}\mu \)), a reconstructed invariant mass \(m_{Z_1} \) either satisfying the baseline selection or the high-mass selection, and \(m_{4\ell} > 100 \) GeV. A sample \(Z_1 \ell_{\text{rec}o} \) with at least one reconstructed lepton object, is also defined for the measurement of the lepton misidentification probability, the probability for a reconstructed object to pass the isolation and identification requirements. The contamination from WZ in this set of events is suppressed by requiring the imbalance of the measured energy deposition in the transverse plane to be below 25 GeV. From the Z + \(\ell_{\text{rec}o} \ell_{\text{rec}o} \) sample the expected number of \(Z + X \) background events in the signal region is obtained by taking into account the lepton misidentification probability for each of the two additional leptons. The number of background events expected in the signal region, normalized to the integrated luminosity, and the associated systematic uncertainties, are given in Table I for the baseline selection in the range of \(100 < m_{4\ell} < 600 \) GeV. The reducible and instrumental background is found to be dominated by \(Z + \) light jets. A small residual contamination of Zb\(\bar{b} \) remains at low mass while for the high-mass selection these reducible backgrounds are an order of magnitude smaller and therefore can be neglected. This was verified by performing a measurement of Zb\(\bar{b} \) and t\(\bar{t} \) rates in a dedicated four-lepton background control region, defined by requiring a \(Z_1 \) and two additional leptons satisfying an inverted SIP\(_{3D}\) requirement, namely \(|\text{SIP}_{3D}| > 5 \), and with relaxed isolation, charge, and flavor requirements. This ensures a negligible Z + light jets contribution in the
four-lepton background control region, while the signal and the ZZ background are absent. To extract background rates, the reconstructed \(Z_1 \) mass for the sum of the \(Z_1 + 2e, Z_1 + 2\mu, \) and \(Z_1 + e\mu \) final states is fit with a Breit-Wigner function convoluted with a Crystal Ball function [62] for the \(Z_1 \) peak from \(Z \bar{b}b \) and Chebychev polynomials for the description of the \(t\bar{t} \) continuum. The extrapolation to the signal region relies on knowledge of, and the distinct features of, the \(\text{SIP}_3\text{D} \) distributions for the \(Z_2 \) leptons of the \(t\bar{t} \) and \(Z \bar{b}b \) backgrounds. The result is found to be compatible with the MC expectation in the signal region within the systematic uncertainty of 20%.

Systematic uncertainties are evaluated from data for trigger (1.5%), lepton reconstruction and identification (2%–3%), and isolation efficiencies (2%). Systematic uncertainties on energy-momentum calibration (0.5%), and energy resolution are accounted for by their effects on the reconstructed mass distributions. The effect of the energy resolution uncertainties is taken into account by introducing a 30% uncertainty on the width of the signal mass peak. Additional systematic uncertainties arise from limited statistics in the reducible background control regions. All reducible and instrumental background sources are derived from control regions, and the comparison of data with the background expectation in the signal region is independent of the uncertainty on the LHC integrated luminosity of the data sample. This uncertainty (4.5%) [63] enters the evaluation of the ZZ background and in the calculation of the cross section limit through the normalization of the signal. Systematic uncertainties on the Higgs boson cross section (17%–20%) and branching fraction (2%) are taken from Ref. [24].

Recent studies [24,64,65] show that current Monte Carlo simulations do not describe the expected Higgs boson mass line shape above \(\approx 300 \text{ GeV} \). These effects are estimated to amount to an additional uncertainty on the theoretical cross section, and hence on the limits, of about 4% at \(m_H = 300 \text{ GeV} \) and 10%–30% for \(m_H \) of 400–600 GeV.

The number of candidates, as well as the estimated background in the signal region, are reported in Table I for the baseline selection. The reconstructed four-lepton invariant mass distribution for the combined \(4e, 4\mu, \) and \(2e2\mu \) channels with the baseline selection is shown in Fig. 1(a) and compared to expectations from the backgrounds. The shape of the mass distribution below \(m_H = 180 \text{ GeV} \) reflects the shape of the dominant \(q\bar{q} \) annihilation process [66]. The low-mass range is shown in Fig. 1(b) together with the mass of each candidate and its uncertainty. The reducible and instrumental background rates are small. These rates have been obtained from data and the corresponding \(m_{4\ell} \) distributions are obtained from MC samples.

The measured distribution is compatible with the expectation from SM direct production of ZZ pairs. We observe 72 candidates, 12 in \(4e, 23 \) in \(4\mu, \) and 37 in \(2e2\mu, \) while 67.1 \(\pm \) 6.0 events are expected from standard model background processes. No hard photon (\(p_T > 5 \text{ GeV} \)) was found, outside the isolation veto cone that surrounds each lepton, that could be unambiguously identified as final state radiation. Thirteen candidates are observed within \(100 < m_{4\ell} < 160 \text{ GeV} \) while 9.5 \(\pm \) 1.3 background events are expected. We observe 53 candidates for the high-mass selection compared to an expectation of 51.3 \(\pm \) 4.6 events from background. This high-mass event selection is used to provide a measurement of the total cross section \(\sigma(pp \rightarrow ZZ + X) \times B(ZZ \rightarrow 4\ell) = 28.1^{+4.6}_{-4.0}(\text{stat.}) \pm 1.2(\text{syst.}) \pm 1.3(\text{lumi.}) \text{ fb} \). The measurement agrees with the SM prediction at NLO [52] of 27.9 \(\pm \) 1.9 fb and is consistent with previous measurements at the LHC [67]. The local \(p \)-values, representing the significance of local excesses relative to the background expectation, are shown as a

![Figure 1](image-url)
function of m_H in Fig. 2(a), obtained either taking into account or not the individual candidate mass measurement uncertainties, for the combination of the three channels. Excesses are observed for masses near 119 GeV and 320 GeV. The small $= 2\sigma$ excess near 320 GeV includes three events with $p_T^{\ell\ell} > 50$ GeV. The most significant excess near 119 GeV corresponds to about 2.5σ significance. The significance is less than 1.0σ (about 1.6σ) when the look-elsewhere effect [68] is accounted for over the full mass range (for the low-mass range $100 < m_{4\ell} < 160$ GeV). The local significances change only slightly when including candidate mass uncertainties, instead of using the average mass resolution, e.g., rising to 2.7σ around 119 GeV and reaching 1.5σ around 126 GeV.

In absence of a significant clustering of candidates at any given mass, we derive exclusion limits. The exclusion limits for a SM-like Higgs boson are computed for a large number of mass points in the range of 110–600 GeV, using the predicted signal and background mass distribution shapes. The choice of the step size in the scan between masses is driven by either detector resolution, or the natural width of the Higgs boson. The signal mass distributions shapes are determined using simulated samples for 27 values of m_H covering the full mass range. The shapes are fit using a function obtained from a convolution of a Breit-Wigner probability density function to describe the theoretical resonance line shape and a Crystal Ball function to account for the detector effects. The parameters of the Crystal Ball function are interpolated with m_H for the m_H points where there is no simulated sample available. The shapes of the background mass distributions are determined by fits to the simulated sample of events, while the normalization is taken from estimates of overall event yields as described above. For each mass hypothesis, we perform an unbinned likelihood fit using the statistical approach discussed in Ref. [69]. We account for systematic uncertainties in the form of nuisance parameters with a log-normal probability density function. The observed and median expected upper limits on $\sigma(p p \rightarrow H + X) \times B(H \rightarrow 4\ell)$ at 95% C.L. are shown in Fig. 2(b). The limits are calculated relative to their expected SM Higgs boson prediction σ_{SM}, using the modified frequentist method CL$_s$ [70,71]. The bands represent the 1σ and 2σ probability intervals around the expected limit. These upper limits exclude the standard model Higgs boson at 95% C.L. in the m_H ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. The limits reflect the dependence of the branching ratio $B(H \rightarrow ZZ)$ on m_H. The worsening of the limits at high mass arises from the decreasing cross section for the $H \rightarrow 4\ell$ signal. By virtue of the excellent mass resolution and low background, the structure in the measured limits follows the fluctuations of the number of observed events.

In summary, a search for the standard model Higgs boson has been presented in the four-lepton decay modes.

In absence of a significant clustering of candidates at any given mass, we derive exclusion limits. The exclusion limits for a SM-like Higgs boson are computed for a large number of mass points in the range of 110–600 GeV, using the predicted signal and background mass distribution shapes. The choice of the step size in the scan between masses is driven by either detector resolution, or the natural width of the Higgs boson. The signal mass distributions shapes are determined using simulated samples for 27 values of m_H covering the full mass range. The shapes are fit using a function obtained from a convolution of a Breit-Wigner probability density function to describe the theoretical resonance line shape and a Crystal Ball function to account for the detector effects. The parameters of the Crystal Ball function are interpolated with m_H for the m_H points where there is no simulated sample available. The shapes of the background mass distributions are determined by fits to the simulated sample of events, while the normalization is taken from estimates of overall event yields as described above. For each mass hypothesis, we perform an unbinned likelihood fit using the statistical approach discussed in Ref. [69]. We account for systematic uncertainties in the form of nuisance parameters with a log-normal probability density function. The observed and median expected upper limits on $\sigma(p p \rightarrow H + X) \times B(H \rightarrow 4\ell)$ at 95% C.L. are shown in Fig. 2(b). The limits are calculated relative to their expected SM Higgs boson prediction σ_{SM}, using the modified frequentist method CL$_s$ [70,71]. The bands represent the 1σ and 2σ probability intervals around the expected limit. These upper limits exclude the standard model Higgs boson at 95% C.L. in the m_H ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. The limits reflect the dependence of the branching ratio $B(H \rightarrow ZZ)$ on m_H. The worsening of the limits at high mass arises from the decreasing cross section for the $H \rightarrow 4\ell$ signal. By virtue of the excellent mass resolution and low background, the structure in the measured limits follows the fluctuations of the number of observed events.

In summary, a search for the standard model Higgs boson has been presented in the four-lepton decay modes.

Upper limits at 95% confidence level exclude the Higgs boson mass ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. A major fraction of the explored mass range is thus excluded at 95% C.L. and the exclusion limits extend beyond the sensitivity of previous collider experiments. Excesses of events are observed at the low end of the explored mass range, around masses of 119 and 126 GeV, and at high mass around 320 GeV. These excesses, although not statistically significant, make the observed limits weaker than expected in the absence of a signal. At low mass, only the region $114.4 < m_H < 134$ GeV remains consistent with the expectation for the standard model Higgs boson production.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO...
[12] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, the SLD Electroweak, and Heavy Flavour Groups, arXiv:1012.2367.
Lappeenranta University of Technology, Lappeenranta, Finland
Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
Deutsches Elektronen-Synchrotron, Hamburg, Germany
University of Hamburg, Hamburg, Germany
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
University of Athens, Athens, Greece
University of Ioánnina, Ioánnina, Greece
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
University of Debrecen, Debrecen, Hungary
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research - EHEP, Mumbai, India
Tata Institute of Fundamental Research - HECR, Mumbai, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Università di Napoli “Federico II”, Napoli, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
Università di Trento (Trento), Padova, Italy
INFN Sezione di Pavia, Pavia, Italy
Università di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Roma, Italy
Università di Roma “La Sapienza”, Roma, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale (Novara), Torino, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kangwon National University, Chunchon, Korea
Kyungpook National University, Daegu, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Konkuk University, Seoul, Korea
Korea University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Universidad Iberoamericana, Mexico City, Mexico
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
University of Auckland, Auckland, New Zealand
University of Canterbury, Christchurch, New Zealand
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Soltan Institute for Nuclear Studies, Warsaw, Poland
Laboratário de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
Moscow State University, Moscow, Russia
P.N. Lebedev Physical Institute, Moscow, Russia
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
Universidad Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Çukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
Bogazici University, Istanbul, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas, USA
The University of Alabama, Tuscaloosa, Alabama, USA
Boston University, Boston, Massachusetts, USA
Brown University, Providence, Rhode Island, USA
University of California, Davis, Davis, California, USA
University of California, Los Angeles, Los Angeles, California, USA
University of California, Riverside, Riverside, California, USA
University of California, San Diego, La Jolla, California, USA
University of California, Santa Barbara, Santa Barbara, California, USA
California Institute of Technology, Pasadena, California, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
University of Colorado at Boulder, Boulder, Colorado, USA
Cornell University, Ithaca, New York, USA
Fairfield University, Fairfield, Connecticut, USA
Fermi National Accelerator Laboratory, Batavia, Illinois, USA
University of Florida, Gainesville, Florida, USA
Florida International University, Miami, Florida, USA
Florida State University, Tallahassee, Florida, USA