Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase

Nozomi Andoa,b,1, Edward J. Brignolea,b,c,1, Christina M. Zimanyib, Michael A. Funkb, Kenichi Yokoyamab, Francisco J. Asturiasa, JoAnne Stubbeb,d, and Catherine L. Drennanb,d,2

*Howard Hughes Medical Institute, 1Department of Chemistry, and 2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and 3Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037

Edited by Rowena G. Matthews, University of Michigan, Ann Arbor, MI, and approved October 31, 2011 (received for review August 3, 2011)

Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is vital for cell health, the molecular basis of this regulation has remained enigmatic, largely due to a lack of structural information about how the catalytic subunit (α2) and the radical-generation subunit (β2) interact. Here we present the first structure of a complex between α2 and β2 subunits for the prototypic RNR from Escherichia coli. Using four techniques (small-angle X-ray scattering, X-ray crystallography, electron microscopy, and analytical ultracentrifugation), we describe an unprecedented α2β2 ring-like structure in the presence of the negative activity effector dATP and provide structural support for an active α2β2 configuration. We demonstrate that, under physiological conditions, E. coli RNR exists as a mixture of transient α2β2 and α4β4 species whose distributions are modulated by allosteric effectors. We further show that this interconversion between α2β2 and α4β4 entails dramatic subunit rearrangements, providing a stunning molecular explanation for the allosteric regulation of RNR activity in E. coli.

Important targets of anticancer and antiviral drugs, ribonucleotide reductases (RNRs) are classified by the metallocofactor used to generate a thyl radical (1) that initiates reduction of ribonucleotides to deoxyribonucleotides (2, 3). Class Ia RNRs are found in all eukaryotes and many aerobic bacteria, with the Escherichia coli enzyme serving as the prototype. These RNRs reduce ribonucleotide 5′-diphosphates and are composed of two homodimeric subunits: α2 and β2 (Fig. L4). The α2 subunit contains the active site, where ribonucleotide reduction occurs, and two types of allosteric effector binding sites (4, 5). One effector site tunes the specificity for all four ribonucleotides (2, 3), and two types of allosteric effector binding sites (4, 5). The second effector site controls the rate of reduction, binding ATP to turn the enzyme on or dATP to turn it off (4, 6). This activity site is housed in an N-terminal domain (5, 9) and provides a means for negative feedback regulation to safeguard against cytotoxic elevation of deoxyribonucleotide levels (2, 3, 10). The β2 subunit harbors the essential differic-tyrosyl radical (Y122′ in E. coli) cofactor (11) that initiates radical chemistry.

Active RNR has long been proposed to be a transient α2β2 complex (Fig. 1B) with enhanced subunit affinity upon binding of substrates and effectors (12–15). For each turnover, α2β2, substrate, and effector must interact, triggering long-range proton-coupled electron transfer (PCET) reducing Y122′ in β2 and oxidizing C439 to a thyl radical in the active site of α2, over an unprecedented distance of >35 Å (13, 15, 16) (Fig. 1C). Once the thyl radical is generated in the active site of α2, ribonucleotide reduction proceeds through a conserved mechanism (17). Allosteric regulation of this activity is key to cell survival and involves conformational changes as well as oligomeric state changes in both prokaryotic (12, 14, 18) and eukaryotic systems (19–23). For E. coli (12, 14, 18), mouse (20–22), yeast (19, 23), and human (19, 23), the negative effector dATP has been linked to increases in oligomeric state with a recent gas-phase electrophoretic molecular mobility analysis (GEMMA) study estimating a molecular mass of 510 kDa for the dATP-inhibited E. coli RNR (most consistent with an α2β2 state (18), whereas for human and yeast RNR, dATP has been linked to α-hexamerization (19, 22, 23).

To understand the role of oligomeric state in the activity regulation of this prototypic class Ia RNR from E. coli, we have combined data from four complementary structural techniques. Using small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we provide evidence that supports a compact α2β2 structure for the active complex that can be reversibly converted via a dynamic conformational rearrangement to an inactive α2β4 state in the presence of elevated dATP or protein concentrations. Additionally, using SAXS, single-particle EM, and X-ray crystallography, we demonstrate that the α2β2 complex induced by the negative effector, dATP, is an unexpected ring-like structure composed of alternating α2 and β2 subunits. Together, these results explain how activity can be modulated by oligomerization, which is induced by effector binding at an allosteric site that is approximately 42 Å from the active site.

Results

dATP Shifts Oligomeric Equilibrium. Sedimentation velocity AUC was employed to investigate the oligomeric distributions of E. coli RNR at multiple protein concentrations and in the presence of effectors at physiologically relevant concentrations (approximately 175 μM for dATP, 3 mM for ATP, and 0.1 mM for dTTP) (24–27). Using β2 that was pretreated with hydroxyurea to prevent turnover and thus oxidation of the active site during measurements, three different modes of RNR regulation were investigated: (i) under negative feedback regulation with dATP in both specificity and activity sites and CDP as the substrate; (ii) under enhanced CDP reduction with ATP in both specificity and activity sites and CDP as the substrate; and (iii) under GDP reduction with dTTP in the specificity site and no effector in the activity site.

Author contributions: N.A., E.J.B., C.M.Z., F.J.A., J.S., and C.L.D. designed research; N.A. performed SAXS and AUC experiments and data analysis; E.J.B. performed EM experiments and image analysis; C.M.Z. performed crystallization and crystal structure determination; M.A.F. and K.Y. prepared samples and performed AUC and SAXS experiments; and N.A., E.J.B., J.S., and C.L.D. wrote the paper. The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Free access online through the PNAS open access option.

Data deposition: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID code 3UUS).

1N.A. and E.J.B. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: cdrennan@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1112715108/-/DCSupplemental.
In the presence of saturating dATP and CDP, α2 alone and β2 alone sediment at 5.2 and 8.4 S, respectively (Fig. 2A). These sedimentation coefficients are in good agreement with previously reported experimental values (12, 14) as well as theoretical values calculated from their crystal structures (5, 28) of 5.8 and 8.4 S. Similar results are obtained for the individual subunits with ATP/CDP and dTTP/GDP (SI Appendix, Fig. S1). When α2 and β2 are combined in the presence of saturating dATP/CDP, a distinct peak is observed at 15.6 S at a physiological RNA polymerase concentration of 1 μM (26, 27) (Fig. 2A). Increasing the protein concentration does not result in peak shifts, indicating that the 15.6-S peak can be attributed to a single slowly dissociating species (29). Gaussian fitting to the peak yields a molecular mass of 533 kDa by the Svedberg relation (30) (SI Appendix, Fig. S2), similar to the 510-kDa estimate for the dATP-inhibited E. coli enzyme reported by GEMMA (18), and consistent with an αβ complex. A typical globular protein of this molecular mass has a frictional ratio of 1.2, giving an expected sedimentation coefficient of 19 S (31). This value is much larger than the observed value for the dATP-inhibited complex, suggesting that this complex is highly nonglobular.

In contrast, broad peaks with maxima near 10–11.5 S were observed in the presence of saturating dTTP/GDP or ATP/CDP at 1 μM protein concentration (Fig. 2B). Gaussian fitting of these peaks did not yield molecular mass estimates that were consistent with any one single species of RNA polymerase, including the expected αβ active complex. Furthermore, increasing the protein concentration by 10-fold shifted the dominant peak toward 15.6 S (dashed line in Fig. 2B), approaching the sedimentation coefficient of the dATP-inhibited complex. The observation of broad peaks that shift with increasing protein concentration is the hallmark of a mixture of rapidly exchanging species rather than a single species (29). Contrary to our previous understanding of E. coli class Ia RNA polymerase, the peak shifts observed here indicate that a large complex dominates at high protein concentration in the absence of dATP, with no effector in the activity site (Fig. 2B, dTTP/GDP) or even with a positive activity regulator occupying the activity site (Fig. 2B, ATP/CDP). Significantly, the peak shifts suggest that, under these conditions, this large complex is able to rapidly exchange with smaller species and is therefore in the equilibrium mixture even at physiological protein concentrations.

dATP-Inhibited Complex Contains Both α2 and β2. To determine the subunit composition and stoichiometry of the dATP-inhibited complex, we used SAXS, a structural technique that provides protein size and shape information in solution. α2 was titrated into β2 under identical dATP/CDP conditions investigated by AUC, leading to a rapid and dramatic increase in radius of gyration (Rg) up to the equilibrium point, consistent with the formation of a large complex with 1:1 subunit stoichiometry (SI Appendix, Fig. S3). Given the 533-kDa molecular mass determined by AUC, a 1:1 complex is the most consistent with a 517 kDa αβ oligomerization state.

As a control, α2 was examined under identical conditions without β2. The Rg of α2 alone showed minimal concentration dependence with a value of 39.7 ± 0.3 Å when extrapolated to zero protein concentration to eliminate the effects of interparticle interactions (SI Appendix, Fig. S3B), in excellent agreement with the theoretical value of 39.3 Å calculated from the α2 crystal structure (5). The reverse titration and corresponding control with β2 alone yielded similar results (SI Appendix, Fig. S4), showing that both α2 and β2 must be present for the formation of higher order oligomers.

Structure of the dATP-Inhibited Complex Is an αβ Ring. EM and X-ray crystallography were used to investigate the architecture of the dATP-inhibited αβ complex. EM images were acquired of 0.15 μM α2 and β2 in the presence of 1 mM CDPS and 0, 1, or 50 μM dATP (Fig. 3A and SI Appendix, Fig. S5). In the absence of dATP, the subunits are largely dissociated, as expected from the measured micromolar subunit affinity (32). The addition of dATP drives the formation of distinct ring-like complexes approximately 200 Å in outer diameter. Images of these ring-shaped particles were aligned and classified (SI Appendix, Fig. S6) and the resulting class averages are consistent with α2 and β2 subunits arranged in an alternating pattern, forming an αβ complex (Fig. 3B, Average). Because the EM images were collected as tilted–untilted pairs, we were able to generate a 3D

Fig. 1. Previously determined structures and proposed models for E. coli class Ia RNA polymerase. (A) Homodimeric α2 with nucleotides bound (spheres) and the C-terminal domains (residues 1–100) colored in green. Homodimeric β2 with diiron centers (green) and disordered C termini (gray lines). Protein Data Bank ID codes 4R1R, 3R1R, and 1RIB (5, 15, 28). (B) Proposed α2/β2 docking model in which the subunits are docked along their symmetry axis (15). (C) Docking model rendered as a surface. Radical pathway involving Y356 → W48 → C439 and Y731 → Y730 → C439 in α2 (dark-blue spheres). Y356 in β5 lies in the disordered C termini (15).

Fig. 2. Sedimentation coefficient distributions of E. coli class Ia RNA polymerase. dATP and high protein concentrations shift the equilibrium toward a large complex. Physiologically relevant effector and substrate concentrations were chosen to saturate their respective sites, based on previously reported nucleotide-binding affinities (4, 24, 25, 34, 51). (A) In the presence of 175 μM dATP and 1 mM CDP, the individual subunits (each at 2 μM) sediment at 5.2 and 8.4 S. When mixed, a single slowly dissociating 15.6 S complex is observed with a molecular mass of 533 kDa. (B) In the presence of 3 mM ATP and 1 mM CDP (red curves) or 0.1 mM dTTP and 1 mM GDP (blue curves), broad, protein-concentration-dependent peaks are observed, indicative of multiple species in rapid exchange. Raising the protein concentration leads to a peak shift toward 15.6 S (position indicated by dashed line). Curves are offset by a constant value for clarity.
map of the αβ$_1$ ring at approximately 23-Å resolution (Fig. 3B and SI Appendix, Fig. S7). Crystal structures of the individual dimeric subunits (5, 28) could be unambiguously fit to the 3D map of the αβ$_1$ ring, confirming the alternating subunit arrangement suggested by the 2D class averages.

To obtain a more detailed picture of the αβ$_2$ complex, a 6.55-Å resolution crystal structure was obtained by co-crystallizing α$_2$ and β$_2$ with 10 mM dATP (Fig. 3C and SI Appendix, Table S1). The structure, which was solved by molecular replacement, displays electron density for dATP bound at both activity and specificity sites (SI Appendix, Fig. S8 D and E) and reveals the same αβ$_1$ ring-shaped species in the asymmetric unit of the crystal as that observed by EM (Fig. 3 B and C). The individual α$_2$ and β$_2$ subunits of the αβ$_2$ structure align well with structures of uncomplexed α$_2$ and β$_2$ subunits, showing only small variations in the α$_2$ cone domain, and sharing overall average root-mean-square derivations of 1.11 and 1.01 Å for α$_2$ and β$_2$ subunits, respectively (SI Appendix, Fig. S8 B and C). In the αβ$_2$ structure, α$_2$ and β$_2$ contact each other at two points. In addition to the previously identified (15) binding pocket on α$_2$ for the C terminus of β$_2$, we find a second interaction between the activity site, housed in the N-terminal cone domain of α$_2$ (Fig. 3 C and D, green), and each lobe of β$_2$ (Fig. 3 C and D, red/orange). This direct contact between the dATP-bound α$_2$ activity site and the β$_2$ subunits provides a molecular explanation for how the presence of activity effectors can be sensed, leading to the regulation of activity. From these structural data, we can also rationalize why a dATP-induced αβ$_2$ complex would be inactive. We find that residues on the radial propagation pathway (Fig. 1C) are not aligned appropriately for electron transfer, instead facing a large central opening approximately 100 Å in diameter (Fig. 3C) such that W48 of β$_2$ and Y731 of α$_2$ are solvent exposed, and Y356 on the flexible C-terminal tail of β$_2$ remains disordered. Also, the distance between W48 and Y731 is too long (ca. 55–58 Å) for PCET via only a single residue in the middle (Y356). In contrast, for active E. coli RNR, expected W48-Y731 distances are approximately 23–25 Å based on the proposed docking model (15) (Fig. 1B), which has been supported experimentally using distance restraints from pulsed electron–electron double resonance (PELDOR) spectroscopy (13).

![Fig. 3. Structure of the dATP αβ$_4$ complex by EM and X-ray crystallography. (A) EM images of RNR in the presence of 1 mM CDP and increasing dATP concentrations show the formation of αβ$_4$ rings. (B) A class average with 1039 particles (Average) is representative of the ring structures observed at 50 μM dATP and is composed of alternating α$_2$ and β$_2$ subunits as indicated by its close resemblance to the 2D projection of the αβ$_4$ crystal structure (Projection in C). These insets are 314-Å wide. Crystal structures of individual α$_2$ and β$_2$ subunits (5, 39), colored as in Fig. 1, fit to a 3D EM map of the αβ$_4$ ring structure. (C) Crystal structure of dATP-bound RNR at 5.65-Å resolution with the asymmetric unit containing an αβ$_4$ ring that agrees well with the EM model (5–9 Å C$_1$ rmsd). (D) Surface rendering of the crystal structure with half of the ring removed, revealing the areas on α and β that are buried (yellow) upon formation of the αβ$_4$ ring. (E) Experimental solution scattering (red) of 2 μM RNR in the presence of saturating dATP/CDP superimposed with the theoretical scattering curves calculated from the EM model (black solid) and crystal structure (cyan dashed).](https://www.pnas.org/cgi/doi/10.1073/pnas.11127151508)
for probing structural interconversions as the relative fractions of individual states can be deconvoluted from mixtures (33). Titration of dATP into RNR in the presence of CDP leads to a dramatic change in the shape of the scattering curves and their corresponding Kratky curves, indicative of a transition from a predominantly compact state to a nonglobular state (Fig. 4 A and B). Above 24 μM dATP, or 4 molar equivalents of dATP per α2, the scattering curves are nearly superimposable and the R_g approaches that of the $\alpha_2\beta_2$ ring (SI Appendix, Fig. S10). This result is consistent with full dATP occupancy in the effector site of $\alpha_2\beta_1$, as expected from the reported dATP binding affinities for the specificity and activity sites of 0.5 and 5 μM, respectively (4, 34).

Isointensity points in the scattering curves are observed, indicating that this structural change can be explained by a two-state process (35) (Fig. 4A). Consistent with this interpretation, singular value decomposition shows that the scattering curves can be fit to linear combinations of two independent states with low residuals (SI Appendix, Fig. S11). The two-state transition is accompanied by an increase in the zero-angle scattering intensity $I(0)$, which is a function of protein concentration and the electron density contrast between the hydrated protein and buffer (36). Because the protein concentration was fixed and the micromolar dATP concentration does not significantly affect the buffer density, the large increase in $I(0)$ can only be explained by an increase in protein mass. Using experimental $I(0)$ values from the individual subunits as calibrants, the average molecular mass in the dATP-driven transition was calculated to increase from 223 kDa in the absence of dATP to 512 kDa at saturating dATP (SI Appendix, Fig. S12). These values are in close agreement with the 259 kDa $\alpha_2\beta_2$ expected in the absence of dATP and the 517 kDa $\alpha_2\beta_1$ expected under saturating dATP. The excellent molecular mass estimation of $\alpha_2\beta_2$ by this method suggests that the subunits have similar excluded volumes, and hence similar hydration layers, as the free subunits (37). In contrast, the underestimated in molecular mass of $\alpha_2\beta_2$ can be at least in part explained by diminished hydration around the individual subunits due to the compact arrangement as determined by Kratky analysis (Fig. 4B).

An ab initio shape reconstruction was performed on the scattering curve measured in the absence of dATP, yielding a globular, three-lobed molecular envelope (Fig. 4D, Center). Consistent with the molecular mass estimation and compact shape, this molecular envelope aligns well with the proposed $\alpha_2\beta_2$, “docking” model for active RNR (15). The fractions of this compact $\alpha_2\beta_2$ and of $\alpha_2\beta_1$ in the dATP titration series were determined (Fig. 4C) from a two-state fit to the scattering curves with low residuals (SI Appendix, Fig. S13B). By comparison, poor fits were obtained with open configurations of $\alpha_2\beta_2$, including an arrangement based on the previously reported asymmetric structure of a class Ib RNR from Salmonella typhimurium (38) (SI Appendix, Fig. S13C). Together, these results indicate that the addition of dATP drives a two-state transition from a compact state, in which the subunits are closely associated, to that in which the subunits form an open ring (Fig. 4 C and D, and SI Appendix, Fig. S10).

Discussion

Allosteric regulation of activity in class Ia RNR provides a mechanism to prevent the accumulation of cytotoxic levels of deoxyribonucleotides. dATP is unique among allosteric effectors in its ability to down-regulate RNR activity (4, 6). Here, using SAXS, EM, and X-ray crystallography, we present a structural model to explain dATP inhibition of activity for the prototypic class Ia RNR. We find that the dATP-inhibited complex has an $\alpha_2\beta_2$ stoichiometry as predicted by GEMMA (18), but with an unprecedented arrangement of alternating subunits in an open ring structure. Importantly, we have confirmed this surprising structure using four different techniques and have shown that this state is the predominant species stabilized by dATP under physiological solution conditions. Using the same concentration of protein in the absence of dATP the SAXS data agree well with the predicted $\alpha_2\beta_2$ docking model of the active RNR (15), providing a structural depiction of the elusive $\alpha_2\beta_2$ oligomerization state.

In addition to high dATP concentrations driving the formation of the $\alpha_2\beta_2$ state of E. coli RNR, AUC results show that increasing protein concentrations also shift the conformational equilibrium toward the higher molecular mass $\alpha_2\beta_2$ (Fig. 2B). At lower protein concentrations and in the absence of dATP, $\alpha_2\beta_2$ is still present but to a smaller degree, in rapid equilibrium with the active $\alpha_2\beta_1$ state. Taken together, the SAXS and AUC results suggest that the active RNR complex is an intermediate between two inactive states, the dissociated α_2 and β_2 and the $\alpha_2\beta_1$ ring (Fig. 4D).
and that the equilibrium between these states is sensitive to both protein and effector concentrations.

Although it has long been known that the α2 cone domain binds the activity effectors ATP and dATP (5, 19), this αβ2 structure provides a molecular explanation for how the cone domain regulates the activity of E. coli RNR. We find that each α2 cone domain contacts a lobe of β2, burying a surface area (566 Å² at each of four interfaces; Fig. 3D) that is large enough to stabilize the ring structure as the dominant species under physiologically relevant protein (1–2 μM) and dATP (175 μM) concentrations in the absence of ATP, although not so large as to inhibit interconversion back to the active αβ2 state in the presence of ATP and other effectors. In the αβ2 state, the radical transfer pathway from β1 to α1 is disrupted and solvent exposed, unable to propagate radicals. In contrast, in a compact αβ2 state, these residues are expected to be closer together, buried, and shielded from bulk water (15). Thus the cone domain of α2 “communicates” the nucleotide levels of the cell to β2, and the equilibrium of conformers can be shifted toward the αβ2 state, disrupting the radical pathway and inhibiting activity, or toward αβ2, restoring the radical pathway and enzyme activity, as nucleotide levels dictate.

Interestingly, a recently published 6.6-Å structure of yeast RNR also shows the α2 cone domain to be present at a protein–protein interface. In this case, however, the interface connects two α-subunits in a dATP-induced αβ hexamer (19). Although it is still early in terms of understanding structure/function for eukaryotic RNRs, this recent structural work along with the results presented here provide compelling support for the involvement of the cone domain in the formation of high-order RNR oligomers and pave the way for future studies.

Twenty-one years after the structure of β2 was published (39), a structure of an αβ-complex for this prototypic class Ia RNR is now available. Through the power of multiple structural techniques and combined efforts of multiple laboratories, the structures of all dominant forms of this enzyme can now be described. From crystallography and SAXS, views of the dissociated subunits are available (this work and refs. 5 and 28), from SAXS and PELDOR, low-resolution structural data support an active αβ2 model (this work and ref. 13), and from crystallography, EM, and SAXS, the structure of an allosterically inhibited αβ2 ring has been determined (this work). These structures have broad applications, providing a molecular framework for considering the relationship between in vivo E. coli nucleotide concentrations and RNR activity, as well as offering a basis for the rational design of a class of inhibitors that could act by stabilizing inactive oligomeric states of the enzyme. This open ring structure of alternating subunits is the latest surprise as this prototypic RNR enzyme, in all of its states, comes into focus.

Materials and Methods

E. coli α2 and β2 were isolated as previously described (40, 41). All of the β2 used in these structural studies was treated with hydroxyurea (HU) to reduce the essential tyrosyl radical to prevent substrate turnover. All experiments were performed in the standard assay buffer (50 mM Hepes, pH 7.6, 15 mM MgCl2, 1 mM EDTA) with 5 mM DTT and the nucleotide concentrations adjusted to the indicated levels.

Crystallization of αβ2 in the presence of ATP was performed by hanging drop vapor diffusion at pH 7.5. Data were collected at the Advanced Light Source beamline 8.2.2, and the structure was solved by molecular replacement using the coordinates 2R1R (5) and 1MXR (42) to 2.65-Å resolution and R factors of 25.7 (work) and 30.3 (free) (SI Appendix, Table S1).

SAXS images were collected at the Cornell High Energy Synchrotron Source G1 station and processed following previously described protocols (43). Data analyses were performed using the ATSAS package (44) and MATLAB (MathWorks). The momentum transfer variable, q, is defined as q = 4πλ∕sin θ, where 2θ is the scattering angle, and λ is the X-ray wavelength.

Sedimentation velocity AUC was performed using a Beckman XL-I analytically ultracentrifuge equipped with interference optics. Sedimentation coefficient distributions g(s) and-lg(s) were generated in DCDT+ (30) and Sedfit (45), respectively. The z values were corrected to standard values (z20w) using Sedinterp (46). Theoretical z20w values were calculated with BIOSAXS (47).

EM specimens were prepared by staining with uranyl acetate. Eighty-nine pairs of CCD images of unlabeled and ~55° tilted specimens were collected on a Tecnai F20 electron microscope (FEI). Particles were selected in untilted images using e2Boxer.py (48) and were matched with particles from tilted images using TiltPicker (49). A final dataset of 13,895 untitled particles were iteratively aligned and classified using SPIDER as described previously (50) and the corresponding set of tilted images used to generate a 3D reconstruction for each class.

Acknowledgments

We thank Deborah Pheasant [Massachusetts Institute of Technology (MIT) Biophysical Instrumentation Facility] and Dr. Walter Stafford (Boston Biomedical Research Institute) for helpful discussions on AUC. For assistance with SAXS data collection, we thank Mackenzie Frerir-Stevens (Boston University) and Kong (MIT) SAXS laboratory, the structures of all dominant forms of this enzyme can now be described. From crystallography and SAXS, views of the dissociated subunits are available (this work and refs. 5 and 28), from SAXS and PELDOR, low-resolution structural data support an active αβ2 model (this work and ref. 13), and from crystallography, EM, and SAXS, the structure of an allosterically inhibited αβ2 ring has been determined (this work). These structures have broad applications, providing a molecular framework for considering the relationship between in vivo _E. coli_ nucleotide concentrations and RNR activity, as well as offering a basis for the rational design of a class of inhibitors that could act by stabilizing inactive oligomeric states of the enzyme. This open ring structure of alternating subunits is the latest surprise as this prototypic RNR enzyme, in all of its states, comes into focus.

Ando et al. PNAS

