Measurement of ZZ Production in Leptonic Final States at s of 1.96 TeV at CDF

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>T. Aaltonen et al. (CDF Collaboration). "Measurement of ZZ Production in Leptonic Final States at s of 1.96 TeV at CDF" Physical review Letters 108, 101801 (2012). © 2012 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.108.101801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Feb 14 20:16:26 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/71564</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of ZZ Production in Leptonic Final States at $\sqrt{s} = 1.96$ TeV at CDF

production in the four-charged-lepton decay channel and \(WZ \) precisely measured. CDF did report strong evidence for \(WW \) produced at the LEP collider at CERN \([4–7]\). The production of a \(ZZ \) pair is rare in the standard model and has a cross section of \(6 \text{ fb}^{-1} \). Therefore, a precise measurement of this process provides a fundamental test of the standard model. A good understanding of \(ZZ \) production, along with that of the other massive diboson processes (\(WW \) and \(WZ \)), is an essential component of new physics searches including searches for the Higgs boson, since these processes share similar experimental signatures. ZZ production was first studied at the LEP \(e^+ e^- \) collider at CERN \([4–7]\) and later investigated at the Tevatron \(p \bar{p} \) collider \([8,9]\). WW \([10]\) and WZ \([11]\) production has already been observed and precisely measured. CDF did report strong evidence for ZZ production in the four-charged-lepton decay channel \(ZZ \to \ell \ell' \ell' \ell \) and the two-charged-lepton decay channel \(ZZ \to \ell \ell \nu \nu \), measuring \(\sigma(ZZ) = 1.4^{+0.7}_{-0.6} \text{ pb} \) with a significance of 4.4 \(\sigma \) by using data corresponding to 1.9 \(\text{ fb}^{-1} \) of integrated luminosity \([8]\). Recently, D0 reported a measurement in the four-lepton channel, using 6.4 \(\text{ fb}^{-1} \) of integrated luminosity \([9]\) which has been combined with a result based on the \(\ell \ell \nu \nu \) final state, using 2.7 \(\text{ fb}^{-1} \) of integrated luminosity \([12]\), giving a combined measured cross section \(\sigma(ZZ) = 1.40^{+0.45}_{-0.46} \text{ pb} \) with a significance of more than 6\(\sigma \). CMS \([13]\) and ATLAS \([14]\) have also both reported measurements of the ZZ production cross section in 7 TeV \(pp \) collisions produced by the Large Hadron Collider (LHC).

In this Letter, we present a new measurement of the ZZ production cross section using data from approximately 6 \(\text{ fb}^{-1} \) of integrated luminosity collected by the CDF II detector corresponding to an integrated luminosity of approximately 1.96 TeV, using data collected with the CDF II detector at the Tevatron \([15]\) at the Tevatron. A search for new ZZ resonances using the same data set is reported in Ref. \([16]\). With respect to the previous measurement, we exploit not only the increased quantity of data but also improved analysis techniques. We consider both the \(\ell \ell \ell' \ell' \) and \(\ell \ell \nu \nu \) decay channels, where \(\ell \) and \(\ell' \) are electrons or muons coming from the \(Z \) decay or from the leptonic decay of a \(\tau \) in the case where a \(Z \) boson decays to a \(\tau \) pair.

The production of a \(Z \) boson pair is rare in the standard model of particle physics and has a cross section of \(1.4 \pm 0.1 \text{ pb} \) for \(p \bar{p} \) collisions at 1.96 TeV, calculated at next-to-leading order (NLO) \([1]\). The production rate can be enhanced by a variety of new physics contributions, such as anomalous trilinear gauge couplings \([2]\) or large extra dimensions \([3]\). Therefore, a precise measurement of this process provides a fundamental test of the standard model. A good understanding of ZZ production, along with that of the other massive diboson processes (WW and WZ), is an essential component of new physics searches including searches for the Higgs boson, since these processes share similar experimental signatures. ZZ production was first studied at the LEP \(e^+ e^- \) collider at CERN \([4–7]\) and later investigated at the Tevatron \(p \bar{p} \) collider \([8,9]\). WW \([10]\) and WZ \([11]\) production has already been observed and precisely measured. CDF did report strong evidence for ZZ production in the four-charged-lepton decay channel ZZ → \(\ell \ell' \ell' \ell \) and the two-charged-lepton decay channel ZZ → \(\ell \ell \nu \nu \), measuring \(\sigma(ZZ) = 1.4^{+0.7}_{-0.6} \text{ pb} \) with a significance of 4.4 \(\sigma \) by using data corresponding to 1.9 \(\text{ fb}^{-1} \) of integrated luminosity \([8]\). Recently, D0 reported a measurement in the four-lepton channel, using 6.4 \(\text{ fb}^{-1} \) of integrated luminosity \([9]\) which has been combined with a result based on the \(\ell \ell \nu \nu \) final state, using 2.7 \(\text{ fb}^{-1} \) of integrated luminosity \([12]\), giving a combined measured cross section \(\sigma(ZZ) = 1.40^{+0.45}_{-0.46} \text{ pb} \) with a significance of more than 6\(\sigma \). CMS \([13]\) and ATLAS \([14]\) have also both reported measurements of the ZZ production cross section in 7 TeV \(pp \) collisions produced by the Large Hadron Collider (LHC).
full process we consider is \(p\bar{p} \rightarrow Z/\gamma^*Z/\gamma^* \), but the \(\ell\ell\ell\ell \) and \(\ell\ell\nu\nu \) final states differ in their decay kinematic acceptance, because of the different \(\gamma^* \) couplings to charged leptons and neutrinos. We therefore apply a correction factor to our results to normalize the measurements to the inclusive ZZ total cross section calculated in the zero-width approximation. For brevity, hereafter we will refer to \(Z/\gamma^*Z/\gamma^* \) as ZZ, unless otherwise specified.

The CDF II detector is described elsewhere [15]. Here we briefly summarize features relevant for this analysis. We describe the geometry of the detector by using the azimuthal angle \(\phi \) and the pseudorapidity \(\eta = -\ln(\tan(\theta/2)) \), where \(\theta \) is the polar angle of a particle’s trajectory (track) with respect to the proton beam axis and with the origin at the \(p\bar{p} \) interaction point. The pseudorapidity of a particle assumed to have originated from the center of the detector is referred to as \(\eta_d \). Measurement of charged particle trajectories extends to \(|\eta_d| \leq 2.0 \), but for particles with \(|\eta_d| \geq 1.1 \) not all layers of the detector are traversed, resulting in lower tracking efficiency and poorer resolution. An electromagnetic and a hadronic calorimeter with a pointing tower geometry extend to \(|\eta_d| \leq 3.6 \), but shower maximum position detectors used in electron identification are present only to \(|\eta_d| \leq 2.8 \). In addition, the calorimeters have several small uninstrumented regions at the boundaries between detector elements.

Electrons are usually detected in this analysis by matching a track in the inner tracking system to an energy deposit in the electromagnetic calorimeter. Muons are detected by matching a track to a minimum ionizing particle energy deposit in the calorimeter, with or without associated track segments in the various muon chambers beyond the calorimeter. We include \(\tau \) leptons in this analysis only if they are detected indirectly through their decays to electrons or muons. Lepton reconstruction algorithms are well validated and described in detail elsewhere [17].

The presence of neutrinos is inferred from the missing transverse energy \(\not{E}_T = - \sum_i E_i \hat{n}_{r,i} \), where \(\hat{n}_{r,i} \) is the transverse component of the unit vector pointing from the interaction point to calorimeter tower \(i \) and \(E_i \) is the energy deposit in the \(i \)th tower of the calorimeter. The \(\not{E}_T \) calculation is corrected for muons and track-based reconstructed leptons, which do not deposit all of their energy in the calorimeters. The transverse energy \(E_T \) is \(E \sin\theta \), where \(E \) is the energy associated with a calorimeter element or energy cluster. Similarly, \(p_T \) is the track momentum component transverse to the beam line.

Jets are reconstructed in the calorimeters by using a cone algorithm [JETCLU [18]] with a clustering radius of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4 \) and are corrected to the parton energy level by using standard techniques [19]. Jets are selected if they have \(E_T \geq 15 \text{ GeV}/c \) and \(|\eta| < 2.4 \).

We use an on-line event-selection system (trigger) to choose events that pass at least one high-\(p_T \) lepton trigger. The central electron trigger requires an electromagnetic energy cluster with \(E_T > 18 \text{ GeV} \) matched to a track with \(p_T > 8 \text{ GeV}/c \). Several muon triggers are based on track segments from different muon detectors matched to a track in the inner tracking system with \(p_T \geq 18 \text{ GeV}/c \). Trigger efficiencies are measured in leptonic W and Z boson data samples [20].

For the \(\ell\ell\nu\nu \) analysis, we use several mutually exclusive lepton reconstruction categories, including three electron categories, seven muon categories, and isolated track-based identification for leptons which do not lie inside the fiducial coverage of the calorimeter. All reconstructed leptons must satisfy a calorimeter isolation requirement: The total \(E_T \) in the calorimeter towers that lie within a cone of \(\Delta R < 0.4 \) around the lepton, excluding the tower traversed by the lepton, must be less than 10% of the \(E_T(p_T) \) of the reconstructed electron (muon). ZZ \(\rightarrow \ell\ell\nu\nu \) candidates are selected among the sample of events containing exactly two leptons of the same flavor and opposite charge, requiring minimal hadronic activity, with a maximum of one additional jet in the event with \(E_T \geq 15 \text{ GeV} \). One of the two leptons is required to have passed one of the described triggers and have \(p_T \geq 20 \text{ GeV}/c \), while for the second we require only \(p_T \geq 10 \text{ GeV}/c \). The two leptons are required to have an invariant mass within 15 GeV/c² of the nominal Z mass [21].

The dominant source of dilepton events is the Drell-Yan process (DY), which has a cross section many orders of magnitude larger than that of our signal. The main difference between the signal and the Drell-Yan process is the presence of the two neutrinos in the signal final state which may lead to a transverse energy imbalance in the detector quantified by the \(\not{E}_T \). Other background contributions come from WW and WZ production, decaying in their respective leptonic channels, Wγ or W + jets production where photons or jets are misidentified as leptons, and a small contribution from \(\not{n} \) production. The expectation and modeling of signal and background processes are determined by using different Monte Carlo (MC) simulations including a GEANT-based simulation of the CDF II detector [22]; CTEQ5L parton distribution functions (PDFs) are used to model the momentum distribution of the initial-state partons [23]. The WZ, ZZ, DY, and \(\not{n} \) processes are simulated by using PYTHIA [24], while WW is simulated by using MC@NLO [25]. Wγ is simulated with the Baur event generator [26]. Each simulated sample is normalized to the theoretical cross section calculated at next-to-leading order in QCD by using Ref. [27]. The W + jets background is estimated by using a data-driven technique, because the simulation is not expected to reliably model the associated rare jet fragmentation and detector effects leading to fake leptons. The probability that a jet will be misidentified as a lepton is measured by using a sample of events collected with jet-based triggers and corrected for the contributions of leptons from W and Z decays. The probabilities are
applied to the jets in a $W + j$ enriched event sample to estimate the $W + j$ background contribution to our di-lepton sample [28].

We further select $ZZ \to \ell^+\ell^-\nu\nu$ events by requiring that the E_T^* in the event is mostly aligned along the axis (Ax) of the reconstructed $Z \to \ell^+\ell^-$ in the opposite direction, selecting events with

$$E_T^{\text{Ax}} = -E_T \cos \Delta \phi(\vec{E}_T, \vec{p}_T^Z) \geq 25 \text{ GeV},$$

(1)

where $\Delta \phi(\vec{E}_T, \vec{p}_T^Z)$ is the angle between \vec{E}_T and the direction of the reconstructed Z. This requirement rejects 99.8% of the Drell-Yan background while preserving about 30% of the signal. The composition of the sample of events passing these requirements is summarized in Table I, including expectations for other minor backgrounds.

In order to improve the signal-to-background ratio further, we use a multivariate technique relying on the simulated samples of signal and background events. A NeuroBayes© neural network (NN) [29] is trained by using seven event kinematic variables: the E_T significance ($\frac{E_T}{\sqrt{\sum E_T}}$ [30]), the E_T component transverse to the closest reconstructed object ($E_T \sin[\Delta \phi(\vec{E}_T, \ell \text{ or jet})]$), the dilepton invariant mass ($M_{\ell\ell}$), the E_T^{Ax}, the dilepton system transverse momentum ($p_T^{\ell\ell}$), and the opening angles between the two leptons in the transverse plane $[\Delta \phi(\ell \ell)]$ and in the $\eta - \phi$ plane $[\Delta R(\ell \ell)]$. These variables are the most sensitive for signal-to-background separation since they exploit the unique features of ZZ production. Figure 1 shows the resulting NN output distributions for data and expected signal and background, in which the ZZ signal tends toward higher values and the background toward lower values. Exploiting the good separation of the signal from the background, we measure the ZZ cross section from a binned maximum likelihood fit of the NN output. The likelihood function in the fit is the product of the Poisson probability of the observed yield in each bin on the NN output, given the signal and background expectations.

The systematic uncertainties can affect the shape and the normalization expectations of the signal and background processes in the $\ell\ell\nu\nu$ decay channel. The shape of the Monte Carlo distributions is verified by using data in a different kinematic region, and the discrepancy between the data and Monte Carlo simulations turns out to be negligible. Therefore we take into account only normalization uncertainties by including in the likelihood Gaussian constraints, treated as nuisance parameters. The only free parameter in the likelihood fit is the ZZ normalization.

Uncertainties from measurements of the lepton selection and trigger efficiencies are propagated through the analysis acceptance. The dominant uncertainty in the final measurement comes from the acceptance difference between the leading order (LO) and the NLO process simulation. The uncertainty in the detector acceptance is assessed by using the 20 pairs of PDF sets described in Ref. [31]. We assign a 5.9% luminosity uncertainty to the normalization of MC simulated processes [32]. We include uncertainties on the theoretical cross section of WW [1], WZ [1], $W\gamma$ [33], and $t\bar{t}$ [34,35]. The uncertainty on $W + j$ background is determined from the variation of the jet misidentification factor among samples using different jet trigger requirements. The effect of the uncertainty on the jet reconstructed energy is taken into account in the requirement of having no more than one jet with $p_T > 15$ GeV/c and in the data-to-MC reconstruction efficiency correction as a function of the jet p_T. A systematic uncertainty is assigned to the dominant DY background due to the E_T simulation mismodeling and tested in an orthogonal data sample. An additional uncertainty is considered due to the track resolution on the E_T^{Ax} modeling. All the systematic uncertainties are summarized in Table II. Correlations between the systematic uncertainties are taken into account in the fit for the cross section.

![FIG. 1](color online). Neural network output distribution for the processes contributing to the $\ell\ell\nu\nu$ sample, scaled to the best values of the fit to the data.
TABLE II. Percentage contribution from the various sources of systematic uncertainties to the acceptance of signal and background in the $\ell\ell\nu\nu$ decay mode result.

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>ZZ</th>
<th>WW</th>
<th>WZ</th>
<th>\bar{t}</th>
<th>DY</th>
<th>$W\gamma$</th>
<th>$W + \text{jets}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>MC-run dep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF</td>
<td>2.7</td>
<td>1.9</td>
<td>2.7</td>
<td>2.1</td>
<td>4.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>NLO</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>E_L</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>5.9</td>
<td>10</td>
</tr>
<tr>
<td>Conversion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet modeling</td>
<td>2</td>
<td>2.8</td>
<td></td>
<td></td>
<td>7.3</td>
<td>4</td>
<td>26.6</td>
</tr>
<tr>
<td>Jet misidentification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepton ID eff.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trigger eff.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_T modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_T^{Ax} cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*\(a\)Affecting only the dimuon sample.

The likelihood fit of the data yields 48.4$^{+20.3}_{-16.0}$ events and a measured production cross section $\sigma(p\bar{p} \rightarrow Z/\gamma^*Z/\gamma^* \rightarrow 4\ell) = 1.45^{+0.45}_{-0.42}$ (stat) +0.41 (syst) pb, which corresponds to $\sigma(p\bar{p} \rightarrow ZZ) = 1.34^{+0.39}_{-0.38}$ (stat) +0.28 (syst) pb considering the correction factor for the zero-width calculation.

The $ZZ \rightarrow \ell\ell\ell\ell$ decay mode has a very small branching fraction (0.45%) but also has smaller background. The efficiency to pass the lepton identification requirements enters the overall efficiency to the fourth power. Therefore, we optimize the lepton selection for higher efficiency, accepting a larger rate of jets misidentified as leptons.

For the $\ell\ell\ell\ell$ analysis, the lepton selections used for the $\ell\ell\nu\nu$ analysis is extended to include electrons that span an η range beyond the coverage of the tracking system and are therefore reconstructed based only on the energy deposit in the calorimeter. Each of the three resulting electron categories is now extended to use a likelihood-based combination of selection variables rather than an orthogonal series of requirements. For muons, the isolation requirement and limits on the energy deposited in the calorimeters are relaxed. Depending on the lepton category, the efficiency is improved by 5%–20% compared to the previous CDF ZZ cross-section measurement [8]. Selection efficiencies are measured in data and MC simulation using $Z \rightarrow \ell\ell$ samples. Correction factors are then applied to the signal simulation obtained from the ratio of the efficiency calculated in the simulation and in the data.

$ZZ \rightarrow \ell\ell\ell\ell$ candidate events are required to have four leptons with $p_T > 10$ GeV/c, at least one of which must have $p_T > 20$ GeV/c and be a lepton that met the trigger requirements. The leptons are grouped into opposite sign, same flavor pairs, treating the track-only leptons as either e or μ and the trackless electrons as either charge. For events containing more than one possible grouping, the grouping with the smallest sum of the differences from the Z boson mass is selected. One pair of leptons must have a reconstructed invariant mass within ± 15 GeV/c2 of the Z mass, while the other must be within the range $[40, 140]$ GeV/c2.

The only significant backgrounds to the $\ell\ell\ell\ell$ final state come from $Z + \text{jets}$, where two jets are misidentified as leptons, and $Z\gamma + \text{jets}$, where the photon and a jet are misidentified as leptons. These are modeled with a similar procedure to the $W + \text{jets}$ background in the $\ell\ell\nu\nu$ analysis. A sample of three identified leptons plus a leptonlike jet, $3l + j_l$, is weighted with a misidentification factor to reflect the background to the $\ell\ell\ell\ell$ selection. This procedure double counts the contributions from $Z + 2\text{jets}$ because these have two jets, either one of which could be misidentified to be included in the $3l + j_l$ sample, but both of which need to be misidentified to be included in the $\ell\ell\ell\ell$ sample. A few percent correction is made for the double counting, and a simulation-based correction is made for the contamination of the $3l + j_l$ sample by $ZZ \rightarrow \ell\ell\ell\ell$ events in which one of the leptons fails the selection criteria and passes the j_l selection criteria. The resulting background estimate is $0.26^{+0.53}_{-0.15}$ events, where the dominant uncertainty is due to the limited statistics of the $3l + j_l$ sample.

The $ZZ \rightarrow \ell\ell\ell\ell$ acceptance is determined from the same PYTHIA-based simulation as is used for the $\ell\ell\nu\nu$ analysis. The expected and observed yields are summarized in Table III. Figure 2 shows a scatter plot of the mass

<table>
<thead>
<tr>
<th>Process</th>
<th>Expected events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>9.56 ± 1.24</td>
</tr>
<tr>
<td>$Z(\gamma) + \text{jets}$</td>
<td>0.26 + 0.53 − 0.15</td>
</tr>
<tr>
<td>Total expected</td>
<td>9.82 ± 1.25</td>
</tr>
<tr>
<td>Observed data</td>
<td>14</td>
</tr>
</tbody>
</table>
for the leading versus subleading p_T Z candidates, showing that the candidates are tightly clustered in the center of the signal region as expected.

The dominant systematic uncertainty is a 10% uncertainty on the lepton acceptance and efficiency which is based on a comparison of the expected and observed yields in a sample of $Z \rightarrow \ell\ell$ events. Additional uncertainties include 2.5% on the acceptance due to higher order QCD effects which are not simulated, 2.7% due to PDF uncertainties, 0.4% from the trigger efficiency determination, and 5.9% due to the luminosity uncertainty.

In the $\ell\ell\ell\ell$ final state, we observe 14 events, of which we expect $0.26^{+0.53}_{-0.15}$ to be background, resulting in a measured cross section of $\sigma(p\bar{p} \rightarrow Z/\gamma^*Z/\gamma^*) = 2.18^{+0.67}_{-0.38}(\text{stat}) \pm 0.29(\text{syst})$ pb, corresponding to $\sigma(p\bar{p} \rightarrow ZZ) = 2.03^{+0.62}_{-0.54}(\text{stat}) \pm 0.27(\text{syst})$ pb in the zero-width approximation.

The two results described above are based on orthogonal data samples, given the explicitly different requirements on the number of identified leptons in the final state. We therefore combine the two measurements, using the same likelihood function and minimization procedure applied to the $\ell\ell\nu\nu$ analysis and taking into consideration the correlations for the common systematic uncertainties. The combined measured cross section is

$$\sigma(p\bar{p} \rightarrow ZZ) = 1.64^{+0.44}_{-0.38}(\text{stat} + \text{syst}) \text{ pb}, \quad (2)$$

which is consistent with the standard model NLO calculation $\sigma_{\text{NLO}}(ZZ) = 1.4 \pm 0.1$ pb. This result is the most precise total cross-section measurement of ZZ production at the Tevatron to date, reducing the uncertainty to below 30%.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program; the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

Deceased.

bVisitor from Univ. of California at Berkeley, Berkeley, CA 94720, USA.

cVisitor from Miniatura, S. Antioco, Cagliari, 09042 Monserrato (Cagliari), Italy.

dVisitor from University of California at Santa Barbara, Santa Barbara, CA 93106, USA.

eVisitor from University of California at Santa Cruz, Santa Cruz, CA 95064, USA.

fVisitor from Utah State University, Logan, UT 84322, USA.

gVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Sez. 2, Cagliari, Italy.

hVisitor from University of California Santa Barbara, Santa Barbara, CA 93106, USA.

iVisitor from the Australian Department of Industry, Innovation, Science and Technology, Canberra, ACT 2601, Australia.

jVisitor from CERN, CH-1211 Geneva, Switzerland.

kVisitor from Cornell University, Ithaca, NY 14853, USA.

lVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.

mVisitor from Fermilab, Batavia, IL 60510, USA.

nVisitor from Arizona State University, Tempe, AZ 85287, USA.

oVisitor from University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
[27] J. Campbell and R. K. Ellis, MCFM—Monte Carlo for FeMtobarn Processes (Fermilab, Chicago, IL, 2010). We ran MCFM Monte Carlo with the MSTW2008 PDF set and varied the factorization and renormalization scale.
[30] $\sum E_T$ is defined as the sum of the energy deposit in the calorimeter towers times the sine of the polar angle of the tower.