Search for time-dependent $B_{s}^{0}-B_{s}^{0}$ oscillations using exclusively reconstructed D_{s}^{\pm} mesons

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for time-dependent $B_s^0 - \bar{B}_s^0$ oscillations using exclusively reconstructed D_s^\pm mesons

A search for $B_s^0 - \bar{B}_s^0$ oscillations is performed using a sample of 400,000 hadronic Z^0 decays collected by the SLAC Large Detector experiment. The B_s^0 candidates are reconstructed in the $B_s^0 \rightarrow D_s^- X$ channel with $D_s^- \rightarrow \phi \pi^-$, $K^-\bar{K}^0$. The B_s^0 production flavor is determined using the large forward-backward asymmetry of polarized $Z^0 \rightarrow b\bar{b}$ decays and charge information in the hemisphere opposite that of the B_s^0 candidate. The decay flavor is tagged by the charge of the D_s^-. From a sample of 361 candidates with an average B_s^0 purity of 40%, we exclude the following values of the oscillation frequency: $|\Delta m_s| < 1.4 \text{ ps}^{-1}$ and $2.4 < |\Delta m_s| < 5.3 \text{ ps}^{-1}$ at the 95% confidence level.

DOI: 10.1103/PhysRevD.66.032009 PACS number(s): 13.20.He, 13.25.Hw, 14.40.Nd
I. INTRODUCTION

The primary motivation for studying neutral B meson oscillations is to measure the poorly known Cabibbo-Kobayashi-Maskawa (CKM) matrix element V_{td}. The B^0_τ oscillation frequency corresponds to the mass difference, Δm_τ, between the physical eigenstates of the $B^0_d-B^0_\tau$ system, which is sensitive to $|V_{td}|$. Although Δm_τ is measured to within 2.5\% [1], theoretical uncertainties lead to a 20\% uncertainty in the extraction of $|V_{td}|$ [2]. However, many uncertainties cancel in the ratio of mass differences in the B^0_d and B^0_τ systems:

$$\frac{\Delta m_d}{\Delta m_\tau} = \frac{m_{B_d} f_{B_d}^2 B_{B_d} |V_{td}|^2}{m_{B_\tau} f_{B_\tau}^2 B_{B_\tau} |V_{td}|^2} = (1.15 \pm 0.05)^2 \frac{|V_{td}|^2}{|V_{td}|^2},$$

(1)

where m_{B_d} and m_{B_τ} are the B meson masses, f_{B_d} and f_{B_τ} are the decay constants, and B_{B_d} and B_{B_τ} are the “B parameters.” Using this formula, and assuming $|V_{td}| = |V_{cb}|$, one can obtain a 5–10\% theoretical uncertainty on $|V_{td}|$ [2,3].

As yet, the B^0_τ oscillation frequency has not been measured. The published lower limit on Δm_τ based on the combined results from ALEPH, DELPHI, OPAL and the Collider Detector at Fermilab (CDF) is 13.1 ps$^{-1}$ at the 95\% confidence level [1]. In the context of the standard model, other measurements suggest that Δm_τ may be just beyond this current limit [4].

This article describes a study [5] of $B^0_d-B^0_\tau$ oscillations with the SLAC Large Detector (SLD) experiment at SLAC. The measurement of B^0_d mixing requires excellent decay time resolution in order to resolve the very fast oscillations. The technique described in this paper, using $B^0_d \rightarrow D^-_s X$ decays [6] with $D^-_s \rightarrow \phi \pi^- \pi^+$ or $K^{*0}K^-$, has excellent decay length resolution (the best of any B^0_d analysis to date) and high purity (reconstruction of a D^-_s helps to discriminate against the prominent backgrounds from B^+ and B^0_d mesons). This work also represents the first use of polarized beams in a search for B^0_s mixing, which provide an effective new means of identifying the flavor of the B^0_s meson at production.

II. APPARATUS AND EVENT SELECTION

This analysis is based on a dataset of 400,000 events of the form $e^+e^- \rightarrow Z^0 \rightarrow$ hadrons, collected from 1996 through 1998 by the SLD experiment. A detailed description of the experiment can be found elsewhere [7,8]. The analysis uses charged tracks reconstructed in the Central Drift Chamber (CDC) and the pixel-based CCD vertex detector (VX3D). The momentum resolution from the combined CDC and VX3D fit is determined to be $\sigma_{p_l}/p_{l,\pm} = 0.010 \pm 0.0024 p_{l,\pm}$, where $p_{l,\pm}$ (in GeV/c) is the momentum of the track transverse to the beam line. The track impact parameter resolution in the transverse plane is $\sigma_p = 8 \pm 33(p \sin^2 \theta)/\mu$m and along the beam direction is $\sigma_p = 10 \pm 33(p \sin \theta)/\mu$m, where p (in GeV/c) is the track momentum and θ is the polar angle with respect to the electron beam. The tracking system is surrounded by the Cherenkov Ring Imaging Detector (CRID), a two-radiator system that allows good pion and kaon separation in the momentum range between 0.3 and 35 GeV/c.

The goal of the analysis is to measure or constrain the oscillation frequency. This is accomplished by using B^0_d decay candidates that are flavor tagged at both production and decay, and by measuring the proper time of the decay through measurements of the B^0_d decay length and energy. The decay time distributions of B mesons whose flavor at production and decay are different (the same), so-called mixed (unmixed) events, are modulated by the oscillation frequency. A fit to these distributions constrains Δm_τ.

Event reconstruction consists of four main steps: hadronic event selection, $Z^0 \rightarrow b\bar{b}$ event selection, D^-_s decay reconstruction, and partial reconstruction of B^0_d decays. A hadronic event is identified as having at least seven charged tracks, a total energy of at least 18 GeV, and an event thrust axis satisfying $|\cos \theta_{thrust}| < 0.85$. The thrust axis is calculated based on the energy clusters found in the liquid-argon calorimeter. The hadronic event selection removes essentially all dilepton events and other non-hadronic backgrounds. To enhance the fraction of $Z^0 \rightarrow b\bar{b}$ events in the sample, events are required to have at least one topologically reconstructed secondary vertex [9] with a vertex mass greater than 2 GeV in either hemisphere. The vertex mass calculation includes a correction for the missing momentum transverse to the B flight direction in order to partially account for missing particles. A neural network [10] is used to select a candidate secondary B vertex (if multiple topological secondary vertices exist) and its decay tracks. The resulting event sample is 97\% pure $b\bar{b}$ with a single hemisphere b tagging efficiency of 54\%.

The D^-_s is reconstructed in one of two modes, $D^-_s \rightarrow \phi \pi^- \pi^+$ or $K^{*0}K^- \rightarrow K^-K^+\pi^-\pi^+$. Oppositely charged tracks are first paired to form a ϕ (K^{*0}) candidate and a third track is then attached to form a D^-_s candidate. To maximize the discrimination between true D^-_s and combinatorial background events, kinematic information for the D^-_s candidate is fed into another neural network. In this case, the neural network inputs include CRID particle identification information for each of the three daughter tracks, the K^+K^- ($\pi^\pm\pi^-\pi^\pm$) invariant mass for ϕ (K^{*0}) candidates, the fit probability for the D^-_s decay vertex, the D^-_s decay length normalized by the decay length error, the total momentum of the D^-_s, the angle between the neutral meson (ϕ or K^{*0}) momentum in the D^-_s rest frame and the D^-_s flight direction, and the angle between the $\pi^-\pi^+$ or K^- from the D^-_s decay and the K^+ from the neutral meson decay in the rest frame of the neutral meson. The neural net cut that maximizes the sensitivity of the analysis to B^0_s mixing is determined separately for each of the two D^-_s decay modes. The resulting $KK\pi$ mass distribution for both modes combined is shown in Fig. 1.

The B^0_d decay vertex is found by vertexing the virtual D^-_s track with other tracks in the hemisphere. The virtual D^-_s track is constructed by combining the 4-momenta of the three daughter tracks and constraining the parent D^-_s to pass
through the decay vertex. The parent track error matrix is determined from the propagation of the track measurement errors of the daughters. The \(B_s^0 \) vertex fit is accomplished in two steps: (1) identify an intersection of the virtual \(D_s^- \) track with another charged track in the same hemisphere to act as a seed for the \(B_s^0 \) decay vertex and (2) add other charged tracks to the seed vertex if they are more consistent with coming from the \(B_s^0 \) decay than coming from the primary interaction point (IP). To find the seed, the \(D_s^- \) track is individually vertexed with each track (excluding \(D_s^- \) daughters) in the same hemisphere. The vertex that is farthest from the IP and upstream of the \(D_s^- \) (or consistent with being upstream within 5\(\sigma \)) and has a vertex fit \(\chi^2 \) of less than 5 is chosen as the seed. In order to determine if another track should be added to the vertex, we examine two parameters: (1) the distance \(D \) from the IP to the seed vertex and (2) the distance \(L \) along the same direction from the IP to the point of closest approach of the track. If the ratio \(L/D \) is greater than 0.5 and the track forms a good vertex with the \(D_s^- \) (fit \(\chi^2 \approx 5 \)), the track is added to the vertex. The latter condition is imposed to reject spurious tracks (often from a second charm decay if the \(B \) decayed to two charm particles) that do not point back to the \(B \) vertex. Only \(B \) decays for which the total charge of all associated tracks is \(Q = 0 \) or \(\pm 1 \) are kept for the \(\phi \pi \) mode and those for which \(Q = 0 \) are kept for the \(K^{*0}K^- \) mode. The selected tracks are then vertexed together with the \(D_s^- \) to obtain the best estimate of the \(B \) decay position.

The IP location, needed to calculate the \(B_s^0 \) decay length, is determined from tracks that have vertex detector hits and extrapolate within 3\(\sigma \) of the beam line. The coordinates transverse to the beam are averaged over approximately 30 sequential hadronic \(Z^0 \) events, while the position along the beam is determined event by event. The resulting error in the IP position is 3.5 \(\mu \)m in the transverse plane and 17 \(\mu \)m along the beam, the best resolution of any high energy physics collider. By making use of this well-determined beam spot, the very small beam size, and information from the high precision CCD vertex detector, this analysis has a unique sensitivity for measuring decay times of the \(B \) mesons.

An estimate of the \(B_s^0 \) decay length resolution is determined event-by-event according to the vertex fit and IP uncertainties, with correction factors applied for each particle decay hypothesis (\(B_s^0, B_s^0, B^+ \), or \(b \) baryon) as determined from a Monte Carlo simulation. The SLD Monte Carlo simulation uses JETSET 7.4 with the \(B \) decay model tuned to CLEO and ARGUS data [11]. Parameterizing the decay length resolution as a sum of two Gaussians with normalizations of 0.6 (core) and 0.4 (tail), the estimated multiplicative correction factors for the \(B_s^0 \) signal events are 1.07 and 2.16 for the core and tail resolutions, respectively. The resulting average decay length resolution for the \(B_s^0 \) signal events is 50 \(\mu \)m (core) and 151 \(\mu \)m (tail).

The \(B \) meson boost is calculated from separate estimates for the charged and neutral particle contributions to the total energy. The charged energy is determined by summing all the charged tracks associated with the \(B \) decay assuming the pion mass (except for the two kaons from the \(D_s^- \) decay). The neutral energy estimate uses five different techniques. The first four techniques are calorimeter-based and use various constraints (beam energy, jet energy, \(B_s^0 \) mass and calorimeter information) to estimate the neutral energy of the \(B \) meson [12]. The fifth technique is based only on the information from the charged decay tracks and the kinematics of the decay (\(B \) vertex axis, charged track momentum and \(B_s^0 \) mass constraint) [13]. The results from the five algorithms are then averaged, taking correlations into account, to obtain the total \(B \) energy. The resulting average boost resolution (\(\sigma_{\beta\gamma}/\gamma B \)) is represented by a sum of two Gaussians with widths (normalizations) of 8\% and 18\% (0.6 and 0.4) for the \(B_s^0 \) signal events.

Our final data sample includes 361 events within \(\pm 40 \) MeV of the \(D_s^- \) mass peak (Fig. 1) with an average \(D_s^- \) purity of 48.1\%. The composition of the \(D_s^- \) signal sample is calculated from the published branching ratio measurements with the relative reconstruction efficiencies of various decay modes taken from the Monte Carlo simulation. We estimate that the \(D_s^- \) signal peak consists of \(B_s^0 \rightarrow D_s^- X \) (55.1\%), \(B_s^0 \rightarrow D_s^- X \) (22.4\%), \(B^+ \rightarrow D_s^+ X \) (15.6\%), \(b \) baryon \(\rightarrow \bar{D}_s^+ X \) (5.5\%) and prompt \(c \rightarrow D_s^- \) (1.4\%). For the hadronic \(B_s^0 \) decays, roughly 10\% of the decays yield a wrong sign \(D_s^- \) (\(B_s^0 \rightarrow D_s^- l^+ \nu X \)) due to \(W^+ \rightarrow D_s^+ l^- \). Of the 361 \(B_s^0 \) candidates, 39 are semileptonic decay candidates (\(B_s^0 \rightarrow D_s^- l^+ \nu X \)). The fraction of wrong-sign \(D_s^- \) decays for the semileptonic modes is about 5\%. These events have a significantly higher \(B_s \) fraction and tagging purity than the hadronic decay sample, and therefore are parametrized separately.
III. TAGGING

The flavor of the B_s^0 at decay is determined by the charge of the D_s^-. A D_s^+ is assumed to come from a B_s^0 and a D_s^+ is assumed to come from a B_s^0. The B_s^0 flavor at production is obtained by exploiting the large forward-backward asymmetry in polarized $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$ decays. The differential cross section for the decay is given by

$$\frac{d\sigma(b)}{d\cos \theta} \propto (1 - A_P P_e)(1 + \cos^2 \theta) + 2A_P (A_e - P_e) \cos \theta,$$

(2)

where the asymmetry parameter can be expressed in terms of vector and axial-vector couplings, $A_f = 2a_f v_f / (a_f^2 + v_f^2)$ and θ is defined as the angle between the outgoing fermion and the electron direction. The electron polarization is defined as $P_e = [N(R) - N(L)]/[N(R) + N(L)]$, where $N(R)$ [$N(L)$] is the number of right-handed (left-handed) electrons in a beam bunch. The outgoing b quark is produced preferentially along the direction opposite to the spin of the Z^0 boson. Therefore, by knowing the polarization of the electron beam and the direction of the jet, the flavor of the primary quark in the jet can be inferred. The correct tag probability depends on the polar angle of the jet with respect to the incident electron beam direction and the electron beam polarization. The average electron beam polarization achieved during the run is about 73%. The resulting average correct tag probability is about 72%. In addition to the polarization tag, information from the hemisphere opposite to the reconstructed B_s^0 is used to improve the identification of the production flavor. A series of neural networks is used to combine momentum-weighted jet charge, vertex charge, dipole charge [8], lepton charge and kaon charge information. The purity of the opposite hemisphere charged tags has been calibrated from the data to be $(70.4 \pm 0.8)\%$. Combining all available tags, the overall production flavor tag purity is $(77.8 \pm 0.8)\%$. In the end, candidates for which the flavor of the B meson at decay is more than 50% likely to be different from the flavor at production are said to be “mixed.”

![FIG. 2. Measured B_s^0 oscillation amplitude as a function of Δm_s. The light-gray (dark-gray) band shows the 90% confidence region obtained from statistical (total) uncertainties. Values of Δm_s for which the allowed band is below $A = 1.0$ are excluded at the one-sided 95% confidence level.](image)

IV. FITTING AND RESULTS

To determine the B_s^0 oscillation frequency, an unbinned likelihood function is used to describe the proper time distribution of mixed and unmixed events. For signal $B_s^0 \rightarrow D_s^\pm X$ events tagged as mixed (unmixed), the proper time distribution has the form

$$P_{B_s^0}(\Delta m_s, t_{rec})^{\text{mixed}}(\text{unmixed}) = \int \exp(-t/\tau_{B_s^0})[1 \pm (1 - 2\eta_{B_s^0}) \cos(\Delta m_s t)] \epsilon_{B_s^0}(t) G_{B_s^0}(t_{rec}, t) dt,$$

(3)

where t_{rec} is the reconstructed proper time, t is the true proper time, $\tau_{B_s^0}$ is the B_s^0 lifetime, $\epsilon_{B_s^0}(t)$ is the reconstruction efficiency and $G_{B_s^0}(t_{rec}, t)$ is the proper time resolution.

<p>| TABLE I. | B production fractions and various branching ratios assumed in the amplitude fit. The uncertainties for the branching ratios do not include the uncertainty from $\mathcal{B}(D_s \rightarrow \phi \pi)$. |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value and error</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(\bar{b} \rightarrow B_s^0)$</td>
<td>0.100 \pm 0.012</td>
<td>[15]</td>
</tr>
<tr>
<td>$f(\bar{b} \rightarrow B_s^0, B^+)$</td>
<td>0.401 \pm 0.010</td>
<td>[15]</td>
</tr>
<tr>
<td>$f(\bar{b} \rightarrow b$ baryon)</td>
<td>0.099 \pm 0.017</td>
<td>[15]</td>
</tr>
<tr>
<td>$R_{B_s} f(\bar{b} \rightarrow B_s^0, B(B_s^0 \rightarrow D_s^- X) \cdot B(D_s^+ \rightarrow \phi \pi^+)$</td>
<td>$(6.21^{+0.77}_{-0.67}) \times 10^{-4}$</td>
<td>[15,16]</td>
</tr>
<tr>
<td>$f(b \rightarrow W^- \rightarrow D_s^- \phi \pi^-)$</td>
<td>$(3.66^{+0.45}_{-0.35}) \times 10^{-3}$</td>
<td>[16]</td>
</tr>
<tr>
<td>$B(B_s^0, B^+ \rightarrow D_s^- X) \cdot B(D_s^+ \rightarrow \phi \pi^+)$</td>
<td>$(3.71^{+0.28}_{-0.23}) \times 10^{-3}$</td>
<td>[15]</td>
</tr>
<tr>
<td>$B(B_s^0, B^+ \rightarrow D_s^- X) / B(B_s^0, B^+ \rightarrow D^- \phi \pi)$</td>
<td>0.172 \pm 0.083</td>
<td>[15]</td>
</tr>
<tr>
<td>$B(\bar{c} \rightarrow D_s^- \phi \pi^-)$</td>
<td>$(3.4^{+0.3}_{-0.3}) \times 10^{-3}$</td>
<td>[15]</td>
</tr>
</tbody>
</table>
function for the B^0_s events. The overall mistag probability is
\[\eta_{B_s} = \eta_i (1 - \eta_f)^l + (1 - \eta_i) \eta_f^l, \]
where \(\eta_i \) is the production flavor mistag probability and \(\eta_f^l \) is the decay flavor mistag probability for the B^0_s events. The efficiency and proper time resolution functions are derived from Monte Carlo simulations. The Monte Carlo vertexing resolution is based on our understanding of the impact parameter resolution, which is carefully tuned to match the data. A comparison of decay length resolution between data and Monte Carlo using 3-prong τ decays shows good agreement. The proper time resolution is expressed in terms of decay length and boost resolutions ($\sigma_L, \sigma_{\beta\gamma}$) according to

\[\sigma_{\beta\gamma}^i(t) = \left[\left(\frac{\sigma_{\beta\gamma}^i}{\gamma^2C^i} \right)^2 + \left(\frac{t}{\gamma^2 \beta^i} \right)^2 \right]^{1/2}, \]

where the indices $i, j = 1$ for core and 2 for tail resolution. Both \(\sigma_L \) and \(\sigma_{\beta\gamma} \) are determined event by event. The decay length resolution \(\sigma_L \) depends on the B^0_s vertex fit error matrix and IP uncertainties, and the boost resolution \(\sigma_{\beta\gamma} \) is parametrized as a function of charged track energy in the decay. The decay time resolution function is comprised of four \(\sigma_{\beta\gamma} \) Gaussian distributions given by the various \(\sigma_L \) and \(\sigma_{\beta\gamma} \) core-tail combinations.

The distribution for B^0_d mesons, which are also subject to oscillations, is identical to Eq. (3) with B^0_d subscripts replaced by B^0_s subscripts. The terms for $B^+ + b$ baryon, which do not oscillate, are constructed in an analogous fashion, but with $\Delta m = 0$. The probability density function for the data sample has the form

\[P = f_{D_s} \left(\frac{f_{B_s}}{N_{B_s}} P_{B_s} + \frac{f_{B_d}}{N_{B_d}} P_{B_d} + \frac{f_{B^+}}{N_{B^+}} P_{B^+} + \frac{f_{bbaryon}}{N_{bbaryon}} P_{bbaryon} + \frac{f_{cc}}{N_{cc}} P_{cc} \right) + \left[1 - f_{D_s} \right] P_{\text{comb}}. \]

The fraction of the D_s^- signal above the combinatorial $m_{KK\pi}$ background, f_{D_s}, is estimated from the previous D_s^- mass fit (Fig. 1) as a function of $m_{KK\pi}$. The remaining fractions are calculated based on the measured branching ratios with reconstruction efficiencies taken from the Monte Carlo simulation. The time distribution for the combinatorial events, P_{comb}, is parametrized directly from the data using events in the D_s^- mass sidebands. The sideband regions are defined as $1.7 < m_{KK\pi} < 1.8$ GeV (lower sideband) and $2.05 < m_{KK\pi} < 2.2$ GeV (upper sideband). The parameters N_i, are normalization constants, obtained by integrating the sum of P_{mixed} and P_{unmixed} over all reconstructed proper time.

In the absence of a signal, the amplitude fit method [14] is used to set a limit on Δm_s. The amplitude fit is equivalent to a Fourier analysis, in which one searches for peaks in the
frequency spectrum of oscillation. To perform an amplitude fit, the likelihood function is modified by replacing \(\cos(\Delta m t) \) with \(A \cdot \cos(\Delta m t) \). The amplitude \(A \) and its error \(\sigma_A \) are then measured at each assumed value of \(\Delta m_s \). If mixing occurs at the chosen value of \(\Delta m_s \), the fitted value of \(A \) should be consistent with unity. At values of \(\Delta m_s \) sufficiently far from the true mixing frequency, the fitted value of \(A \) should be close to zero, consistent with no oscillation. Values of \(\Delta m_s \) for which \(A + 1.645\sigma_A \leq 1 \) can be excluded at the 95% confidence level. We have tested this procedure on simulated data for \(\Delta m_s \) values of 4, 10, 17 and 270 ps\(^{-1} \) to verify that the amplitude fit behaves as expected in all cases.

The amplitude plot for this analysis is shown in Fig. 2. There is no evidence for a significant signal anywhere in the plot, so we use the analysis to set a limit on \(\Delta m_s \). The systematic errors on \(A \) are negligible compared to the statistical errors. The systematics are dominated by uncertainties in a small reconstructed proper time bias and a reweighting of the shape of the distribution as a function of neural net output, in \(f_{D_s} \) (as determined from the KK\(\pi \) mass fit), and in the boost resolution (10%). To a lesser extent, there are contributions from uncertainties in decay length resolution (7%) and branching fractions assumed in the fit (see Table I). Uncertainties in particle lifetimes and in the \(B_d^0 \) oscillation frequency are completely negligible. The list of systematic errors is shown in Table II. The dark-gray band in Fig. 2, barely visible at the edge of the light-gray band, shows the effect of adding the total systematic error to the calculations. Based on the result of the amplitude fit, the values of the \(B_d^0 \) oscillation frequency excluded at the 95% confidence level are \(\Delta m_s < 1.4 \) ps\(^{-1} \) and \(2.4 < \Delta m_s < 5.3 \) ps\(^{-1} \).

V. CONCLUSIONS

In conclusion, we have performed a search for \(B_s^0 \rightarrow \overline{B_s^0} \) oscillations using 361 \(B_s^0 \rightarrow D_s^- X \) candidate events with an average \(B_s^0 \) purity of 40%. The excluded values of oscillation frequency are \(\Delta m_s < 1.4 \) ps\(^{-1} \) and \(2.4 < \Delta m_s < 5.3 \) ps\(^{-1} \) at the 95% confidence level. The analysis exploits the unique large polarized forward-backward asymmetry in \(Z^0 \rightarrow b \bar{b} \) decays to enhance the production flavor tag. Combining the good production flavor tag and excellent proper time resolution, the analysis contributes to the world average at high \(\Delta m_s \) despite low statistics. Taken in conjunction with other published results, our result raises the 95% C.L. world limit on \(\Delta m_s \) from 13.1 ps\(^{-1} \) to 13.9 ps\(^{-1} \).

ACKNOWLEDGMENTS

We thank the personnel of the SLAC accelerator department and the technical staffs of our collaborating institutions for their outstanding efforts. This work was supported by the Department of Energy, the National Science Foundation, the Instituto Nazionale di Fisica of Italy, the Japan–U.S. Cooperative Research Project on High Energy Physics, and the Science and Engineering Research Council of the United Kingdom.

[3] The small theoretical error in the ratio of \(B_s^0 \) to \(B_d^0 \) oscillation frequency quoted in the previous reference has recently been challenged. See A.S. Kronfeld and S.M. Ryan, hep-ph/0206058.
[6] Charge conjugate reactions are implied throughout this paper.