Mobility enhancement in indium-rich N-channel In$_x$Ga$_{1-x}$As HEMTs by application of <110> uniaxial strain

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Mobility Enhancement in Indium-rich N-channel In$_x$Ga$_{1-x}$As HEMTs by Application of <110> Uniaxial Strain

Ling Xia* and Jesús. A. del Alamo

Microsystems Technology Laboratories (MTL), Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.

* Email: lingxia@mit.edu Tel: 1-617-258-5752

Abstract— As in Si CMOS, the incorporation of mechanical strain offers the possibility of improving the performance of III-V field effect transistors (FETs). Quantifying its potential and providing fundamental understanding of the impact of strain are the goals of this study. This paper reports an investigation of the impact of <110> uniaxial strain on n-type InAlAs/InGaAs HEMTs with a 70% InAs channel core. The main impact of strain is found to be a modification of the electron effective mass and mobility. A comparison between the effect of <110> strain in Si and InGaAs suggests that strain engineering can indeed be leveraged to improve transport properties in deeply scaled InGaAs FETs.

I. INTRODUCTION

The incorporation of mechanical strain in the channel has greatly enhanced the carrier velocity and performance of both n- and p-type Si MOSFETs (1). As scaling approaches the end of the roadmap, InGaAs-based FETs are receiving a great deal of attention as a potential post-Si CMOS logic technology. (2-3) Just as with Si, in an effort to explore the ultimate potential of InGaAs for logic, strain is being investigated as a path to improve the performance of InGaAs FETs. (4-5)

In the literature, only a handful of experiments involving strain on actual FETs have been described. (6-7) In these studies, it is hard to attribute the observed changes entirely to strain-induced effects such as mobility enhancement, because the effects of strain and channel material composition were not separated (6), or the analysis was not detailed enough (7).

Our previous study showed that uniaxial strain can be used to improve the electrostatic control of n-type AlGaAs/InGaAs Pseudomorphic High Electron Mobility Transistors (PHEMT) with a low InAs mole fraction (15%) channel through the piezoelectric effect but offered little in terms of improved transport. (8) In the present work, we carry out a detailed experimental study of uniaxial strain effects on InAlAs/InGaAs HEMTs with a 70% InAs channel core and a scaled InAlAs barrier. In these devices we found that mobility change dominates the impact on the device characteristics that result from the application of uniaxial strain.

II. EXPERIMENTS

To introduce controlled uniaxial strain in HEMTs, we designed and fabricated a mechanical apparatus to bend small chips (Fig. 1(a)). This apparatus allows the application of uniaxial strain up to ±0.3% to III-V chips with a size down to 2 mm x 4 mm. Four metal ridges at the center of the apparatus are used to apply force to the chip. Alternating the relative horizontal positions of the two pairs of ridges changes the type of strain (compressive or tensile) on the top surface of the chip. Due to their fragility, the III-V chips are mounted on a Ti plate together with a strain gauge (Fig. 1(b)). The devices are wire-bonded to connection pads that connect them to a semiconductor parameter analyzer. The strain level has been calibrated through: 1) in-situ strain gauge measurements and 2) ex-situ curvature measurements by surface laser reflection.

Fig. 1. (a) Chip-bending apparatus. (b) Experimental setup to characterize devices under uniaxial strain.

The devices used in this study are HEMTs with a thin indium-rich In$_{0.7}$Ga$_{0.3}$As-channel core. Fig. 2 sketches a cross section of these devices. Devices made on the same heterostructure have shown excellent logic scaling behavior down to gate lengths (L_g) of 30 nm. (9) In this study, in order to...
avoid short-channel effects, devices with \(L_g = 2 \) \(\mu \)m were fabricated. The gate was driven into the InAlAs barrier by a platinum-sinking technique (2). The final InAlAs barrier thickness is estimated to be 10 nm. Fig. 3 shows typical transfer characteristics of a representative device.

![Delta doping](image)

Fig. 2. (Left) Cross section of HEMTs used in this study. \(L_g = 2 \) \(\mu \)m. (Right) The configuration of applied strain.

![Transfer characteristics](image)

Fig. 3. Transfer characteristics of the device under study.

We performed bending experiments on devices with the channel oriented along the [110] direction. We sequentially applied tensile and compressive strain, both parallel (\(\epsilon_{//} \)) and perpendicular (\(\epsilon_{\perp} \)) to the channel direction, as indicated in Fig. 2. A set of electrical parameters were extracted by a benign characterization suite during bending experiments. We studied the strain dependence of \(V_T \), defined at \(I_D=1 \) mA/mm, as a proxy for the device electrostatics, and the linear-regime drain current (\(I_{Dlin} \)) as a proxy for low-field transport. Both \(V_T \) and \(I_{Dlin} \) are determined at \(V_{DS}=50 \) mV to minimize heating effects and parasitic ohmic drops.

III. RESULTS AND DISCUSSION

Fig. 4 shows the sequential change of \(V_T \) with \(\epsilon_{//} \). The fact that \(V_T \) tightly follows the loading and unloading of strain indicates that strain was successfully applied to the device and that no relaxation took place in the course of the experiment. Similar results were obtained with strain applied normal to the channel.

![Delta V_T vs. Strain](image)

Fig. 5. Change of \(V_T \) as a function of <110> strain. The line corresponds to a model accounting for strain-induced \(\Delta \phi_B \).

Fig. 6 shows the change in the Schottky barrier height (\(\Delta \phi_B \)) extracted from a thermionic-emission model for the forward \(I-V \) characteristics of the gate-source diode as a function of the change in \(V_T \). The linear regression of \(\Delta \phi_B \) to \(\Delta V_T \) reveals that the dependence of \(\Delta V_T \) on strain can be almost fully attributed to the strain-induced change in \(\phi_B \), which is due to the hydrostatic component of the applied strain and is orientation independent (8). The coefficient that determines the change in \(\phi_B \) with strain is the conduction band deformation potential (\(\alpha_c \)). \(\alpha_c \) extracted from our experiment is \(-13\) eV, which is within the range of \(-3.4\) eV to \(-21\) eV that is reported in the literature (13).
The orientation-independent ΔV_T behaviour observed in these InAlAs/InGaAs devices is different from our earlier report on AlGaAs/InGaAs PHEMTs (8). In the devices in (8), the sign of ΔV_T changes as one alters the strain direction from [110] to [-110]. This was attributed to the piezoelectric effect. The orientation-independent ΔV_T in the present InAs-rich devices indicates that the piezoelectric effect is negligible. The reason for this is the much reduced barrier and channel thicknesses in the present devices and the small piezoelectric constants of the InAs-rich alloys in the barrier and the channel. (10) The orientation-independent ΔV_T also implies that the change of the centroid capacitance, which is the primary mechanism behind the gate capacitance (C_G) shift in the AlGaAs/InGaAs PHEMTs (8), becomes insignificant in the present devices.

To investigate the impact of strain on transport in our InGaAs HEMTs, we have extracted the linear-regime drain current (I_{Dlin}) defined at a constant gate overdrive ($V_{GS*} - V_T = 0.2$ V) and $V_{DS} = 50$ mV. Similar to strained Si MOSFETs, if C_G stays constant with strain, I_{Dlin} can be used as an indicator of mobility shift (11).

Fig. 7 shows the relative change of I_{Dlin} for strain along the two <110> directions. It is clearly seen that tensile ε_x increases I_{Dlin} and tensile ε_y decreases I_{Dlin}. Compressive strain has the contrary effect.

Monte Carlo simulations of biaxial strain effects on In$_{0.52}$Ga$_{0.48}$As (12) show that strain changes the electron effective mass (m_e^*) and, as a consequence, the electron mobility (μ_e). To facilitate understanding of the essential physics, we have carried out 8x8 $k.p$ simulations and calculated the band structure of InGaAs as affected by uniaxial strain. Band parameters from (13) were used. A Poisson ratio of 0.33 was used, which corresponds to the Ti plate as the mounted chip deforms with it.

Fig. 8 shows constant energy contours of the conduction band on the 2DEG plane. The constant energy contours elongate along the direction of compressive strain (left) and contract along the direction of applied tensile strain (right). The contrary happens along the normal direction. The elongation and contraction of the energy contours respectively correspond to the increase and decrease of m_e^*.

Values of m_e^* were extracted from the curvature of E-k curves along <110>. A pronounced anisotropy of m_e^* change is seen with <110> uniaxial strain. The relative change for the in-plane effective mass parallel to strain ($m_{e||}$) is -7% per 1% strain, and +7% per 1% strain for the in-plane effective mass perpendicular to strain ($m_{e\perp}$).

In theory, the change in mobility ($\Delta \mu_e$) is a combination of changes in the conductivity effective mass (m_e^*) and scattering time (τ). However, in our present devices, little change is expected in τ. To the first order, the value of τ is determined by $m_{DOS}^* = \sqrt{m_e^* m_c^*}$. Under <110> uniaxial strain, our $k.p$ simulation results suggest that changes in m_e^* and m_c^* almost precisely cancel out. Hence, $\Delta \mu_e$ is mainly determined by changes in $1/m_e^*$. m_e^* is equal to m_c^* when ε_y is applied and to m_e^* when ε_x is applied. The solid lines in Fig. 7 represent the relative change in μ_e considering the change in $1/m_e^*$ due to <110> uniaxial strain as obtained from our $k.p$ simulations. The μ_e reduction/enhancement factors predicted by $1/m_e^*$ are +7% and -7% per 1% strain, close to those experimentally measured in I_{Dlin} (+9.9% and -11.0% per 1% strain).

To benchmark the <110> uniaxial strain effect on the InGaAs mobility, we compare it with that of Si (14-17). As shown in Fig. 9, similar to InGaAs, the <110> $m_{e||}$ of the 2-fold valleys in Si obtained by empirical non-local pseudopotential simulations changes anisotropically with applied <110> uniaxial strain. The <110> experimental μ_e data obtained from ultrathin-body Si FETs manifests this anisotropic change of m_e^*. (14) The mobility enhancement in Si, in addition...
to the change in m_e^*, might arise from reduced inter-valley scattering. It can be seen that the experimental mobility enhancement (14-15) as a result of 1% ε_c is almost 4x higher in In0.7Ga0.3As than in In0.53Ga0.47As.

In very short devices, the most important transport parameter is the high-field electron velocity and not the low-field mobility. We have found that uniaxial strain by uniaxial strain effects on InAlAs/InGaAs HEMTs with an InAs-rich channel by chip-bending experiments. We have found that uniaxial strain changes the electron mobility through a change in the effective mass. $k.p$ simulations suggest that the effective mass reduction factor can exceed that of Si by incorporating more InAs in the channel and relieving the lattice-mismatch biaxial strain. This result indicates that strain engineering can be leveraged to improve the transport properties of InGaAs FETs, especially in deeply scaled devices.

IV. CONCLUSION

We have investigated <110> uniaxial strain effects on InAlAs/InGaAs HEMTs with an InAs-rich channel by chip-bending experiments. We have found that uniaxial strain changes the electron mobility through a change in the effective mass. $k.p$ simulations suggest that the effective mass reduction factor can exceed that of Si by incorporating more InAs in the channel and relieving the lattice-mismatch biaxial strain. This result indicates that strain engineering can be leveraged to improve the transport properties of InGaAs FETs, especially in deeply scaled devices.

References