Measurement of the B_s^0 Production Cross Section with $B_s^0 J/\psi$ Decays in pp Collisions at $s=7$TeV

Citation
S. Chatrchyan et al. "Measurement of the B_s^0 Production Cross Section with $B_s^0 J/\psi$ Decays in pp Collisions at $s=7$TeV" Physical Review D 84, 052008 (2011). © 2011 CERN, for the CMS Collaboration

As Published
http://dx.doi.org/10.1103/PhysRevD.84.052008

Publisher
American Physical Society

Version
Final published version

Accessed
Tue Mar 19 21:27:24 EDT 2019

Citable Link
http://hdl.handle.net/1721.1/71192

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.

Detailed Terms
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Physical Review D 84, 052008 (2011)

Measurement of the B_s^0 Production Cross Section with $B_s^0 \rightarrow J/\psi \phi$
Decays in pp Collisions at $\sqrt{s} = 7$ TeV

S. Chatrchyan et al. (CMS Collaboration)

(Received 22 June 2011; published 20 September 2011)

The B_s^0 differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at $\sqrt{s} = 7$ TeV, using the $B_s^0 \rightarrow J/\psi \phi$ decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 pb$^{-1}$. The B_s^0 is reconstructed from the decays $J/\psi \rightarrow \mu^+ \mu^-$ and $\phi \rightarrow K^+ K^-$. The integrated B_s^0 cross section times $B_s^0 \rightarrow J/\psi \phi$ branching fraction in the range $8 < p_T^\phi < 50$ GeV/c and $|y^\phi| < 2.4$ is measured to be $6.9 \pm 0.6 \pm 0.6$ nb, where the first uncertainty is statistical and the second is systematic.

DOI: 10.1103/PhysRevD.84.052008

The measurements of differential cross sections for heavy-quark production in high-energy hadronic interactions are critical input for the underlying next-to-leading order (NLO) quantum chromodynamics (QCD) calculations [1]. While progress has been achieved in the understanding of heavy-quark production at Tevatron energies [2–10], large theoretical uncertainties remain due to the dependence on the renormalization and factorization scales. Measurements of b-hadron production at the higher energies provided by the LHC represent an important new test of theoretical approaches that aim to reduce the scale dependence of NLO QCD calculations [11,12]. The Compact Muon Solenoid (CMS) experiment, that covers a rapidity range complementary to the specialized b-physics experiment LHCb [13], recently measured the cross sections for production of B^+ [14] and B^0 [15] in pp collisions at $\sqrt{s} = 7$ TeV. This paper presents the first measurement of the production of B_s^0, with B_s^0 decaying into $J/\psi \phi$, and adds information to improve the understanding of b-quark production at this energy. Data and theoretical predictions are compared to NLO predictions of heavy-quark production.

The decay channel $B_s^0 \rightarrow J/\psi \phi$ is of wide interest as the production rate offers a sensitive indirect search of physics beyond the standard model at the LHC. This decay proceeds via the $b \rightarrow c \bar{c}s$ transition that probes the CP-violating phase related to B^0_s-\bar{B}^0_s mixing. The standard model predicts this phase to be close to zero [16] while new phenomena may alter the observed phase [17]. A sample of exclusive $B_s^0 \rightarrow J/\psi \phi$ decays, with $J/\psi \rightarrow \mu^+ \mu^-$ and $\phi \rightarrow K^+ K^-$, is reconstructed from the data collected in 2010 by the CMS experiment, corresponding to an integrated luminosity of 39.6 ± 1.6 pb$^{-1}$. The differential production cross sections, $d\sigma/dp_T^\phi$ and $d\sigma/dy^\phi$, are determined as functions of the transverse momentum p_T^ϕ and rapidity y^ϕ of the reconstructed B_s^0 candidate. The differential cross sections are calculated from the measured signal yields (n_{sig}), corrected for the overall efficiency (ϵ), bin size (Δx, with $x = p_T^\phi$, $|y^\phi|$), and integrated luminosity (L),

$$\frac{d\sigma(pp \rightarrow B_s^0 \rightarrow J/\psi \phi)}{dx} = \frac{n_{\text{sig}}}{2 \cdot \epsilon \cdot B \cdot L \cdot \Delta x},$$

where B is the product of the branching fractions for the decays of the J/ψ and ϕ mesons. In each bin the signal yield is extracted with an unbinned maximum likelihood fit to the $J/\psi \phi$ invariant mass and proper decay length $c\tau$ of the B_s^0 candidates. The factor of 2 in Eq. (1) is required since we report the result as a cross section for B_s^0 production alone, while both B_s^0 and \bar{B}_s^0 are included in n_{sig}. The size of the bins is chosen such that the statistical uncertainty on n_{sig} is comparable in each of them.

A detailed description of the CMS detector can be found elsewhere [18]. The primary components used in this analysis are the silicon tracker and the muon systems. The tracker operates in a 3.8 T axial magnetic field generated by a superconducting solenoid having an internal diameter of 6 m. The tracker consists of three cylindrical layers of pixel detectors complemented by two disks in the forward and backward directions. The radial region between 20 and 116 cm is occupied by several layers of silicon strip detectors in barrel and disk configurations, ensuring at least nine hits in the pseudorapidity range $|\eta| < 2.4$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle of the track measured from the positive z-axis of a right-handed coordinate system, with the origin at the nominal interaction point, the x-axis pointing to the center of the LHC, the y-axis pointing up (perpendicular to the LHC plane), and the z-axis along the counterclockwise-beam direction. An impact parameter resolution around

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
15 \mu m and a p_T resolution around 1.5% are achieved for charged particles with transverse momenta up to 100 GeV/c. Muons are identified in the range $|\eta| < 2.4$, with detection planes made of drift tubes, cathode strip chambers, and resistive plate chambers, embedded in the steel return yoke.

The first level of the CMS trigger system uses information from the crystal electromagnetic calorimeter, the brass/scintillator hadron calorimeter, and the muon detectors to select the most interesting events in less than 1 \mu s. The high level trigger employs software algorithms and a farm of commercial processors to further decrease the event rate using information from all detector subsystems. The events used in the measurement reported in this paper were collected with a trigger requiring the presence of two muons at the high level trigger, with no explicit momentum threshold.

Reconstruction of $B^0 \rightarrow J/\psi \phi$ candidates begins by identifying $J/\psi \rightarrow \mu^+ \mu^-$ decays. The muon candidates must have one or more reconstructed segments in the muon system that match the extrapolated position of a track reconstructed in the tracker. Furthermore, the muons are required to lie within a kinematic acceptance region defined as $p_T^\mu > 3.3$ GeV/c for $|\eta|^J/\psi < 1.3$; total momentum $p^\mu > 2.9$ GeV/c for $1.3 < |\eta|^J/\psi < 2.2$; and $p_T^\mu > 0.8$ GeV/c for $2.2 < |\eta|^J/\psi < 2.4$. Two oppositely charged muon candidates are paired and are required to originate from a common vertex using a Kalman vertex fit. The muon pair is required to have a transverse momentum $p_T > 0.5$ GeV/c and an invariant mass within 150 MeV/c2 of the world average J/ψ mass value [19], which corresponds to more than 3 times the measured dimuon invariant mass resolution [20].

Candidate ϕ mesons are reconstructed from pairs of oppositely charged tracks with $p_T > 0.7$ GeV/c that are selected from a sample with the muon candidate tracks removed. The tracks are required to have at least five hits in the silicon tracker detectors, and a track χ^2 per degree of freedom less than 5. Each track is assumed to be a kaon and the invariant mass of a track pair has to be within 10 MeV/c2 of the world average ϕ-meson mass [19].

The B^0 candidates are formed by combining a J/ψ with a ϕ candidate. The two muons and the two kaons are subjected to a combined vertex and kinematic fit [21], where in addition the dimuon invariant mass is constrained to the nominal J/ψ mass. The selected candidates must have a resulting χ^2 vertex probability greater than 2%, an invariant mass between 5.20 and 7.10 GeV/c2, and must be in the kinematic range $8 < p_T^B < 50$ GeV/c and $|y|^B < 2.4$. For events with more than one candidate, the one with the highest vertex-fit probability is selected, which results in the correct choice 97% of the time, as determined from simulated signal events.

The proper decay length of each selected B^0 candidate is calculated using the formula $ct = c(M_B/p_B^0) L_{xy}$, where the transverse decay length L_{xy} is the length of the vector \vec{s} pointing from the primary vertex [22] to the secondary vertex projected onto the B^0 transverse momentum: $L_{xy} = (\vec{s} \cdot \vec{p}_T^B)/p_T^B$, with M_B being the reconstructed mass of the B^0 candidate. Candidate B^0 mesons are accepted within the range $-0.05 < ct < 0.35$ cm.

A total of 6200 events pass all the selection criteria. The efficiency of the B^0 reconstruction is computed with a combination of techniques using the data and large samples of simulated signal events generated using PYTHIA 6.422 [23]. The decays of unstable particles are described by the EVTGEN [24] simulation. Long-lived particles are then propagated through a detailed description of the CMS detector based on the GEANT4 [25] package. The trigger and muon reconstruction efficiencies are obtained from a large sample of inclusive $J/\psi \rightarrow \mu^+ \mu^-$ decays in data using a (tag-and-probe) technique similar to that described in Ref. [20], where one muon (the tag) is identified with stringent quality requirements, and the second muon (the probe) is identified using information either exclusively from the tracker (to measure the trigger and muon identification efficiencies), or from the muon system (to measure the silicon tracking efficiency). The dimuon efficiencies are calculated as the product of the single-muon efficiencies obtained with this method. Corrections to account for correlations between the two muons (1%–3%) are obtained from simulation studies. The correction factors are determined in bins of single muon p_T^μ and $|\eta|^\mu$ and are applied independently to each muon from a $B^0 \rightarrow J/\psi \phi$ decay in the simulation to determine the total corrected efficiency. The probabilities for the muons to lie within the kinematic acceptance region and for the ϕ and B^0 candidates to pass the selection requirements are determined from the simulated events. The efficiencies for hadronic track reconstruction [26] and the vertex-quality requirement are found to be consistent between real data and simulated events within their uncertainties (up to 5%). The total efficiency of this selection, defined as the fraction of $B^0 \rightarrow J/\psi \phi$ decay produced with $8 < p_T^B < 50$ GeV/c and $|y|^B < 2.4$ that pass all criteria, ranges from 1.3% for $p_T^\phi = 8$ GeV/c to 19.6% for $p_T^\phi > 23$ GeV/c.

The two main background sources are prompt and non-prompt J/ψ production. The latter background is mainly composed of B^+ and B^0 mesons that decay to a J/ψ and a higher-mass K-meson state (such as the K^{*+}). Such events tend to contribute to the low-mass side of the M_B mass distribution. Inspection of a large variety of potential background channels confirms that there is no single dominant component and that the channel $B^0 \rightarrow J/\psi K^*(892)$ [with $K^*(892)^0 \rightarrow K^+ \pi^-$], which a priori is kinematically similar to the signal decay and more abundantly produced, is strongly suppressed by the restriction on the K^+K^- invariant mass. A study of the sidebands of the dimuon invariant mass distribution confirms that the contamination from
events without a J/ψ decay to two muons is negligible after all selection criteria have been applied.

The signal yields in each p_T^B and $|y^B|$ bin, given in Table I, are obtained using an unbinned extended maximum likelihood fit to M_B and ct. The likelihood for event j is obtained by summing the product of the yield n_i and the probability density functions (PDF) P_i and Q_i for each of the signal and background hypotheses i. Three individual components are considered: signal, nonprompt $b \rightarrow J/\psi X$, and prompt J/ψ. The extended likelihood function is then the product of likelihoods for each event j:

$$L = \exp\left(-\sum_{i=1}^{3} n_i\right) \prod_{j} \left[\sum_{i=1}^{3} n_i P_i(M_B; \tilde{\alpha}_i) Q_i(ct; \tilde{\beta}_i) \right] (2)$$

The PDFs P_i and Q_i are parameterized separately for each fit component with shape parameters $\tilde{\alpha}_i$ for M_B and $\tilde{\beta}_i$ for ct. The yields n_i are then determined by minimizing the quantity $-\ln L$ with respect to the signal yields and a subset of the PDF parameters [27]. Possible correlations between M_B and ct are found to be less than 2%. Therefore, they are assumed to have a negligible impact on the fit, and potential biases arising from this assumption are accounted for in the systematic uncertainty on the fitted signal yield as described below.

The PDFs are constructed from basic analytical functions that satisfactorily describe the variable distributions from simulated events. Shape parameters are obtained from data when possible. The M_B PDF is the sum of two Gaussian functions for the signal, a second-order polynomial for the nonprompt J/ψ that allows for possible curvature in the shape, and a first-order polynomial for prompt J/ψ. The resolution on M_B is approximately 20 MeV/c^2 near the B^0 mass.

For the signal, the ct PDF is a single exponential parameterized in terms of a proper decay length ct. It is convolved with a resolution function that is a combination of two Gaussian functions to account for a dominant core and small outlier distribution; the core fraction is varied in the fit and found to be consistently larger than 95%. The ct distribution for the nonprompt J/ψ background is described by a sum of two exponentials, with effective lifetimes that are allowed to be different. The “long-lifetime exponential” corresponds to decays of b-hadrons to a J/ψ plus some charged particles that survive the ϕ selection, while the “short-lifetime exponential” accounts for events where the muons from the J/ψ decay are wrongly combined with hadron tracks originating from the pp collision point. The exponential functions are convolved with a resolution function with the same parameters as the signal. For the prompt J/ψ component the pure resolution function is used. The core resolution in ct is measured in data to be 45 μm.

All background shapes are obtained directly from data, while the signal shape in M_B is taken from a fit to reconstructed signal events from the simulation. The effective lifetime and resolution function parameters for prompt and nonprompt backgrounds are extracted, using the full data sample irrespective of p_T^B and $|y^B|$, from regions in M_B that are separated by more than 4 times the width of the observed B^0 signal from the mean B^0 peak position (M_B sidebands): $5.20 < M_B < 5.29$ GeV/c^2 and $5.45 < M_B < 5.65$ GeV/c^2. A comparison of the PDF shapes for the different sideband regions in simulated events confirms that their average over the signal-free regions is a good representation of the background in the signal region. With the lifetimes for signal and nonprompt background fixed from this first step, the resolution function parameters are then determined separately in each p_T^B and $|y^B|$ bin, from the M_B sidebands. The signal and background yields in each p_T^B and $|y^B|$ bin are determined in a final iteration, using the full M_B range, with all parameters floating except

<table>
<thead>
<tr>
<th>p_T^B (GeV/c)</th>
<th>ϵ (%)</th>
<th>σ/dp_T^B (nb/GeV/c)</th>
<th>σ/dy^B (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Data</td>
<td>MC@NLO</td>
</tr>
<tr>
<td>8–12</td>
<td>138 ± 16</td>
<td>1.28 ± 0.05</td>
<td>1.172 ± 0.136 ± 0.113</td>
</tr>
<tr>
<td>12–16</td>
<td>176 ± 17</td>
<td>5.26 ± 0.23</td>
<td>0.364 ± 0.035 ± 0.034</td>
</tr>
<tr>
<td>16–23</td>
<td>162 ± 16</td>
<td>11.9 ± 0.6</td>
<td>0.085 ± 0.008 ± 0.008</td>
</tr>
<tr>
<td>23–50</td>
<td>86 ± 11</td>
<td>19.6 ± 1.1</td>
<td>0.007 ± 0.001 ± 0.001</td>
</tr>
<tr>
<td>$</td>
<td>y^B</td>
<td>$</td>
<td>n_{sig}</td>
</tr>
<tr>
<td>0.00–0.80</td>
<td>151 ± 15</td>
<td>2.75 ± 0.09</td>
<td>1.484 ± 0.147 ± 0.148</td>
</tr>
<tr>
<td>0.80–1.40</td>
<td>144 ± 15</td>
<td>4.65 ± 0.18</td>
<td>1.123 ± 0.117 ± 0.102</td>
</tr>
<tr>
<td>1.40–1.70</td>
<td>129 ± 15</td>
<td>5.68 ± 0.31</td>
<td>1.634 ± 0.190 ± 0.160</td>
</tr>
<tr>
<td>1.70–2.40</td>
<td>139 ± 17</td>
<td>3.26 ± 0.20</td>
<td>1.316 ± 0.161 ± 0.139</td>
</tr>
</tbody>
</table>
the background lifetimes and the lifetime resolution functions, which are fixed to the results of the fit to the M_B sidebands. It has been verified that leaving all parameters floating changes the signal yield by an amount smaller than the systematic uncertainty assigned to the fit procedure.

Many detailed studies have been conducted to validate the accuracy and robustness of the fit procedure. A large number of pseudoexperiments were performed, each corresponding to the yields observed in each p_B and $|y_B|$ bin for a data sample corresponding to an integrated luminosity of 40 pb$^{-1}$, where signal and background events were generated randomly from the PDFs in each bin. The fit yields were found to be unbiased and their uncertainties estimated properly. The effects of residual correlations between M_B and ct were studied by mixing fully simulated signal and background events to produce pseudoexperiments. The observed deviations between the fitted and generated yields (1%–2%) are taken as the systematic uncertainty due to potential biases in the fit method.

Figure 1 shows the fit projections for M_B and ct from the inclusive sample with $8 < p_T^B < 50$ GeV/c and $|y_B| < 2.4$. When plotting M_B, the selection $ct > 0.01$ cm is applied for better visibility of the individual contributions. The number of signal events in the entire data sample is 549 ± 32, where the uncertainty is statistical only. The obtained proper decay length of the signal, $c\tau = 478 \pm 26 \, \mu$m, is within 1.4 standard deviations of the world average value [19], even though this analysis was not optimized for lifetime measurements.

Table I summarizes the fitted signal yield in each bin of p_T^B and $|y_B|$. The differential cross section is calculated according to Eq. (1), using the product of the branching fractions $B(J/\psi \rightarrow \mu^+ \mu^-) = (5.93 \pm 0.06) \times 10^{-2}$ and $B(\phi \rightarrow K^+ K^-) = (48.9 \pm 0.5) \times 10^{-2}$ [19]. All efficiencies are calculated separately in each bin, and account for bin-to-bin migrations (less than 1%) due to the finite resolution of the measured momentum and rapidity.

The cross section measurement is affected by several sources of systematic uncertainty arising from uncertainties in the fit, efficiencies, branching fractions, and integrated luminosity. In every bin the total uncertainty is about 11%. Uncertainties on the muon efficiencies from the trigger, identification, and tracking are determined directly from data (3%–5%). The uncertainty of the method employed to measure the efficiency in the data has been estimated from a large sample of full-detector simulated events (1%–3%). The tracking efficiency for the charged kaons has been shown to be consistent with simulation. A conservative uncertainty of at most 9% in each bin has been assigned for the hadronic track reconstruction (adding linearly the uncertainties on the two kaon tracks [26]), which includes the uncertainty due to misalignment of the silicon detectors. The uncertainty on the fit procedure arising from potential biases and imperfect knowledge of the PDF parameters is estimated by varying the parameters by 1 standard deviation (2%–4%).

FIG. 1. Projections of the fit results in M_B (a) and ct (b) for $8 < p_T^B < 50$ GeV/c and $|y_B| < 2.4$. The curves in each plot are the sum of all contributions (solid line), signal (dashed line), prompt J/ψ (dotted line), and nonprompt J/ψ (dotted-dashed line). For better visibility of the individual contributions, plot (a) includes the requirement $ct > 0.01$ cm.
FIG. 2 (color online). Measured differential cross sections $d\sigma/dp_T^B$ (a) and $d\sigma/dy^B$ (b) compared with theoretical predictions. The (yellow) band represents the MC@NLO prediction; the solid and dashed (blue) lines are the PYTHIA prediction; the solid and dashed (blue) lines are the MC@NLO predictions. The (yellow) band represents the sum in quadrature of the systematic uncertainties and propagated through the sum. The measured total cross section lies between the theoretical predictions of MC@NLO ($4.6^{+1.9}_{-1.7} \pm 1.4$ nb) and PYTHIA (9.4 ± 2.8 nb), where the last uncertainty is from the B^0_d cross section times branching fraction [19]. Also the previous CMS cross section measurements of $B^+ [14]$ and $B^0 [15]$ production in pp collisions at $\sqrt{s} = 7$ TeV gave values between the two theory predictions, indicating internal consistency amongst the three different B-meson results.

In summary, the first measurements of the B^0_d differential cross sections $d\sigma/dp_T^B$ and $d\sigma/dy^B$, in the decay channel $B^0_d \rightarrow J/\psi \phi$ and in pp collisions at $\sqrt{s} = 7$ TeV, have been presented. The results cover the kinematical window $|y^B| < 2.4$ and $8 < p_T^B < 50$ GeV/c. They add complementary information to previous results in moving towards a comprehensive description of b-hadron production at $\sqrt{s} = 7$ TeV.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR (Austria); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).
MEASUREMENT OF THE STRANGE B_s^0 MESON...

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut f"ur Hochenergiephysik der OeAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Charles University, Prague, Czech Republic
23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25Department of Physics, University of Helsinki, Helsinki, Finland
26Helsinki Institute of Physics, Helsinki, Finland
27Lappeenranta University of Technology, Lappeenranta, Finland
28Laboratoire d'Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France

052008-12
Measurement of the Strange B^0_s Meson...
MEASUREMENT OF THE STRANGE B_s^0 MESON …

PHYSICAL REVIEW D 84, 052008 (2011)

120 University of California, Santa Barbara, Santa Barbara, California 93106, USA
121 California Institute of Technology, Pasadena, California 91125, USA
122 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
123 University of Colorado at Boulder, Boulder, Colorado 80309, USA
124 Cornell University, Ithaca, New York 14853, USA
125 Fairfield University, Fairfield, Connecticut 06824, USA
126 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
127 University of Florida, Gainesville, Florida 32611, USA
128 Florida International University, Miami, Florida 33199, USA
129 Florida State University, Tallahassee, Florida 32306, USA
130 Florida Institute of Technology, Melbourne, Florida 32901, USA
131 University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA
132 The University of Iowa, Iowa City, Iowa 52242, USA
133 Johns Hopkins University, Baltimore, Maryland 21218, USA
134 The University of Kansas, Lawrence, Kansas 66045, USA
135 Kansas State University, Manhattan, Kansas 66506, USA
136 Lawrence Livermore National Laboratory, Livermore, California 94720, USA
137 University of Maryland, College Park, Maryland 20742, USA
138 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
139 University of Minnesota, Minneapolis, Minnesota 55455, USA
140 University of Mississippi, University, Mississippi 38677, USA
141 University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
142 State University of New York at Buffalo, Buffalo, New York 14260, USA
143 Northeastern University, Boston, Massachusetts 02115, USA
144 Northwestern University, Evanston, Illinois 60208, USA
145 University of Notre Dame, Notre Dame, Indiana 46556, USA
146 The Ohio State University, Columbus, Ohio 43210, USA
147 Princeton University, Princeton, New Jersey 08544, USA
148 University of Puerto Rico, Mayaguez, Puerto Rico 00680
149 Purdue University, West Lafayette, Indiana 47907, USA
150 Purdue University Calumet, Hammond, Indiana 46323, USA
151 Rice University, Houston, Texas 77251, USA
152 University of Rochester, Rochester, New York 14627, USA
153 The Rockefeller University, New York, New York 10021, USA
154 Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
155 University of Tennessee, Knoxville, Tennessee 37996, USA
156 Texas A&M University, College Station, Texas 77843, USA
157 Texas Tech University, Lubbock, Texas 79409, USA
158 Vanderbilt University, Nashville, Tennessee 37235, USA
159 University of Virginia, Charlottesville, Virginia 22901, USA
160 Wayne State University, Detroit, Michigan 48202, USA
161 University of Wisconsin, Madison, Wisconsin 53706, USA

a Deceased.
b Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
c Also at Universidade Federal do ABC, Santo Andre, Brazil.
d Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
e Also at Suez Canal University, Suez, Egypt.
f Also at British University, Cairo, Egypt.
g Also at Fayoum University, El-Fayoum, Egypt.
h Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.
i Also at Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
j Also at Universite de Haute-Alsace, Mulhouse, France.
k Also at Brandenburg University of Technology, Cottbus, Germany.
l Also at Moscow State University, Moscow, Russia.
m Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
n Also at Eötvös Loránd University, Budapest, Hungary.
o Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
p Also at University of Visva-Bharati, Santiniketan, India.

052008-15