Observation of Exclusive Production in pp Collisions at s=1.96TeV

<table>
<thead>
<tr>
<th>Citation</th>
<th>Aaltonen et al. (CDF Collaboration) "Observation of Exclusive Production in pp Collisions at s=1.96TeV" Physical Review Letters 108, 081801 (2012). © 2012 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.108.081801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Apr 02 10:40:03 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/71543</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Observation of Exclusive $\gamma\gamma$ Production in pp Collisions at $\sqrt{s} = 1.96$ TeV

In proton-(anti)proton collisions, two direct high-E_T photons can be produced at leading order by $q\bar{q} \rightarrow \gamma\gamma$ and by $gg \rightarrow \gamma\gamma$ through a quark loop. In the latter case it is possible for another gluon exchange to cancel the color of the fusing gluons, allowing the (anti)proton to emerge intact with no hadrons produced. For $p\bar{p}$ collisions, this is the “exclusive” process $p\bar{p} \rightarrow p + \gamma\gamma + \bar{p}$, for which the leading order diagram is shown in Fig. 1(a) [1,2]. The outgoing (anti)proton has nearly the beam momentum, leading order diagram is shown in Fig. 1(a) [1,2]. The cross section for $pp \rightarrow p + \gamma\gamma + p$ with $|\eta(\gamma)| < 1.0$ and $E_T(\gamma) > 2.5$ GeV is $2.48^{+0.40}_{-0.35}$ (stat)$^{+0.51}_{-0.51}$ (syst) pb.

We have observed exclusive $\gamma\gamma$ production in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV, using data from 1.11 ± 0.07 fb$^{-1}$ integrated luminosity taken by the Run II Collider Detector at Fermilab. We selected events with two electromagnetic showers, each with transverse energy $E_T > 2.5$ GeV and pseudorapidity $|\eta| < 1.0$, with no other particles detected in $-7.4 < \eta < +7.4$. The two showers have similar E_T and azimuthal angle separation $\Delta \phi \sim \pi$. 34 events have two charged particle tracks, consistent with the QED process $p\bar{p} \rightarrow p + e^+e^- + \bar{p}$ by two-photon exchange, while 43 events have no charged tracks. The number of these events that are exclusive $\pi^0\pi^0$ is consistent with zero and is <15 at 95% C.L. The probability that no hadrons are produced by additional gluon exchange is $0.2–2$ pb, depending on the low-x (unintegrated) gluon density. Additional uncertainties come from the cross section for $g + g \rightarrow \gamma + \gamma$, the probability that no hadrons are produced by additional parton interactions (rapidity gap survival factor and Sudakov suppression [7]), and the probability that neither proton dissociates (e.g., $p \rightarrow p \pi^+ \pi^-$) [5]. The calculation is also imprecise because of the low Q^2, the squared 4-momentum transfer. The total theoretical uncertainty on the cross section can be estimated to be a factor $x^{0.5}_{3}$ [8].

Apart from its intrinsic interest for QCD, the process tests the theory of exclusive Higgs boson production $[1,2,5,8–13]$ $p + p \rightarrow p + H + p$, Fig. 1(b), which may be detectable at the LHC. The leading order processes $gg \rightarrow \gamma\gamma$ and $gg \rightarrow H$ are calculable perturbatively, but the more uncertain elements of the exclusive processes (mainly the unintegrated gluon densities, the Sudakov suppression, and the gap survival probability) are common to both (see Fig. 1). For a 120 GeV standard model Higgs boson the exclusive cross section at $\sqrt{s} = 7$ TeV is 3 fb with a factor $x^{0.5}_{3}$ uncertainty [8].
Processes other than $gg \rightarrow \gamma\gamma$ can produce an exclusive $\gamma\gamma$ final state. Contributions from $q\bar{q} \rightarrow \gamma\gamma$ and $gg \rightarrow \gamma\gamma$ are respectively <5% and <1% of $gg \rightarrow \gamma\gamma$ [5]. Backgrounds to exclusive $\gamma\gamma$ events to be considered are $\pi^0\pi^0$ and $\eta\eta$, with each meson decaying to two photons, of which one is not detected. We also consider events where one or both protons dissociate, e.g., $p \rightarrow p\pi^+\pi^-$, to be background. These backgrounds are small.

We previously published a search for exclusive $\gamma\gamma$ production, finding three candidate events with $E_T(\gamma) >$ 5 GeV and $|\eta| < 1.0$, using data from 532 pb$^{-1}$ of integrated luminosity [14]. The prediction of Ref. [5] was $0.8^{+1.5}_{-0.3}$ events. Two events had a single narrow electromagnetic (EM) shower on each side, as expected for $\gamma\gamma$, but no observation could be claimed. This Letter reports the observation of 43 events with a contamination of <15$\pi^0\pi^0$ events (95% C.L.), after we lowered the trigger threshold on the EM showers from 4 GeV to 2 GeV and collected data from another 1.11 fb$^{-1}$ of integrated luminosity. We used the QED process $p + \bar{p} \rightarrow p + \gamma'/\gamma' + \bar{p} \rightarrow p + e^+e^- + \bar{p}$ in the same data set, for which the cross section is well known, as a check of the analysis.

The data were collected by the Collider Detector at Fermilab, CDF II, at the Tevatron, with $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. The CDF II detector is a general purpose detector described elsewhere [15]; here we give a brief summary of the detector components used in this analysis. Surrounding the beam pipe is a tracking system consisting of a silicon microstrip detector, a cylindrical drift chamber (COT) [16], and a solenoid providing a 1.4 Tesla magnetic field. The tracking system is fully efficient at reconstructing isolated tracks with $p_T \geq 1$ GeV/c and $|\eta| < 1$. It is surrounded by the central and end-plug calorimeters covering the range $|\eta| < 3.6$. Both calorimeters have separate EM and hadronic compartments. A proportional wire chamber (CES) [17], with orthogonal anode wires and cathode strips, is embedded in the central EM calorimeter, covering the region of $|\eta| < 1.1$, at a depth of six radiation lengths. It allows a measurement of the number and shape, in both η and azimuth ϕ, of EM showers (clusters of wires or strips). The anode-wire pitch (in ϕ) is 1.5 cm and the cathode-strip pitch varies with η from 1.7 cm to 2.0 cm. The CES provides a means of distinguishing single photon showers from $\pi^0 \rightarrow \gamma\gamma$ up to $E_T(\pi^0) \sim$ 8 GeV. The region $3.6 < |\eta| < 5.2$ is covered by a lead-liquid scintillator calorimeter called the Miniplug [18]. At higher pseudorapidities, $5.4 < |\eta| < 7.4$, scintillation counters, called beam shower counters (BSC-1/2/3), are located on each side of the CDF detector. Gas Cherenkov detectors, with 48 photomultipliers per side, covering $3.7 < |\eta| < 4.7$, detect charged particles, and were also used to determine the luminosity with a 6% uncertainty [19].

The data were recorded using a three-level on-line event selection system (trigger). At the first level we required one EM cluster with $E_T > 2$ GeV and $|\eta| < 2.1$ and no signal above noise in the BSC-1 counters ($|\eta| = 5.4$–5.9). This rapidity gap requirement rejected a large fraction of inelastic collisions as well as most events with more than one interaction (pileup). A second EM cluster with similar properties was required at level two. A level three trigger selected events with two calorimeter showers consistent with coming from electrons or photons: i.e., passing the requirement (cut) that the ratio of shower energy in the hadronic (HAD) calorimeter to that in the EM (HAD:EM) be less than 0.125, and that the signal shape in the CES is consistent with a single shower.

We now describe the offline selection of events, with two isolated EM showers and no other particles except the outgoing p and \bar{p}, which were not detected. Two central, $|\eta| < 1$, EM showers were required with $E_T > 2.5$ GeV to avoid trigger threshold inefficiencies. The energy resolution is $dE/E \sim 8\%$ from test beam studies and $in situ$ p/E matching for electrons. A refined HAD:EM ratio cut of $<0.055 + 0.000.45 E$ was applied, as well as an acoplanarity cut of $|\pi - \Delta \phi| < 0.6$. The trigger selection efficiency for single photons was measured using data collected with an interaction trigger (minimum bias). The BSC-1 gap trigger was taken to be 100% efficient as the BSC-1 trigger threshold was clearly above the noise level and the offline selection criteria. We measured an overall trigger efficiency of $\varepsilon_{\text{trig}} = 92\% \pm 2\%(\text{syst})$. A weighting process was necessary due to the different slope in E_T of the minimum bias probe data compared to the signal. The trigger efficiency did not show any η or ϕ dependence for $|\eta| < 1$. Monte Carlo signal simulation data samples were generated using the SUPERCHIC program (version 1.3) [11,20] based on recent developments of the Durham KMR model [2]. The Monte Carlo samples were passed through a simulation of the detector, CDFSIM 6.1.4.m including GEANT version 3.21/14 [21]. The systematic error was estimated by using the binwise uncertainty of the efficiency in the weighting process of the signal Monte Carlo sample. Taking into account a combined detector and offline reconstruction efficiency of $\varepsilon_{\text{rec}} = 55\% \pm 3\%(\text{syst})$, and a photon identification efficiency of
tracks in the COT, and four are in neither class. Visual
have exactly two oppositely charged tracks, 43 have no
without reference to the track detectors. We found that 34
different time periods. The systematic uncertainty was estimated
for the exclusive efficiency, was constant during data tak-
ing (one year). The systematic uncertainty on the radiation probability was estimated by vary-
ing the exclusivity cuts by 10%. This e+e− sample provides a valuable check of the exclusive γγ analysis.

The 43 events with no tracks have the kinematic properties expected for exclusive γγ production [20]. In particular the M(γγ) distribution [Fig. 2(b)] extending up to 15 GeV/c² is as expected, as well as the acoplanarity π − ∆φ(γγ) [Fig. 2(c)] and the 2-vector sum of p_T [Fig. 2(d)]; in these plots [unlike Fig. 2(a)] the SUPERCHIC Monte Carlo prediction is normalized to the same number of events as the data. An important issue is whether some of these events could be π0π0, rather than γγ. Note that γπ0 events are forbidden by C parity. The CES chambers give information on the number of EM showers. The minimum opening angle Δθ_{min} between the two photons from π0 decay is 2π^{-1}(m(π))/p(π) = 3.1° for p(π) = 5 GeV, well

The selection of 81 events passing all cuts was made without reference to the track detectors. We found that 34 have exactly two oppositely charged tracks, 43 have no tracks in the COT, and four are in neither class. Visual inspection of the latter showed that two had photon conversions, and two were likely to be e+e− events with bremsstrahlung. These numbers are consistent with expectations from the detector simulation. The tracks in the 34 two-track events agree in all aspects with the QED process p + p \rightarrow p + e^+e^- + p via two virtual photons, previously observed in CDF [23,24]. The calorimeter shower energies are consistent with the momenta measured from the tracks. Kinematic distributions, after detector simulation, are as expected. The mass M(\pi^0) distribution is presented in Fig. 2(a), together with the QED prediction normalized to the delivered luminosity and efficiencies, showing that the cross section agrees with the QED prediction in both magnitude and shape. We measured a cross section of σ_{e^+e^-} = 2.88 ± 0.05(stat) ± 0.63(sys) pb, compared to 3.25 ± 0.07 pb (QED, [25]). The systematic uncertainties for the QED study are mostly identical to the photon case. Distinct from photons, electrons leave tracks in the tracking detectors and may radiate. The systematic uncertainty on the radiation probability was estimated by varying the exclusivity cuts by ±10%. This e+e− sample provides a valuable check of the exclusive γγ analysis.

The 43 events with no tracks have the kinematic properties expected for exclusive γγ production [20]. In particular the M(γγ) distribution [Fig. 2(b)] extending up to 15 GeV/c² is as expected, as well as the acoplanarity π − ∆φ(γγ) [Fig. 2(c)] and the 2-vector sum of p_T [Fig. 2(d)]; in these plots [unlike Fig. 2(a)] the SUPERCHIC Monte Carlo prediction is normalized to the same number of events as the data. An important issue is whether some of these events could be π0π0, rather than γγ. Note that γπ0 events are forbidden by C parity. The CES chambers give information on the number of EM showers. The minimum opening angle Δθ_{min} between the two photons from π0 decay is 2π^{-1}(m(π))/p(π) = 3.1° for p(π) = 5 GeV, well

The selection of 81 events passing all cuts was made without reference to the track detectors. We found that 34 have exactly two oppositely charged tracks, 43 have no tracks in the COT, and four are in neither class. Visual inspection of the latter showed that two had photon conversions, and two were likely to be e+e− events with bremsstrahlung. These numbers are consistent with expectations from the detector simulation. The tracks in the 34 two-track events agree in all aspects with the QED process p + p \rightarrow p + e^+e^- + p via two virtual photons, previously observed in CDF [23,24]. The calorimeter shower energies are consistent with the momenta measured from the tracks. Kinematic distributions, after detector simulation, are as expected. The mass M(\pi^0) distribution is presented in Fig. 2(a), together with the QED prediction normalized to the delivered luminosity and efficiencies, showing that the cross section agrees with the QED prediction in both magnitude and shape. We measured a cross section of σ_{e^+e^-} = 2.88 ± 0.05(stat) ± 0.63(sys) pb, compared to 3.25 ± 0.07 pb (QED, [25]). The systematic uncertainties for the QED study are mostly identical to the photon case. Distinct from photons, electrons leave tracks in the tracking detectors and may radiate. The systematic uncertainty on the radiation probability was estimated by varying the exclusivity cuts by ±10%. This e+e− sample provides a valuable check of the exclusive γγ analysis.

The 43 events with no tracks have the kinematic properties expected for exclusive γγ production [20]. In particular the M(γγ) distribution [Fig. 2(b)] extending up to 15 GeV/c² is as expected, as well as the acoplanarity π − ∆φ(γγ) [Fig. 2(c)] and the 2-vector sum of p_T [Fig. 2(d)]; in these plots [unlike Fig. 2(a)] the SUPERCHIC Monte Carlo prediction is normalized to the same number of events as the data. An important issue is whether some of these events could be π0π0, rather than γγ. Note that γπ0 events are forbidden by C parity. The CES chambers give information on the number of EM showers. The minimum opening angle Δθ_{min} between the two photons from π0 decay is 2π^{-1}(m(π))/p(π) = 3.1° for p(π) = 5 GeV, well
The cross section for both $\pi^0\pi^0$ production [26] predicts a 95% C.L. upper limit of 15 events. A comparison of our measurement with the only theoretical prediction, based on the color and with the $\pi^0\pi^0$ simulation for the exclusive $\gamma\gamma$ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with theoretical predictions [11].

In conclusion, we have observed the exclusive production of two high-E_T photons in proton-antiproton collisions, which constitutes the first observation of this process in hadron-hadron collisions. The cross section is in agreement with the only theoretical prediction, based on $g + g \rightarrow \gamma + \gamma$, with another gluon exchanged to cancel the color and with the p and \bar{p} emerging intact. If a Higgs boson exists, it should be produced by the same mechanism (see Fig. 1), and the cross sections are related.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). We also thank V. A. Khoze, M. G.
Ryskin, and L.A. Harland-Lang for many valuable discussions.

aDeceased
bVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
cVisitor from University of California Irvine, Irvine, CA 92697, USA.
dVisitor from University of California Santa Barbara, Santa Barbara, CA 93106, USA.
eVisitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
fVisitor from Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic.
gVisitor from CERN, CH-1211 Geneva, Switzerland.
hVisitor from Cornell University, Ithaca, NY 14853, USA.
iVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.
jVisitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.
kVisitor from University College Dublin, Dublin 4, Ireland.
lVisitor from ETH, 8092 Zurich, Switzerland.
mVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
nVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.
oVisitor from University of Iowa, Iowa City, IA 52242, USA.
pVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
qVisitor from Kansas State University, Manhattan, KS 66506, USA.
rVisitor from Korea University, Seoul, 136-713, Korea.
sVisitor from University of Manchester, Manchester M13 9PL, United Kingdom.
tVisitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.
uVisitor from University of Melbourne, Victoria 3010, Australia.
vVisitor from Muons, Inc., Batavia, IL 60510, USA.
wVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
xVisitor from National Research Nuclear University, Moscow, Russia.
yVisitor from Northwestern University, Evanston, IL 60208, USA.
zVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.
aaVisitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
abVisitor from CNRS-IN2P3, Paris, F-75205 France.
cbVisitor from Texas Tech University, Lubbock, TX 79609, USA.