Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.107.191804</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Mar 22 02:08:54 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/71195</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
We present a search at the Jefferson Laboratory for new forces mediated by sub-GeV vector bosons with weak coupling α'. Such a particle A' can be produced in electron-nucleus fixed-target scattering and then decay to an e^+e^- pair, producing a narrow resonance in the QED trident spectrum. Using APEX test run data, we searched in the mass range 175–250 MeV, found no evidence for an $A' \rightarrow e^+e^-$ reaction, and set an upper limit of $\alpha'/\alpha < 10^{-6}$. Our findings demonstrate that fixed-target searches can explore a new, wide, and important range of masses and couplings for sub-GeV forces.

DOI: 10.1103/PhysRevLett.107.191804 PACS numbers: 14.70.Pw, 25.30.Rw

The strong, weak, and electromagnetic forces are mediated by vector bosons of the standard model. New forces could have escaped detection only if their mediators are either heavier than $\mathcal{O}(\text{TeV})$ or quite weakly coupled. The latter possibility can be tested by precision colliding-beam and fixed-target experiments. This Letter presents the results of a search for sub-GeV mediators of weakly coupled new forces in a test run for the A' experiment (APEX), which was proposed in [1] based on the general concepts presented in [2].

A new Abelian gauge boson, A', can acquire a small coupling to charged particles if it mixes kinetically with the photon [3]. Indeed, quantum loops of heavy particles with electric and $U(1)'$ charges can generate kinetic mixing and an effective interaction $eeA'_\mu J_{\text{EM}}^\mu$ of the A' to the electromagnetic current J_{EM}^μ, suppressed relative to the electron.
charge e by $e \sim 10^{-2} - 10^{-6}$ [4]. This mechanism motivates the search for very weakly coupled gauge bosons. Anomalies related to dark matter [5] and to the anomalous magnetic moment of the muon [6] have motivated interest in the possibility of an A' with MeV- to GeV-scale mass. Gauge bosons in the same mass range arise in several theoretical proposals [7], and their couplings to charged matter, $\alpha' = e^2/\alpha (\alpha = e^2/4\pi)$, are remarkably weakly constrained [2].

The simplest scenario, in which the A' decays directly to ordinary matter, can be tested in electron and proton fixed-target experiments [2,8,9] and at e^+e^- and hadron colliders [4,7,10–12]. Electron fixed-target experiments are uniquely suited to probing the sub-GeV mass range because of their high luminosity, large A' production cross section, and favorable kinematics. Electrons scattering off target nuclei can radiate an A', which then decays to e^+e^-, see Fig. 1. The A' would then appear as a narrow resonance in the e^+e^- invariant mass spectrum, over the large background from quantum electrodynamics (QED) trident processes. APEX is optimized to search for such a resonance using Jefferson Laboratory’s continuous electron beam accelerator facility and two high resolution spectrometers (HRSs) in Hall A [13].

The full APEX experiment proposes to probe couplings $\alpha' / \alpha \simeq 10^{-7}$ and masses $m_{A'} \sim 50–550$ MeV, a considerable improvement in cross section sensitivity over previous experiments in a theoretically interesting region of parameter space. Other electron fixed-target experiments are planned at Jefferson Laboratory, including the heavy photon search (HPS) [14] and DarkLight [8] experiments, at MAMI [15], and at DESY [the hidden photon search (HIPS) [16]].

We present here the results of a test run for APEX that took place at Jefferson Laboratory in July 2010. The layout of the experiment is shown in Fig. 2. The distinctive kinematics of A' production motivates the choice of configuration. The A' carries a large fraction of the incident beam energy, E_b, is produced at angles $\sim (m_{A'}/E_b)^{3/2} \ll 1$, and decays to an e^+e^- pair with a typical angle of $m_{A'}/E_b$. A symmetric configuration with the e^- and e^+ each carrying nearly half the beam energy mitigates QED background while maintaining high signal efficiency.

The test run used a 2.260 ± 0.002 GeV electron beam with an intensity up to 150 μA incident on a tantalum foil of thickness 22 mg/cm2. The HRSs’ central momenta were ≈ 1.131 GeV with a momentum acceptance of $\pm 4.5\%$. Dipole septum magnets between the target and the HRS aperture allow the detection of e^- and e^+ at angles of 5° relative to the incident beam. Collimators present during the test run reduced the solid angle acceptance of each spectrometer from a nominal 4.3 msr to $\approx 2.8(2.9)$ msr for the left (right) HRS.

The two spectrometers are equipped with similar detector packages. Two vertical drift chambers, each with two orthogonal tracking planes, provide reconstruction of particle trajectories. A segmented timing hodoscope and a gas Cherenkov counter (for e^+ identification) are used in the trigger. A two-layer lead glass calorimeter provides further offline particle identification. A single-paddle scintillator counter is used for timing alignment.

Data were collected with several triggers: the single-arm triggers produced by the hodoscope in either arm, a double coincidence trigger produced by a 40-ns wide overlap.
between the hodoscope signals from the two arms, and a
triple coincidence trigger consisting of the double coinci-
dence signal and a gas Cherenkov signal in the positron
(right) arm. Single-arm trigger event samples are used for
optics and acceptance calibration, described below. The
double coincidence event sample, which is dominated by
accidental $e^-\pi^+$ coincidences, is used to check the angular
and momentum acceptance of the spectrometers. These
$e^-\pi^+$ coincidences are largely rejected in the triple coinci-
dence event sample by the requirement of a gas
Cherenkov signal in the positron arm.

The reconstruction of e^+ and e^- trajectories at the target
was calibrated using the sieve slit method, see [13,17].
The sieve slits—removable tungsten plates with a grid of
holes drilled through at known positions—are inserted
between the target and the septum magnet during the
calibration runs. In this configuration, data were taken
with a 1.130 and a 2.260 GeV incident electron beam.
Using the reconstructed track positions and angles as mea-
sured in the vertical drift chambers, and the spectrometer’s
optical transfer matrix, the positions at the sieve slit were
calculated. The parameters of the optical transfer matrix
are then optimized to produce the best possible overlap
with the sieve holes positions, and this corrected matrix is
applied to event reconstruction. Only events within cali-
brated acceptance are used in the final analysis.

The final event sample is selected from the coincidence
tax sample defined above by imposing a 12.5-ns time window
between the electron arm trigger and the positron arm gas
Cherenkov signals (no offline corrections were applied),
requiring good quality tracks in the vertical drift chambers,
and the spectrometer’s optical acceptance are used in the final analysis.

The starting point for the $A' \rightarrow e^+e^-$ search is the
invariant mass distribution of the coincident event sample,
shown in black in Fig. 3. Also shown is the accidental e^+e^-
coincidence event sample (blue short-dashed line), and the QED calculation of the trident background
added to the accidental event sample (red long-dash line). Lower panel: the bin-by-bin residuals with respect to a 10-parameter fit
to the global distribution (for illustration only, not used in the analysis).

FIG. 3 (color online). Upper panel: The invariant mass spec-
trum of e^+e^- pair events in the final event sample (black points,
with error bars), accidental e^+e^- coincidence events (blue short-
dash line), and the QED calculation of the trident background
of the excellent HRS relative momentum resolution of
$O(10^{-4})$, the mass resolution is dominated by three con-
tributions to the angular resolution: scattering of the e^+e^-
inside the target, track measurement errors by the HRS
detectors, and imperfections in the magnetic optics recon-
struction matrix. Multiple scattering in the target contrib-
utes 0.37 mrad to the vertical and horizontal angular resolutions for each particle. Track measurement uncer-
tainties contribute typically 0.33 (1.85) mrad to the hori-
zontal (vertical) angular resolution in the left HRS and
0.43 (1.77) in the right HRS. Magnetic optics imperfec-
tions in both HRSs were found to contribute typically
0.10 (0.22) mrad to the horizontal (vertical) angular reso-
lution. Because calibration of the magnetic optics was
performed using only e^-, and not e^+, there is a possibility of additional aberrations in the positron arm. An upper
limit for possible aberrations of 0.5 mrad was obtained
from angular correlations in $H(e,e'p)$ experiments with the HRS and the calculations of the septum magnetic field.
Accounting for these effects, we determine the combined mass resolution (rms) to be between 0.85 and 1.11 MeV,
depending on the invariant mass. Finally, the uncertainty in the absolute angle between the two sieve slits introduces a
1% uncertainty in the absolute mass scale but does not
affect the mass resolution.

The starting point for the $A' \rightarrow e^+e^-$ search is the
invariant mass distribution of the coincident event sample,
shown in black in Fig. 3. Also shown is the accidental e^+e^-
coincidence event sample (blue short-dashed line), and the QED calculation of the trident background added to the
accidental sample (red long-dashed line). For illustration, we show the bin-by-bin residuals with respect to a 10-parameter fit to the global distribution, although we do not use this in the analysis. The analysis code, described below, was tested and optimized on our simulated data and on a 10% sample of the experimental data to avoid possible bias.

We found that a linear sideband analysis is not tenable in light of the high statistical sensitivity of the experiment and the appreciable curvature of the invariant mass distribution; it suffers from $O(1)$ systematic pulls, which can produce false positive signals or overstated sensitivity. Instead, a polynomial background model plus a Gaussian signal of S events (with mass-dependent width corresponding to the mass resolution presented above) is fit to a window bracketing each candidate A' mass. The uncertainty in the polynomial coefficients incorporates the systematic uncertainty in the shape of the background model. Based on extensive simulated-experiment studies, a seventh-order polynomial fit over a 30.5 MeV window was found to achieve near-minimum uncertainty while maintaining a potential bias below 0.1 standard deviations across the mass spectrum. A symmetric window is used, except for candidate masses within 15 MeV of the upper or lower boundaries, for which a window of equal size touching the boundary is used. A binned profile likelihood ratio (PLR) is computed as a function of signal strength S at the candidate mass, using 0.05 MeV bins. The PLR is used to derive the local probability (p value) at $S = 0$ (i.e., the probability of a larger PLR arising from statistical fluctuations in the background-only model) and a 90%-confidence upper limit on the signal. We define the sensitivity of the search in terms of a 50% power constraint [20], which means we do not regard a value of S as excluded if it falls below the expected limit. This procedure is repeated in steps of 0.25 MeV. A global p value, corrected for the “look-elsewhere effect,” (the fact that an excess of events anywhere in the range can mimic a signal), is derived from the lowest local p value observed over the full mass range, and calibrated using simulated experiments.

We find no evidence of an A' signal. The p value for the background model and upper bound on the absolute yield of $A' \rightarrow e^+ e^-$ signal events (consistent with the data and background model) are shown in Fig. 4. The invariant-mass-dependent limit is ≈ 200–1000 signal events at 90% confidence. The most significant excess, at 224.5 MeV, has a local p value of 0.6%; the associated global p value is 40% (i.e., in the absence of a signal, 40% of prepared experiments would observe a more significant effect due to fluctuations).

To translate the limit on signal events into an upper limit on the coupling α' with minimal systematic errors from acceptance and trigger efficiencies, we use a ratio method, normalizing A' production to the measured QED trident rate. We distinguish between three components of the QED trident background: radiative tridents Fig. 1(b), Bethe-Heitler tridents Fig. 1(c), and their interference diagrams (not shown). The A' signal and radiative trident fully differential cross sections are simply related [3], and the ratio f of the radiative-only cross section to the full trident cross section can be reliably computed in Monte Carlo simulations: f varies linearly from 0.21 to 0.25 across the APEX mass range, with a systematic uncertainty of 0.01, which dominates over Monte Carlo statistics and possible next-to-leading order QED effects. The 50% power-constrained limit on signal yield S_{max} and trident background yield per unit mass, $\Delta B/\Delta m$, evaluated in a 1 MeV range around m_A', determines an upper limit on α'/α,

$$\left(\frac{\alpha'}{\alpha}\right)_\text{max} = \left(\frac{S_{max}/m_A'}{f \cdot \Delta B/\Delta m}\right) \left(\frac{2N_{eff} \alpha}{3 \pi}\right),$$

where N_{eff} counts the number of available decay channels ($N_{eff} = 1$ for $m_{A'} < 2m_{\mu^+\mu^-}$ and increases to ≈ 1.6 at $m_{A'} \approx 250$ MeV). The resulting limit, accounting in addition for contamination of the background by accidentals, is shown in Fig. 5.
FIG. 5 (color). The 90% confidence upper limit on α'/α versus A' mass for the APEX test run (solid blue). Shown are existing 90% confidence level limits from the muon anomalous magnetic moment a_μ (fine hatched) [6], KLOE (solid gray) [12], the result reported by Mainz (solid green) [15], and an estimate using a BABAR Collaboration result (wide hatched) [2,10]. Between the red line and fine hatched region, the A' can explain the observed discrepancy between the calculated and measured muon anomalous magnetic moment [6] at 90% confidence level. The full APEX experiment will roughly cover the entire area of the plot.

In summary, the APEX test run data showed no significant signal of $A' \rightarrow e^+ e^-$ electroproduction in the mass range 175–250 MeV. We established an upper limit of $\alpha'/\alpha \approx 10^{-6}$ at 90% confidence. All aspects of the full APEX experiment outlined in [1] have been demonstrated to work. The full experiment plans to run at several beam energies, have enhanced mass coverage from a 50-cm long multifoil target, and acquire ~ 200 times more data than this test run, extending our knowledge of sub-GeV force.

The APEX Collaboration thanks the JLab technical staff for their tremendous support during the brief test run. This work was supported by the U.S. Department of Energy, Jefferson Science Associates, LLC, operates Jefferson Lab for the U.S. DOE under U.S. DOE Contract No. DE-AC05-06OR23177. This work was also supported in part by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515 and by the National Science Foundation under Grant No. NSF PHY05-51164.