Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity

Kent Yagi,1 Leo C. Stein,2 Nicolás Yunes,2,3 and Takahiro Tanaka4

1Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
2Department of Physics and MIT Kavli Institute, Cambridge, Massachusetts 02139, USA
3Department of Physics, Montana State University, Bozeman, Montana 59717, USA
4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan

(Received 26 October 2011; published 19 March 2012)

We consider a general class of quantum gravity-inspired, modified gravity theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to scalar fields with standard kinetic energy. This class of theories includes Einstein-Dilaton-Gauss-Bonnet and Chern-Simons modified gravity as special cases. We analytically derive and solve the coupled field equations in the post-Newtonian approximation, assuming a comparable-mass, spinning black hole binary source in a quasicircular, weak-field/slow-motion orbit. We find that a naive subtraction of divergent piece associated with the point-particle approximation is ill-suited to represent compact objects in these theories. Instead, we model them by appropriate effective sources built so that known strong-field solutions are reproduced in the far-field limit. In doing so, we prove that black holes in Einstein-Dilaton-Gauss-Bonnet and Chern-Simons theory can have hair, while neutron stars have no scalar monopole charge, in diametrical opposition to results in scalar-tensor theories. We then employ techniques similar to the direct integration of the relaxed Einstein equations to obtain analytic expressions for the scalar field, metric perturbation, and the associated gravitational wave luminosity measured at infinity. We find that scalar field emission mainly dominates the energy flux budget, sourcing electric-type (even-parity) dipole scalar radiation and magnetic-type (odd-parity) quadrupole scalar radiation, correcting the General Relativistic prediction at relative ~1PN and 2PN orders. Such modifications lead to corrections in the emitted gravitational waves that can be mapped to the parameterized post-Einsteinian framework. Such modifications could be strongly constrained with gravitational wave observations.

DOI: 10.1103/PhysRevD.85.064022

PACS numbers: 04.30.Db, 04.25.Nx, 04.50.Kd

I. INTRODUCTION

The validity of Einstein’s theory in the strong-gravity regime will soon be put to the most stringent tests yet, through the observation of gravitational waves (GWs) from compact object binary inspirals [1–3]. Such waves carry detailed information about their source and the underlying gravitational theory in play. This information is primarily encoded in the evolution of the GW frequency, which in turn depends directly on the rate of energy transported away from the binary [4]. In general relativity (GR), this transport is performed exclusively by GWs. In modified gravity theories, however, additional (scalar, vectorial, or tensorial) degrees of freedom can also carry energy and angular momentum away as they propagate.

Calculating how gravitational waves are corrected in modified gravity theories can be a gargantuan task as the modification can increase the number of propagating degrees of freedom and the nonlinearity of the equations that control their propagation. For example, the amount of energy-momentum transported away from a binary system must be computed both from the GWs excited by the corresponding sources, as well as any additional waves associated with extra degrees of freedom [5]. The sources that drive such waves can depend both on derivatives of the metric perturbation and the extra degrees of freedom, which, in turn, are specified by the solution to their own equations of motion. The situation worsens if these are nonlinearly coupled, e.g. a scalar field equation of motion that depends on the metric tensor, whose evolution in turn depends on derivatives of the scalar field.

Such calculations, however, are feasible if one treats any GR deviations as small deformations [6], which can be formalized through the small-coupling approximation, a common technique in perturbation theory to isolate physically relevant solutions in higher-derivative theories [7–9]. This is a reasonable approximation given that GR has passed a large number of tests, albeit in the weak-gravity regime. Even in the GW regime, signals will slowly transition from sampling weak fields to moderately strong fields during a full binary inspiral. The strongest GW events will not be able to sample anywhere close to the Plank regime, where one would expect completely new physics. The largest gravitational fields experienced by binaries occur when these merge, and even then, the metric curvature cannot exceed m^{-2}, where m is the total mass of the binary. Earth-based detectors, such as LIGO [10], VIRGO [11], and KAGRA (used to be called LCGT)[12], and future space-borne detectors, such as LISA [13], will only be able to sample gravitational fields up to this strength.

Of the plethora of modified gravity theories, we choose to focus on a general class that is characterized by the
addition of quadratic curvature invariants to the action, coupled to scalar fields with standard kinetic terms (see e.g. Eq. (1)). Such theories are motivated from loop quantum gravity [14,15] and heterotic string theory [16], arising generically upon four-dimensional compactification in the low-energy limit. Disjoint subclasses of quadratic theories reduce to Einstein-Dilaton-Gauss-Bonnet (EDGB) theory [17,18] and Dynamical Chern-Simons (CS) modified gravity [19,20].

From a phenomenological standpoint, such quadratic gravity theories are also interesting as strawmen to study small deviations from GR. This is because the new quadratic terms are always small relative to the Einstein-Hilbert term when considering merging binaries. In such systems, the minimum radius of curvature is always larger than the new scale introduced by the scalar fields. If this were not the case, astrophysical observations would already have constrained quadratic gravity deviations.

Quadratic gravity introduces an equation of motion for the scalar field and modifies the metric field equations. The former is a driven wave equation, whose sources are quadratic curvature invariants. The latter contains new terms that depend on the product of the scalar field and its derivatives with the Riemann tensor, Ricci tensor, Ricci scalar and their derivatives. As such, one might worry that higher-derivative terms in the field equations could render the system unstable. One must remember, however, that the action is a truncation (at quadratic order in the present case) of an effective theory derived by integrating out heavy degrees of freedom contained in a more complete theory. Since we truncate the effective action, its validity is limited only to leading-order in the coupling parameters. Accounting for higher-order terms in the coupling would require the inclusion of higher-order terms (cubic, quartic, etc.) in the action [8]. Therefore, the modified field equations should not be considered as an exact system, but rather as an effective one.

Given the above and using the small-coupling approximation, the field equations become driven differential equations for the metric deformation and the scalar field. The source of the latter depends only on derivatives of the GR metric perturbation, while the source of the former depends both on the GR metric perturbation and the scalar field. We solve these equations in the post-Newtonian (PN) limit, where, in particular, we consider comparable-mass, spinning black hole (BH) binaries (electromagnetically uncharged), spiraling in a quasicircular orbit. This forces the driven differential equations into driven wave equations, which can be studied with PN techniques [21–27] and then solved via retarded Green function methods.

A complication arises when attempting to solve these equations, as one must choose a prescription to describe BHs and neutron stars (NSs). In standard PN theory and up to a certain high PN order, one can choose a point-particle prescription, essentially because the exterior gravitational field of a compact object is the same as that induced by a point-particle. In modified quadratic gravity, however, both nonspinning [28] and spinning [6], strong-field BH solutions differ from that generated by simple point particles with a mass-monopole and a current-dipole moment; BHs in these theories have additional scalar multipole moments. (See [29,30] for similar discussions on NSs in CS gravity.) One can take these effects into account by constructing an effective point-particle source that reproduces known, strong-field solutions to leading order in the weak-field region, sufficiently far away from the compact objects. With this effective point-particle prescription, we can then evaluate the source of the driven wave equations and analytically solve them to find the radiative part of the scalar field and metric perturbation.

Executive Summary of Results

Given the length of this paper, let us summarize the main results. We have devised a framework in the small-coupling approximation to solve for compact binary inspirals in modified quadratic gravity theories. One of the key ingredients in this framework is the calculation of effective source terms that allow us to use the point-particle approximation even for theories where such approximation is not valid. We applied this to modified quadratic gravity to find that both NSs and BHs have scalar hair, which leads to dipolar emission. EDGB and CS gravity are exceptions, where although BHs retain scalar monopole and dipole charges, respectively, NSs shed the scalar monopole charge. Therefore, BHs in EDGB generically contain dipolar GW emission, while CS gravity leads to modified quadrupolar emission.

The presence of scalar monopole and dipole hair, and, in particular, the flux of energy-momentum carried by this hair, leads to a modification in the rate of change of the binary’s binding energy. The even-parity sector of the theory leads to scalar hair, which modifies the energy flux at -1PN order relative to the GR quadrupole flux. Of course, such a modification is proportional to the coupling parameter of the theory, which is assumed small. The odd-parity sector leads to dipole hair for spinning BH binaries, which modifies the energy flux at 2PN relative order. If the BH binary components are nonspinning, they have no dipole hair but the binary orbital interaction generates a modification in the energy flux that enters at relative 7PN order. Figure 1 shows the energy flux carried by the even-parity scalar field (long dashed line), odd-parity scalar field (dot-dashed for spinning binaries, and short dashed line for nonspinning binaries), and the GR quadrupole flux (solid line) as a function of orbital velocity. Observe that when one assumes that BHs are nonspinning, the scalar emission is greatly suppressed.

These energy flux corrections translate into changes to the waveform observables. We explicitly calculate these and map them to the parametrized post-Einsteinian (ppE)
We have deferred many details of the computational techniques to the appendixes. Appendix A shows the NSs in post-Newtonian, quasicircular binary research. Appendix B discusses specific integration techniques. Appendix C estimates the order of the metric correction from the regularized contribution for nonspinning BHs in the odd-parity sector of the modified theory. Appendix D discusses particular integrals that appear when solving the field equations.

Henceforth, we follow mostly the conventions of Misner, Thorne and Wheeler [5]; Greek letters stand for spacetime indices; Latin letters in the middle of the alphabet i, j, \ldots stand for spatial indices only. Parenthesis, square brackets, and angled brackets in index lists denote symmetrization, antisymmetrization, and the symmetric and trace free (STF) operator, respectively. Capital Latin letters usually refer to a multi-index, such as $x^O = x^{\ell k \ldots}$, where $x^\ell x^k = x^x x^x \ldots$. Partial derivatives are denoted with $\partial_i A = A_i = \partial A/\partial x^i$, while covariant derivatives are denoted with the nabla $\nabla_i A$, for any quantity A. Deformations are labeled with the order-counting parameter ξ. Finally, we use geometric units, where $G = c = 1$, except when denoting the order of certain terms in the PN approximation. Throughout, we performed analytic calculations with the xTensor package for Mathematica [34,35].

II. MODIFIED GRAVITY THEORIES

In this section, we introduce the class of modified gravity theories that we study, by writing down its action and equations of motion. We then proceed to define the small-deformation approximation more precisely.

A. ABC of quadratic gravity

Consider the following 4-dimensional effective action:

$$S = \int d^4 x \sqrt{-g} \left(\kappa R + \alpha_1 f_1(\vartheta) R^2 + \alpha_2 f_2(\vartheta) R_{\mu \nu} R^{\mu \nu} + \alpha_3 f_3(\vartheta) R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma} + \alpha_4 f_4(\vartheta) R_{\mu \nu \rho \sigma} \ast R^{\mu \nu \rho \sigma} \right) - \frac{\beta}{2} \left[\nabla_{\mu} \vartheta \nabla^\mu \vartheta + 2V(\vartheta) \right] + L_{\text{mat}} \right).$$

Here, g stands for the determinant of the metric $g_{\mu \nu}$, R, $R_{\mu \nu}$, $R_{\mu \nu \rho \sigma}$, and $R_{\mu \nu \rho \sigma} \ast$ are the Ricci scalar and tensor, the Riemann tensor and its dual [36], respectively, with the latter defined as $1/R_{\nu \rho \sigma}^{\mu} = (1/2) \varepsilon_{\sigma \rho \sigma}^{\mu} R^{\rho \nu} \varepsilon_{\nu \rho \nu}$ and with $\varepsilon_{\mu \nu \rho \sigma}$ the Levi-Civita tensor. The quantity L_{mat} is the external matter Lagrangian, ϑ is a field, (α_1, β) are coupling constants, and $\kappa = (16 \pi)^{-1}$. This action contains all possible quadratic, algebraic curvature scalars with running (i.e. nonconstant) couplings, where we assumed that all quadratic terms are coupled to the same field. All other quadratic curvature terms are linearly dependent, such as the Weyl tensor squared.

The theory defined by the action above is different from $f(R)$ theories on several counts. First, $f(R)$ theories depend only on the Ricci scalar, while the action above depends on the Ricci tensor, the Riemann tensor, and a dynamical field ϑ. Second, $f(R)$ theories are usually treated as exact, while the action presented above is an effective theory, truncated

1This definition is correct, in agreement with [36], and fixing an inconsequential typo in [37].
to quadratic order in the Riemann tensor. The consequence of this is insisting on the use of order-reduction in the field equations, where we treat all quantities that depend on α_i perturbatively. Such order reduction then leads to the absence of additional polarization modes [37,38], such as the longitudinal scalar mode that arises in $f(R)$ theories.

The field equations of dynamical quadratic gravity can be obtained by varying the action with respect to all fields. For simplicity, we restrict attention to coupling functions $f_i(\vartheta)$ that admit the Taylor expansion $f_i(\vartheta) = f_i(0) + f_i'(0)\vartheta + O(\vartheta^2)$ about small ϑ, where $f_i(0)$ and $f_i'(0)$ are constants, and we assume that the asymptotic value of ϑ at spatial infinity vanishes. Let us further reabsorb $f_i(0)$ into the coupling constants $\alpha_i^{(0)} = \alpha_if_i(0)$ and $f_i'(0)$ into the constants $\alpha_i^{(1)} = \alpha_if_i'(0)$. Equation (1) then becomes $S = S_{GR} + S_0 + S_1$:

$$S_{GR} = \int d^4x \sqrt{-g}(\kappa R + L_{\text{mat}}),$$

$$S_0 = \int d^4x \sqrt{-g}(\alpha_1^{(0)} R^2 + \frac{\alpha_2^{(0)} R_{\mu\nu} R^{\mu\nu} + \alpha_3^{(0)} R_{\mu\nu\sigma\delta} R^{\mu\nu\sigma\delta}}{2}),$$

$$S_1 = \int d^4x \sqrt{-g}(\alpha_1^{(1)} \partial^2 R + \alpha_2^{(1)} \partial R_{\mu\nu} R^{\mu\nu} + \frac{\alpha_3^{(1)} R_{\mu\nu\sigma\delta} R^{\mu\nu\sigma\delta}}{2} - \frac{\beta}{2}(\nabla_\mu \vartheta \nabla^\mu \vartheta + 2V(\vartheta))),$$

where clearly S_{GR} is the Einstein-Hilbert plus matter action. Notice that S_0 defines a GR correction that is decoupled from ϑ. The term proportional to $\alpha_1^{(0)}$ cannot affect the classical field equations since it is topological, i.e. the second Chern form, so we have omitted it. Similarly, if $\alpha_3^{(0)}$ are chosen to reconstruct the Gauss-Bonnet invariant, $(\alpha_1^{(0)}, \alpha_2^{(0)}, \alpha_3^{(0)}) = (1, -4, 1)\alpha_{GB}$, then these will not modify the field equations. On the other hand, S_1 defines a modification to GR with a direct (non-minimal) scalar field coupling, such that as the field goes to zero, the modified theory reduces to GR. We here restrict attention to the case $\alpha_i^{(0)} = 0$. From this point forward, we will drop the superscript from $\alpha_i^{(1)}$.

The action above defines a class of modified gravity theories that contains well-known GR extensions. For example, when $\alpha_1 = -\frac{1}{4}\alpha_{CS}$ and all other $\alpha_i = 0$, quadratic gravity reduces to dynamical CS gravity, where α_{CS} is the CS coupling parameter (see e.g. [36]). Alternatively, when $\alpha_4 = 0$, while $(\alpha_1, \alpha_2, \alpha_3) = (1, -4, 1)\alpha_{EDGB}$, quadratic gravity reduces to Einstein-Dilaton-Gauss-Bonnet theory (see e.g. [18]). Both of these theories are motivated from fundamental physics; they awkwardly arise as low-energy expansions of heterotic string theory [39–42]. Dynamical CS gravity also arises in loop quantum gravity when the Barbero-Immirzi parameter is promoted to a field in the presence of fermions [43–45].

Variation of the action with respect to the metric yields the modified field equations:

$$ G_{\mu\nu} + \frac{\alpha_1}{\kappa} H_{(0)}^{\mu\nu} + \frac{\alpha_2}{\kappa} J_{(0)}^{\mu\nu} + \frac{\alpha_3}{\kappa} J_{(1)}^{\mu\nu} + \frac{\alpha_4}{\kappa} K_{(1)} = \frac{1}{2\kappa}(T_{\text{mat}}^{\mu\nu} + T_\vartheta^{\mu\nu}), $$

where we have defined the shorthands

$$ H_{(0)}^{\mu\nu} = 2R_{\mu\nu} - \frac{1}{2\kappa} R_{\mu\nu} R - 2\nabla_\mu \nabla_\nu R + 2\kappa R_{\mu\nu} R, $$

$$ I_{(0)}^{\mu\nu} = \Box R_{\mu\nu} + 2R_{\mu\nu\sigma\delta} R^{\sigma\delta} - \frac{1}{2} \kappa R^{\sigma\delta} R_{\sigma\delta}, $$

$$ J_{(0)}^{\mu\nu} = 8R^{\sigma\delta} R_{\sigma\nu\delta\mu} - 2g_{\mu\nu} R^{\sigma\delta} R_{\sigma\delta} + 4\Box R_{\mu\nu} - 2R R_{\mu\nu}, $$

$$ H_{(1)}^{\mu\nu} = -4(\nabla_\mu \vartheta \nabla_\nu R - 2R \nabla_\mu \vartheta \nabla_\nu R_{\mu\nu}) + g_{\mu\nu}[2R \Box \vartheta + 4(\nabla_\mu \vartheta \nabla_\nu \vartheta)], $$

$$ I_{(1)}^{\mu\nu} = -(\nabla_\mu \vartheta \nabla_\nu R - 2\nabla^\nu \vartheta \nabla_\mu R_{\mu\nu}) + 2\nabla^\nu \vartheta \nabla_\mu R_{\mu\nu} + R_{\mu\nu} \Box \vartheta - 2R_{\delta(\mu} \nabla^\nu \nabla_{\nu) \vartheta} + g_{\mu\nu}(\nabla_\delta \vartheta \nabla_\sigma R - R^{\delta\sigma} \nabla_{\delta\sigma} \vartheta), $$

$$ J_{(1)}^{\mu\nu} = -8(\nabla_\delta \vartheta)(\nabla_\mu R_{\delta\nu}) - \nabla_\delta R_{\mu\nu} + 4R_{\mu\nu\sigma\delta} \nabla_\sigma \vartheta, $$

$$ K_{(1)}^{\mu\nu} = -4(\nabla_\mu \vartheta)(\nabla_\nu \vartheta^\sigma - \frac{1}{2} \kappa \nabla_\delta \vartheta \nabla^\delta \vartheta - 2V(\vartheta)), $$

where ∇_μ is the covariant derivative, $\nabla_{\mu\nu} = \nabla_\mu \nabla_\nu$, and $\Box = \nabla_\mu \nabla^\mu$ is the \Box-Alembertian operator. The ϑ field’s stress-energy tensor is

$$ T_{\vartheta}^{\mu\nu} = \beta \left((\nabla_\mu \vartheta)(\nabla_\nu \vartheta) - \frac{1}{2} \kappa \nabla_\delta \vartheta \nabla^\delta \vartheta - 2V(\vartheta)) \right). $$

Variation of the action with respect to ϑ yields the ϑ equation of motion:

$$ \beta \Box \vartheta - \beta \frac{dV}{d\vartheta} = -\alpha_1 R^2 - \alpha_2 R_{\mu\nu} R^{\mu\nu} - \alpha_3 R_{\mu\nu\sigma\delta} R^{\mu\nu\sigma\delta} - \alpha_4 R_{\mu\nu\sigma\delta} R^{\mu\nu\sigma\delta}. $$

Notice that when the spacetime is curved by some mass distribution, the right-hand side will be proportional to this density squared.

The parity of the field ϑ can be inferred from its equation of motion. Since terms of the form R^2 are even-parity,
while terms of the form $R_{\mu\nu\sigma}^{\alpha} R_{\mu\nu\sigma}^{\beta}$ are odd-parity, the field ϑ is of mixed parity. Note however that the even- and odd-parity couplings tend to have different origins from an underlying theory. In this paper we will consider the even- and odd-parity cases separately.

The inclusion of dynamics for the ϑ field in the action guarantees that the field equations are covariantly conserved without having to include any additional constraints, i.e. the covariant divergence of Eq. (5) identically vanishes, upon imposition of Eq. (8). This is a consequence of the action being diffeomorphism invariant. Such invariance is in contrast to the preferred-frame effects present in a nondynamical theory [19], i.e. in the theory defined by the action in Eq. (4) but with $\beta = 0$. In the latter, the field ϑ must be prescribed a priori. Moreover, the theory requires the existence of an additional constraint [the right-hand side of Eq. (8) to vanish], which is an unphysical consequence of treating ϑ as prior structure [46,47].

Before proceeding, let us further discuss the scalar field potential $V(\vartheta)$. This potential allows us to introduce additional couplings, such as a mass term, to drive the evolution in Eq. (8). However, there are reasons one might restrict such a potential. If the mass is much larger than the inverse length scale of the system that we consider, the effect of such a field on the dynamics of binaries is strongly suppressed. To the contrary, if the mass is much smaller, the presence of mass does not give any significant effects. Therefore we cannot expect to observe the effects of a finite mass without fine-tuning. No mass term may appear in a theory with a shift symmetry, which is an invariance under $\vartheta \rightarrow \vartheta + \text{const}$. Such theories are common in 4D, low-energy, effective string theories [39,40,42,48,49], such as dynamical CS and EDGB. For these reasons, and because the assumption makes the resulting equations analytically tractable, we will henceforth assume $V(\vartheta) = 0$.

B. Small deformations

The “unreasonable” accuracy of GR to explain all experimental data to date suggests that it is an excellent approximation to nature in situations where the gravitational field is very weak and velocities are very small relative to the speed of light. GW detectors will be sensitive to events in situations where the field is stronger than ever previously sampled. This, however, does not imply that GWs will ever sample the Planck/string regime, where one could expect large deviations from GR.

We will here be interested in binary compact object coalescences up until the binary reaches the innermost stable circular orbit (ISCO). Even during merger, the largest curvature that GWs will sample will be limited to the scale determined by the horizon sizes, proportional to m^{-2}. Such scales are far removed from high-energy ones, like the electroweak one, as GW detectors will not be sensitive to mergers of compact objects with masses below a solar mass. Even then, however, GWs can and will probe the strong field, which has not been tested before. One is then justified in modeling GWs that may contain deviations from GR as small deformations.

The small-deformation scheme is also appealing for theoretical reasons. As mentioned earlier, the theories we consider are effective, valid only up to the truncation order. There are higher-order terms that we have here neglected in the action, such as cubic and quartic curvature combinations. Thus, one should not treat these theories as exact nor insist on solving the equations of motion to higher orders in α_t. If this is desired, then higher-order curvature terms should also be included in the action.

One might be worried that such effective theories are unstable, since they lead to field equations with derivatives higher than second order. Such derivatives could lead to instabilities or ghost modes if the Hamiltonian is not bounded from below. Linearization in the coupling parameter, however, has the effect of recasting the field equations in Einstein form with an effective stress-energy tensor that depends on the GR solution, thus stabilizing the differential equations [7]. Linearization removes modes besides the two that arise in GR [37,38].

Small deformations can be treated similarly to how one models BH perturbations. That is, we expand the metric as

$$g_{\mu\nu} = g_{\mu\nu}^{GR} + \delta g_{\mu\nu} + O(\xi^2),$$

where the GR superscript is to remind us that this quantity is a GR solution, while $\delta g_{\mu\nu}$ is a metric deformation away from GR. The order-counting parameter ξ is kept around 1 for book-keeping purposes and is to be set to unity in the end.

Applying such an expansion to Eq. (8), one finds

$$\beta \Box \vartheta = -\alpha_t S(R^2_{GR}) + O(\xi^2),$$

where $S(R^2_{GR})$ stands for all source terms evaluated on the GR background $g_{\mu\nu}^{GR}$. The solution to this equation will obviously scale as $\vartheta \sim \alpha_t / \beta$. Applying the decomposition and expansion of Eq. (9) to Eq. (5) in a vacuum, one finds

$$G_{\mu\nu}[\delta g_{\mu\nu}] = -\frac{\alpha_i}{\kappa} C_{\mu\nu}[\delta g_{\mu\nu}] + \frac{1}{2\kappa} T^{(0)}_{\mu\nu}[\vartheta],$$

where the $O(\xi^0)$ terms automatically vanish, as S^{GR}_0 satisfies the Einstein equations, and we have grouped modifications into the tensor $C_{\mu\nu}$. This tensor and $T^{(0)}_{\mu\nu}$ are to be evaluated on the GR metric and act as sources for the metric deformation. Notice that, as a differential operator acting on $\delta g_{\mu\nu}$, the principal part of these differential equations continues to be strongly hyperbolic, as it is still given by the $G_{\mu\nu}$ differential operator, with the higher derivatives in $C_{\mu\nu}$ and the $T^{(0)}_{\mu\nu}$ acting as sources. Given this, the metric deformation is proportional to $\xi = \alpha_t^2 / (\beta \kappa)$, which is our actual perturbation parameter.

064022-5
Proper perturbation or deformation parameters should be dimensionless, but the ξ_i are dimensional. The dimensions of α and β, of course, depend on the choice of dimensions for the scalar field. We here take the viewpoint that ϑ is dimensionless, which then forces β to be dimensionless as well as κ, and α to have dimensions of length squared. Then, the deformation parameter ξ has units of length to the fourth power, which is why we define the dimensionless
\[\xi_i \equiv \frac{\xi_i}{m^4} = \mathcal{O}(\xi), \] (12)
as our proper deformation parameter. One could choose different units for the scalar field, but in all cases one arrives at the conclusion that ξ_i is the proper deformation parameter [6].

III. EXPANSION OF THE FIELD EQUATIONS

Let us decompose the GR metric tensor into a flat background plus a metric perturbation:
\[g_{\mu \nu}^{\text{GR}} = \eta_{\mu \nu} + h_{\mu \nu}. \] (13)
We emphasize here that throughout this paper, $h_{\mu \nu}$ denotes the metric perturbation in GR while $\bar{h}_{\mu \nu}$ is the metric deformation away from GR.

In expanding the modified field equations, we will also find it useful to define the standard trace-reversed metric perturbation in GR as
\[\tilde{h}_{\mu \nu} \equiv g_{\mu \nu}^{\text{GR}} - \frac{\delta g_{\mu \nu}^{\text{GR}}}{\delta g_{\mu \nu}^{\text{GR}}}. \] (14)
In particular, notice that when the background is flat $h_{\mu \nu} = \frac{1}{2} h \eta_{\mu \nu}$ and $h_{\mu \nu} = \frac{1}{2} \bar{h} \eta_{\mu \nu}$ to linear order in GR. We also define the deformed trace-reversed metric perturbation as
\[\bar{h}_{\mu \nu} \equiv (\eta_{\mu \nu} - \gamma_{\mu \nu}) - \frac{\delta g_{\mu \nu}^{\text{GR}}}{\delta g_{\mu \nu}^{\text{GR}}}. \] (15)
The harmonic gauge condition reduces to $\tilde{h}_{\mu \nu} = 0$ and $\bar{h}_{\mu \nu} = 0$. Throughout this paper, we only study the GR deformation up to $\mathcal{O}(\alpha_i/\beta)$ for ϑ and $\mathcal{O}(\xi_i)$ for $\bar{h}_{\mu \nu}$.

A. Scalar field

The evolution equation for the scalar field at leading order in the metric perturbation becomes
\[\Box \vartheta = -\frac{\alpha_1}{\beta} \left(\frac{1}{2 \kappa} T^2_{\text{mat}} - \frac{\alpha_2}{\beta} \frac{1}{2 \kappa} T^2_{\text{mat}} T^\mu_{\mu} T^\nu_{\nu} \right) \] - $\frac{2 \alpha_3}{\beta} \left(h_{\alpha \beta, \mu \nu} h^{\beta, [\mu, \nu]} + h_{\alpha \beta, \mu} h^{[\alpha, \mu], \nu} \right)$ - $\frac{2 \alpha_4}{\beta} e^{[\alpha, \beta]} h_{\alpha \gamma, \beta, \gamma} h^{[\gamma, \delta]}_{\mu \nu}, \] (16)
with relative remainders of $\mathcal{O}(h)$. Here, $e^{[\alpha, \beta]}$ is the Levi-Civita symbol with convention $\epsilon^{[\alpha \beta \gamma \delta]} = +1$, and we have used the harmonic gauge condition.

B. Metric perturbation

Let us now perturb the metric field equations [Eq. (5)] about $\varsigma = 0$. The deformed metric wave equation at linear order in $\bar{h}_{\mu \nu}$ becomes
\[\frac{K}{2} \Box \bar{h}_{\mu \nu} = \alpha_1 \vartheta \bar{H}_{\mu \nu}^{(0)} + \alpha_2 \vartheta \bar{T}_{\mu \nu}^{(0)} + \alpha_3 \vartheta \bar{J}_{\mu \nu}^{(0)} \] + $\alpha_1 \bar{H}_{\mu \nu}^{(1)} + \alpha_2 \bar{J}_{\mu \nu}^{(1)} + \alpha_3 \bar{J}_{\mu \nu}^{(1)}$ + $\alpha_4 \bar{K}_{\mu \nu}^{(1)} - \frac{1}{2} \delta T_{\mu \nu}^{\text{mat}} - \frac{1}{2} T^{\mu \nu}_{\beta \gamma}, \] (17)
where the tensors on the right-hand side are given by
\[\bar{H}_{\mu \nu}^{(1)} = -4 \left(h^{[\alpha, \beta]} \bar{T}_{\alpha \beta, \mu \nu} - \eta_{\mu \nu} \eta_{[\alpha, \beta]} \vartheta \right), \] (18)
\[\bar{T}_{\mu \nu}^{(0)} = \Box \eta h_{[\rho, \mu, \nu]}^{\rho} - \eta_{\rho \mu, \nu} - 2 h_{\rho \alpha, [\mu, \nu]}^{\rho} \right) \vartheta_{\alpha, \rho}, \] (19)
\[\bar{J}_{\mu \nu}^{(1)} = 4 \left(-\Box \eta (h_{[\rho, \mu, \nu]}^{\rho} - \vartheta) \right) \right), \] (20)
\[\bar{J}_{\mu \nu}^{(1)} = -4 \left(h_{[\rho, \mu, \nu]}^{\rho} - \vartheta \right) \right), \] (21)
\[\bar{J}_{\mu \nu}^{(1)} = -8 \left(h_{[\rho, \mu, \nu]}^{\rho} - \vartheta \right) \right), \] (22)
\[\bar{J}_{\mu \nu}^{(1)} = -8 \left(h_{[\rho, \mu, \nu]}^{\rho} + h_{\rho \alpha, [\mu, \nu]}^{\rho} \right) \right), \] (23)
\[\bar{K}_{\mu \nu}^{(1)} = \delta T_{\mu \nu}^{(0)} = \beta \left(\vartheta \right), \] (24)
\[\bar{T}_{\mu \nu}^{(0)} = \beta \left(\vartheta \right), \] (25)
The quantity $\delta T_{\mu \nu}^{\text{mat}}$ stands for the perturbation to the energy-momentum tensor for matter. Even when dealing
with BHs, $\delta T_{\mu \nu}^{\text{int}} \neq 0$ because we treat BHs as distributional point particles and their trajectories are generically modified at $O(s)$. However, in this paper we concentrate on the dissipative sector of the theory only, and not on modifications to the shape of the orbits (conservative dynamics). The latter does modify the GW phase evolution [6,28], as we discuss in Sec. VIII.

The evolution equation for the metric perturbation takes on the same form (a sourced wave equation) as that for the scalar field. The source terms in both of these equations depend on the GR metric perturbation, which we here assume to be that of a compact binary quasicircular inspiral. The GR spacetime metric for such a binary is expanded in the PN approximation, i.e. moving at small velocities assume to be that of a compact binary quasicircular inspiral. The evolution equation for the metric perturbation takes on the same form (a sourced wave equation) as that for the scalar field both for field points in the far and near zones, as we discuss in Sec. IVA. The former will allow us to evaluate the energy flux carried by the scalar field at infinity, while the latter will be essential to find effective source terms that reproduce the known strong-field solutions and to solve the evolution equations for the metric deformation.

C. Post-Newtonian metric and trajectories

In this subsection, we provide explicit expressions for the linear metric perturbation in GR that we use to evaluate all source terms. We are here interested in a binary system, composed of two compact objects with masses m_1 and m_2 and initially separated by a distance $r_{12} = b$. The objects’ trajectories can be parameterized via

\begin{align}
\mathbf{x}_1 &= x_1^i = \frac{m_1}{m} b [\cos \omega t, \sin \omega t, 0], \\
\mathbf{x}_2 &= x_2^i = -\frac{m_2}{m} b [\cos \omega t, \sin \omega t, 0],
\end{align}

where $m = m_1 + m_2$ is the total mass and where we have assumed they are located on the x-y plane. Throughout this paper, vectors are sometimes denoted with a boldface. We also define

\begin{align}
\mathbf{x}_{12} &= x_{12}^i = x_1^i - x_2^i, \\
\mathbf{n}_{12} &= n_{12}^i = (x_1^i - x_2^i)/b, \\
\mathbf{n}_A &= n_A^i = (x_i - x_A^i)/r_A,
\end{align}

where we follow the conventions of [27], with

\begin{equation}
\mathbf{r}_A = |x_i - x_A^i|.
\end{equation}

We further assume these objects are on a quasicircular orbit with leading-order angular velocity $\omega = (1/b)(m/b)^{1/2}$ and orbital velocity $v = (m/b)^{1/2}$. The orbital separation b is assumed constant, as its time-evolution is driven by GW emission at high-order in v/c.

The GR spacetime metric for such a binary is expanded as in Eq. (13). In the near-zone, the metric perturbation is given by

\begin{align}
h_{00} &= 2U_1 + (1 \leftrightarrow 2) + O(v^4), \\
h_{0i} &= -4V_{1i} + (1 \leftrightarrow 2) + O(v^5),
\end{align}

where $O(v^4)$ stands for an $(A/2)$PN remainder, i.e. a term of $O((v/c)^4)$, and the notation $+(1 \leftrightarrow 2)$ means that one should add the same terms with the labels 1 and 2 interchanged. The potentials U_A and V_A_i with $A = (1, 2)$ are defined as

\begin{align}
U_A = \int \frac{\rho_A}{|x - x'|} d^3x', \quad V_A_i = \int \frac{\rho_A' v_A_i}{|x - x'|} d^3x',
\end{align}

with remainders of relative $O(v^3)$. We have kept the PN leading terms in the metric that are proportional to m_A only, but higher-order terms can be found in [50], while terms proportional to the spin of each BH can be found in [51].

IV. SCALAR FIELD EVOLUTION

In this section, we solve the evolution equation for the scalar field both for field points in the far and near zones, as defined in Sec. IVA. The former will allow us to evaluate the energy flux carried by the scalar field at infinity, while the latter will be essential to find effective source terms that reproduce the known strong-field solutions and to solve the evolution equations for the metric deformation.

A. Zones

As shown in Fig. 2, let us decompose the geometry into three regions: an inner zone (IZ), a near zone (NZ) and a far zone (FZ); see e.g. [52–54] for further details. The IZs are centered at each object with radii R_{IZ}. These radii are defined as the boundary inside which either $T_{\mu \nu}^{\text{int}} \neq 0$ or the usual PN approximation breaks down due to strong-gravity effects. We here take them to be sufficiently larger than m_A and much less than b. The NZ is centered at the binary’s center of mass with radius R_{NZ} and excluding the IZs. This radius is defined as the boundary outside which time-derivatives cannot be assumed to be small compared with spatial derivatives due to the wave-like nature of the metric perturbation. We here take this boundary to be roughly equal to λ_{GW}, where λ_{GW} denotes the GW wavelength. The
YAGI et al.

FIG. 2. We consider three zones, inner zone (IZ), near zone (NZ) and far zone (FZ). The IZs are centered at each object and their radii \(R_{IZ} \) satisfy \(R_{IZ} \ll b \). The NZ is centered at the center of mass of the two bodies and the radius \(R_{NZ} \) satisfies \(R_{NZ} \sim \lambda_{GW} \), where \(\lambda_{GW} \) is the GW wavelength.

FZ is also centered at the binary’s center of mass, but it extends outside \(R_{NZ} \).

One can only apply the PN formalism when the gravitational field is weak and velocities are small. When we deal with strong-field sources like BHs and NSs, therefore, one can use the PN scheme in the NZ and FZ only. In the IZs, one may not be able to use PN theory, since the gravitational field may be too strong. In this case, we have to asymptotically match our PN solution in the NZ with the strong-field solutions valid in the IZs, inside some buffer regions that overlap both NZ and each IZ (see Refs. [21,55,56] for a description of how to carry this out in GR). The strong-field solution for BHs was found in Refs. [6,28] in the class of theories considered here.

B. Near-zone solutions

Since the NZ is in the weak-field regime, we can apply the PN formalism to compact binary systems. Let us consider the even- and odd-parity sectors separately.

1. Even-parity sector

The evolution equation for the even-parity sector is

\[
\square \psi = -64 \pi^2 \frac{\alpha_1}{\beta} \rho^2 - 64 \pi^2 \frac{\alpha_2}{\beta} \rho^2 - \frac{2 \alpha_3}{\beta} \left(h_{\alpha \beta, \mu \nu} h^{\alpha \beta, \mu \nu} + h_{\alpha \beta, \mu \nu} h^{\mu \nu, \alpha \beta} \right).
\]

with \(\rho = \rho_1 + \rho_2 \) and remainders of \(O(h^3) \).

First, let us consider weakly gravitating objects, i.e. not BHs or NSs, in which case the PN expansion is valid also in the IZ. By substituting the GR PN metric of Eqs. (32)–(34), the NZ solution to the above wave equation at leading PN order becomes

\[
\psi = 16 \pi \frac{\alpha_1}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} + 16 \pi \frac{\alpha_3}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} + \frac{1}{\pi} \frac{\alpha_3}{\beta} \int_{\mathcal{M}} (2U_{ij}U_{ij}' + \Box \eta U' \Box \eta U') \frac{d^3x'}{|x - x'|},
\]

again with remainders of \(O(h^3) \), with \(U \equiv U_1 + U_2 \) and \(\mathcal{M} \) denoting the constant-time, NZ + IZ hypersurface. We can safely neglect the contribution from the FZ, since the falloff of the source term is sufficiently fast.

The solution in Eq. (40) can be simplified by integrating by parts several times and using that \(\Box U = -4 \pi \rho \) and \(\Box |x - x'|^{-1} = -4 \pi \delta^{(3)}(x - x') \) to obtain

\[
\psi = 16 \pi \frac{\alpha_1}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} + 16 \pi \frac{\alpha_2}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} + 48 \pi \frac{\alpha_3}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} - 8 \frac{\alpha_3}{\beta} \int_{\mathcal{M}} \rho U_{ij}' \left(\frac{1}{|x - x'|} \right)_i d^3x' - 4 \frac{\alpha_3}{\beta} \int_{\mathcal{M}} U_{ij}' \delta^{(3)}(x - x') d^3x'.
\]

Expanding this solution in terms of particles 1 and 2, we arrive at

\[
\psi = \psi_{self} + \psi_{cross},
\]

with

\[
\psi_{self} = 16 \pi \frac{\alpha_1}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} + 3 \frac{\alpha_1}{\beta} \int_{\mathcal{M}} \rho \rho^2 \frac{d^3x'}{|x - x'|} - 8 \frac{\alpha_3}{\beta} \int_{\mathcal{M}} \rho U_{ij}' \left(\frac{1}{|x - x'|} \right)_i d^3x' - 4 \frac{\alpha_3}{\beta} U_{ij} U_{ij}' \rangle (1 \leftrightarrow 2),
\]

and

\[
\psi_{cross} = -8 \frac{\alpha_3}{\beta} \left\{ \int_{\mathcal{M}} \rho U_{ij}' \left(\frac{1}{|x - x'|} \right)_i d^3x' + U_{ij} U_{ij}' \langle 1 \leftrightarrow 2 \rangle \right\}.
\]

\(\psi_{self} \) is the part of \(\psi \) that can be evaluated by considering a single object only, while \(\psi_{cross} \) is the part that depends on the fields of both bodies.

The integrals that define both \(\psi_{self} \) and \(\psi_{cross} \) have support in the IZ only, and thus, the NZ integral operator is homogeneous (source-free). When we discuss the NZ behavior of fields associated with compact objects, such as BHs or NSs, we cannot directly evaluate such IZ integrals. These are derived under the assumption that the PN expansion is valid everywhere, which fails for compact objects in the IZs. Instead, we need to determine these homogeneous solutions through asymptotic matching.
Before doing so, it is helpful to study the meaning of each term for weakly gravitating objects.

Neglecting the size of the weakly gravitating objects, the first term in Eq. (43) in the NZ is evaluated as

$$\int_M \rho_1^2 \frac{d^3x'}{|x-x'|} = \frac{1}{r_1} \int_M \rho_1^2 \delta^3 d^3x', \tag{45}$$

with remainders of relative $O(m/r)$, while the second term becomes

$$\int_M \rho_1^2 U_{1,i}(\frac{1}{|x-x'|}) d^3x' = \frac{n_1^2}{r_1} \int_M \rho_1^2 U_{1,i} d^3x'$$

$$= - \frac{n_1^2}{r_1} \int_M \rho_1(x') \left(\int_M \rho_1(y) \frac{x'^i - y^i}{|x-y|^3} d^3y \right) d^3x' = 0.$$

The last equality can be shown by exchanging the integration variables.\(^{3}\) Thus, one can approximate δ_self as

$$\delta_\text{self} = \frac{q_1}{r_1} - 4 \frac{\alpha_3 M_1^2}{Br_1^4} + (1 \leftrightarrow 2), \tag{47}$$

with the scalar monopole charge defined by

$$q_A = \frac{16 \pi}{\beta} (\alpha_1 + \alpha_2 + 3 \alpha_3) \int_I Z^2 \rho_1^2 d^3x', \tag{48}$$

with $A = (1, 2)$. Here we put IZ to the integral to emphasize that the integration can be restricted to both IZs because the integrand is localized.

The first term in Eq. (47) represents the monopole field around object 1. These monopole fields give the leading PN contribution in the NZ unless both monopole charges q_1 and q_2 vanish. This is indeed the case in EDGB theory, where $(\alpha_1, \alpha_2, \alpha_3) = (1, -4, 1)\alpha_{\text{EDGB}}$. We will later show that this cancellation does really survive even if we consider NSs. If this cancellation occurs, the higher-order terms of $O(m^2/r^2)$ in the expansion of Eq. (45) become the dominant contribution to θ. The second term in Eq. (47) is a much higher PN order compared with the first term and hence subdominant in the NZ. Let us now consider δ_self for compact objects, where the IZ integrals must be treated carefully. Since the PN expansion is no longer valid in the IZ, one cannot use the simple extrapolation of the above result. In Sec. IV C, we match the NZ solution to the one obtained for isolated BHs in the strong-field \cite{6,28}. We will not discuss the matching for NSs in this paper, but the order of magnitude estimate

\(^{3}\)In fact, this integral vanishes to all orders in x. This is because $(\rho_1 U_{1,i})_i$ is spherically symmetric, and thus, when it acts as a source to a wave equation, the solution should either scale as $1/r$ or it should vanish identically. We have here shown that there is no $1/r$ part.
\[\square \vartheta = \frac{2 \alpha_4}{\beta} \varepsilon_{ijk} (h_{00,im} h_{k0,jm} + h_{0l,jm} h_{k,l,im}) \]
\[= -32 \frac{\alpha_4}{\beta} \varepsilon_{ijk} U_{,im} V_{k,jm}, \] (52)

with remainders of relative \(O(v^2) \). As in the even-parity case, we write the solution to this wave equation as
\[\vartheta = \vartheta_{\text{self}} + \vartheta_{\text{cross}}, \] (53)

where
\[\vartheta_{\text{self}} = \frac{8 \alpha_4}{\pi} \varepsilon_{ijk} \int_{\mathcal{M}} U_{1,im} V_{1,k,jm} \frac{d^3 x'}{|x - x'|} + (1 \leftrightarrow 2), \] (54)

and
\[\vartheta_{\text{cross}} = \frac{8 \alpha_4}{\pi} \varepsilon_{ijk} \int_{\mathcal{M}} U_{1,im} V_{2,k,jm} \frac{d^3 x'}{|x - x'|} + (1 \leftrightarrow 2). \] (55)

Let us first consider self-interaction terms \(\vartheta_{\text{self}} \). Integrating by parts several times, we find
\[\vartheta_{\text{self}} = -16 \frac{\alpha_4}{\beta} \varepsilon_{ijk} \left[\int_{\mathcal{M}} \rho_1' V_{1,k,jm} \frac{1}{|x - x'|} d^3 x' \right] + \int_{\mathcal{M}} U_{1,im} \rho_{1}' V_{1,k,jm} \frac{1}{|x - x'|} d^3 x' \]
\[+ \int_{\mathcal{M}} U_{1,im} V_{1,k,jm} \delta^{(3)}(x - x') d^3 x' + (1 \leftrightarrow 2), \] (56)

where we have used the relations \(\Box U_1 = -4 \pi \rho_1 \), \(\delta^{(3)}(x - x') \). The third term vanishes when we take the point-particle limit, i.e. \(m_A = m_A / r_A \) and \(V_{Ai} = m_A v_{Ai} / r_A \).

Let us evaluate the first and the second terms in the NZ. Keeping only the leading PN term in the NZ, we find
\[\vartheta_{\text{self}} = 16 \frac{\alpha_4}{\beta} \varepsilon_{ijk} \frac{n_{1,i}}{r_1^2} \int_{\mathcal{M}} \rho_{1}' (V_{1,k,jm} - U_{1,jm} V_{1,k}) d^3 x' + (1 \leftrightarrow 2) \]
\[= \frac{n_{1,i}}{r_1^2} \mu_i^{(1)} + (1 \leftrightarrow 2), \] (57)

where we have defined
\[\mu_i^{(A)} = 32 \frac{\alpha_4}{\beta} \varepsilon_{ijk} \int_{\mathcal{M}} \rho_{A} V_{A,k,jm} d^3 x'. \] (58)

This leading-order PN term in \(\vartheta_{\text{self}} \) represents a magnetic-type dipole.

As in the even-parity case, to extend this result to compact objects we have to determine the value of \(\mu_i^{(A)} \) by matching the NZ solution in Eq. (57) to a strong-field solution. This will be carried out in Sec. IV C for the BH case. For NSs, we just present an order of magnitude estimate based on a simple extrapolation of weakly gravitating results:
\[\mu_i^{(A)} = \alpha_4 \frac{\rho_{m} S_i}{R_A}, \] (59)

where \(S_i \) is the spin angular momentum of the object. Following the procedure in Appendix A, we can show that NSs cannot have scalar monopole charge in the dynamical CS case.

Next, we consider the cross term \(\vartheta_{\text{cross}} \) in the weakly-gravitating case. Integrating by parts several times, we find
\[\vartheta_{\text{cross}} = -16 \frac{\alpha_4}{\beta} \varepsilon_{ijk} \left[\int_{\mathcal{M}} \rho_{1}' V_{2,k,jm} \frac{1}{|x - x'|} d^3 x' \right] + \int_{\mathcal{M}} U_{1,im} \rho_{1}' V_{2,k,jm} \frac{1}{|x - x'|} d^3 x' \]
\[+ \int_{\mathcal{M}} U_{1,im} V_{2,k,jm} \delta^{(3)}(x - x') d^3 x' + (1 \leftrightarrow 2). \] (60)

One can take the point-particle limit of this expression without any trouble to obtain
\[\vartheta_{\text{cross}} = -16 \frac{\alpha_4 m_1 m_2}{BM^2} \varepsilon_{ijk} v_{12k} \]
\[\times \left[m_1 \left(\frac{n_{1,i} n_{1,j}}{r_1^2 b^2} + \frac{n_{1,j} n_{1,j}}{r_2^2 b^2} + \frac{n_{1,i} n_{1,i}}{r_1^2 r_2^2} \right) + O \left(\frac{m^3}{r^3} \right) \right]. \] (61)

These terms are of relative \(O(v^2) \) compared to the leading-order term of \(\vartheta_{\text{self}} \).

As for compact objects, the results found in the even-parity case also apply here. Terms proportional to \(1/r_A^2 \) in the above expression suggest that each object has a dipole component induced by the companion. When we expand this expression around \(r_A \ll b \), however, the terms proportional to \(1/r_A^2 b^2 \) cancel each other, as in the even-parity case, leading to no induced dipole moment. Even if this were not the case, however, the corrections to the dipole moment would be a higher order than the contributions from \(\vartheta_{\text{self}} \).

To conclude, the dominant contribution to \(\vartheta \) is clearly that of \(\vartheta_{\text{self}} \) given in Eq. (57), which again depends on the structure of the source and thus violates the effacement principle.

C. Matching near-zone and strong-field solutions and finding the effective source terms

In alternative theories of gravity, the point-particle limit is not always valid and the multipole moments of compact
objects may depend on the internal structure of the source. In the previous subsections, we found that the dominant contributions to the scalar field come from self-interaction terms, which in turn depend on certain structure constants. In this subsection, we determine these constants by matching the solution to that of an isolated BH.

1. Even-parity sector

In the even-parity case, the monopole charges \(q_1 \) and \(q_2 \) in Eq. (47) must be determined by matching to a BH solution. An isolated BH sources a scalar field [28], whose leading PN behavior is

\[
\theta_{YS} = \frac{2\alpha_3}{\beta m_A^3} m_A r_A.
\]

Matching this solution to the NZ solution of Eq. (47) we obtain

\[
q_A = \frac{2\alpha_3}{\beta m_A}.
\]

Notice that this monopole charge does not depend on \((\alpha_1, \alpha_2) \), as for pure BH spacetimes, these coupling constants appear in combination with the Ricci scalar and tensor, which vanishes. This is to be contrasted with the NS case, in which \(q_A \) depends on \(\alpha_1 \) and \(\alpha_2 \) as well as \(\alpha_3 \) and vanishes in EDGB theory. Interestingly, BHs do not have scalar hair in more traditional (Brans-Dicke type) scalar-tensor theories, while NSs do possess them. This situation is reversed in EDGB theory.

The matching carried out above dealt with the monopole part of \(\theta \). That is, we have ignored any tidal deformation of either BH induced by its binary companion. In BH perturbation theory, one can calculate the deformation of the isolated BH metric to find that it depends on the sum of electric and magnetic tidal tensors, leading to a metric deviation from the isolated BH metric to find that it depends on the sum of electric and magnetic tidal tensors, leading to a metric

\[
\text{distortion} \propto \frac{m_A}{r_A^3}.
\]

2. Odd-parity sector

In the odd-parity case, the dipole charges of the respective objects in Eq. (57) are to be determined by matching against the appropriate BH solutions. An isolated nonspinning BH in the odd-parity case does not support a scalar field. By contrast, a spinning BH does, and in the slow-rotation limit, neglecting higher-order PN corrections, it is given by [6]

\[
\theta_{YB} = -\frac{5}{2} \frac{\alpha_A}{\beta r_A^3} n_i^A x_A^i,
\]

where \(\chi_A = S_i^A/m_A^2 \) is the normalized spin angular momentum vector of the \(A \)th BH. Matching this solution to the \(\theta \) solution found by Yunes and Pretorius [6] at leading order.

Let us make a few observations about this solution. First, notice that the pseudoscalar dipole charge is well-behaved in the limit \(m_A \to 0 \), because there is a maximum BH spin \(|\chi_A^i| < 1 \). Second, notice that in the \(|\chi_A^i| \to 0 \) limit, this dipole charge vanishes, which is a consequence of Birkhoff’s theorem holding in CS gravity [36,46,47]. Namely, nonspinning BHs in CS theory are the same as BHs in GR (i.e. Schwarzschild BHs). Therefore, in this case the point-particle limit is well-justified and the metric deformation or the scalar field does not depend on the internal structures of nonspinning sources.

D. Far-zone field point solutions

Let us make a few observations about this solution. First, notice that the pseudoscalar dipole charge is well-behaved in the limit \(m_A \to 0 \), because there is a maximum BH spin \(|\chi_A^i| < 1 \). Second, notice that in the \(|\chi_A^i| \to 0 \) limit, this dipole charge vanishes, which is a consequence of Birkhoff’s theorem holding in CS gravity [36,46,47]. Namely, nonspinning BHs in CS theory are the same as BHs in GR (i.e. Schwarzschild BHs). Therefore, in this case the point-particle limit is well-justified and the metric deformation or the scalar field does not depend on the internal structures of nonspinning sources.
considered the motion of test particles that had no scalar
term is proportional to the coupling constants of the theory,
becoming stronger at smaller velocities. Of course, this
FZ, which is less relativistic than GR quadrupole radiation,
From Eq. (69), this wave equation can be solved as
When we evaluate this for circular orbits, we find
where we have defined the relative velocity

\[v_{k} = v_{1} - v_{2}. \]

The \(m = 1 \) term clearly leads to dipole radiation in the
FZ, which is less relativistic than GR quadrupole radiation,
becoming stronger at smaller velocities. Of course, this
term is proportional to the coupling constants of the theory,
which are assumed much smaller than one. Reference [28]
failed to recognize such dipolar emission because they
considered the motion of test particles that had no scalar
charge. We cannot think of any mechanism that would
suppress such dipolar radiation.

2. Odd-parity sector: spinning bodies

As in the previous section, the evolution equation for the scalar field is dominantly
\[\Box \eta \theta = -4 \pi \mu \delta^{(3)}(x - x_{1})_{i} + (1 \leftrightarrow 2). \]

By using Eq. (68), the far-zone field point solution is obtained as
\[\phi^{FZ} = -\frac{1}{r} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!} \theta \left[\int_{\mathcal{M}} \delta^{(3)}(x' - x_{1})_{i}x_{i}^{M}d^{3}x' \right.
\]
\[+ \left. (1 \leftrightarrow 2) \right]. \]

When \(m = 0 \) there is obviously no contribution to the scalar field. When \(m = 1 \),
\[\int_{\mathcal{M}} \delta^{(3)}(x - x_{1})_{i}x_{i}^{j}d^{3}x = -\delta_{ij}, \]
and thus
\[\phi^{FZ} = \frac{\mu_{i}x_{i}}{r^{2}} + \frac{\mu_{j}n_{j}}{r}, \]
with \(\mu_{i} = \mu_{1i} + \mu_{2i} \). Notice that we recover the solution of
Yunes and Pretorius [6] for the first term of the above
equation with \(\mu_{i}^{A} \) given as in Eq. (66). These terms will not
strongly radiate because \(\mu_{i} \) is nonvanishing only for spin-
precessing systems. Even then, such radiation would be
suppressed by the ratio of the orbital time scale to the
precession time scale.

The \(m = 2 \) contribution, by contrast, depends on the
much shorter orbital time scale. We look for terms of
\(O(\hat{r}^{-1}) \) since they are the only ones that contribute to the
energy flux at infinity. Keeping in mind that the function
being differentiated depends on retarded time, we can
rewrite Eq. (77) as
\[\phi^{FZ} = -\frac{1}{r} \sum_{m=1}^{\infty} \frac{(-1)^{m}}{m!} \theta \left[\int_{\mathcal{M}} \mu_{i}^{A} \delta^{(3)}(x' - x_{1})_{i}x^{M}d^{3}x' \right.
\]
\[+ \left. (1 \leftrightarrow 2) \right]. \]

When \(m = 2 \), we have that
\[\mu_{i}^{A} \int_{\mathcal{M}} \delta^{(3)}(x - x_{1})_{i}x^{j}x^{k}d^{3}x + (1 \leftrightarrow 2) = -2\mu^{pq}, \]
where the pseudotensor quadrupole moment (not to be
confused with \(\mu_{i}^{A} \mu_{j}^{A} \)) is defined as

\[\mu^{ij} = x_1^{(i} \mu_1^{j)} + x_2^{(i} \mu_2^{j)}. \]
\[(82) \]

The \(m = 2 \) contribution becomes

\[\vartheta^{FZ} = -\frac{1}{r} \mu_{ij} n^{ij} = -\frac{1}{r} \omega^2 \mu_{ij} n^{ij}, \]
\[(83) \]

where the final equality is evaluated on a circular orbit. Notice that such a scalar field will strongly radiate because \(\mu^{ij} \) depends on the orbital time scale.

3. Odd-parity sector: nonspinning bodies

When both objects are nonspinning, the self-interaction terms produced by the effective source identically vanish. One is then left with the source term constructed from the product of the gravitational fields of objects 1 and 2. These terms will be proportional to \(m_1 m_2 \). As we will see, there are many contributions that turn out to vanish upon NZ integration. For pedagogical reasons, we will show here explicitly how this happens and eventually arrive at contributions that do not vanish.

The evolution equation for the scalar field to leading PN order is

\[\square \vartheta^{FZ} = -32 \frac{\alpha_4}{\beta} \epsilon_{ijk} m_1 m_2 v_{12k} \left(\frac{1}{r_1} \right) , \]
\[(84) \]

where we substituted the NZ metric components in the point-particle approximation. The leading-order term of the solution to this differential equation, i.e. the \(m = 0 \) term in the sum of Eq. (69), is evaluated as

\[\vartheta^{FZ} = \frac{8}{\pi} \frac{\alpha_4}{\beta} m_1 m_2 \epsilon_{ijk} v_{12k} \int \mathcal{M} \left(\frac{1}{r_1} \right) , \]
\[(85) \]

Here we integrated over the NZ + IZ hypersurface \(\mathcal{M} \) without taking any care of the strong-gravity region in the IZs. One can easily show that the contribution from the IZs is not large in the present case. In the second line, we replaced partial derivatives with respect to \(x^i \) acting on \(1/r_A \) with (minus the) particle derivatives with respect to \(x^i_A \):

\[\frac{\partial}{\partial x^i} \rightarrow -\frac{\partial}{\partial x^i_A} \equiv -\delta^{(4)}_i, \]
\[(86) \]

with \(A = (1, 2) \). We computed these particle derivatives with the integral, and finally obtained a typical NZ integral, discussed in Appendix B. From Eq. (B4), we know that \(Y = \beta \), and by taking all particle derivatives, the last equality is established.

We could have inferred that the \(m = 0 \) term in the sum does not contribute for nonspinning BHs without any explicit calculations. The argument here is similar to that in footnote 4. Possible vectors to contract with the Levi-Civita symbol include the velocities \(u_A^i \) and the unit vectors \(n_A^i \), but not spin vectors \(S_A^i \), as we here consider nonspinning BHs. In particular, for the \(m = 0 \) case, there cannot be any FZ vectors \(n^i \) present. Thus, all vectors that can be contracted onto the Levi-Civita symbol must lie in the same orbital plane and this obviously vanishes. This argument should be true at all PN orders.\(^5\)

Let us then consider the next-order term. This will arise from the leading-order term [right-hand side of Eq. (84)] with \(m = 1 \) in the NZ sum:

\[\vartheta^{FZ} = \frac{8}{\pi} \frac{\alpha_4}{\beta} m_1 m_2 n^{pq} \epsilon_{ijk} v_{12k} \frac{\partial}{\partial t} \int \mathcal{M} \left(\frac{1}{r_1} \right) , \]
\[(87) \]

where we have used Eq. (B3), which defines \(Y_\beta \). By direct evaluation, one can show that this term also identically vanishes. The first nonvanishing contribution coming from an \(m = 1 \) term must then be \(\mathcal{O}(\nu^3) \) smaller than the ordering of the \(m = 0 \) term.

Finally, let us consider the (next)\(^2\)-order term. This can arise only from the leading-order source term with \(m = 2 \) in the NZ sum:

\[\vartheta^{FZ} = \frac{4}{\pi} \frac{\alpha_4}{\beta} m_1 m_2 \epsilon_{ijk} v_{12k} \frac{\partial^2}{\partial t^2} \]
\[\times \int \mathcal{M} \left(\frac{1}{r_1} \right) , \]
\[\times \int \mathcal{M} \left(\frac{1}{r_2} \right) , \]
\[(88) \]

which simplifies to

\[\vartheta^{FZ} = \frac{16}{\beta} \frac{\alpha_4}{\beta} \frac{\eta m \delta m}{b} \epsilon_{ijk} n_{1p} \omega^2 v_{12k} n_{12}^p, \]
\[(89) \]

where we have defined the mass difference \(\delta m \equiv m_1 - m_2 \) and the symmetric mass ratio \(\eta \equiv m_1 m_2 / m^2 \). We have here used Kepler’s law and expanded the STF tensors. This is the dominant FZ behavior of the scalar field, which as we see is much suppressed relative to the odd-parity solution we found for spinning BHs.

\(^5\)One may think that one can construct a vector that does not lie in the orbital plane by taking the cross product of two vectors that lie on this plane, e.g. \(n_{12} \times v_{12} \). However, since GR is parity even, such a vector cannot be present in the NZ metric.
TABLE I. Scalar field parameters, as defined in Eqs. (90) and (92). The quantities q_i and μ_i are defined in Eqs. (63) and (66), while σ_{NZ}^{pq} is defined in Eq. (91). The quantities D_i and μ_i are defined in Eqs. (74) and (77), while σ_{FZ}^{pq} is given in Eq. (93).

<table>
<thead>
<tr>
<th></th>
<th>q_1</th>
<th>D_1n_i</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even-parity</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>Odd-parity, Spins</td>
<td>μ_1n_i</td>
<td>0</td>
<td>μ_i</td>
<td>2</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>Odd-parity, No spin</td>
<td>$\sigma_{NZ}^{pq}n_{12}n_1$</td>
<td>$\sigma_{NZ}^{pq}n_1n_2$</td>
<td>σ_{FZ}^{pq}</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

V. METRIC EVOLUTION

In this section, we solve the evolution equations for the metric deformation in the FZ, so that we can calculate the gravitational energy flux at infinity. Since we can always take the transverse-traceless gauge in the FZ, we write \mathcal{h} as \mathcal{h}^r below. Note that throughout, we use the Newtonian relationship $v^2 = m/b$ (and similarly for the acceleration). This relationship must be corrected at higher PN order or at $O(s)$. As we mentioned earlier, here we do not take into account the corrections to the orbital motion due to the conservative force at $O(s)$. These conservative effects do not interfere at $O(s)$ with the radiative effects that we are concerned with in this paper. Therefore the corrections to the GW waveform become a simple summation of these two different types of effects.

For the FZ field points, the solution to the metric deformation equation of motion [Eq. (17)] can be read from Eq. (69):

$$\mathcal{h}_{ij} = -\frac{8}{r^4} \sum_{m=0}^{\infty} \frac{1}{m!} \frac{\partial^m}{\partial p^m} \int_{\mathcal{M}} \tilde{c}_{ij}(n^kx^l)\,d^3x + O(r^{-2}),$$

(94)

where we have defined the source term as

$$\tilde{c}_{ij} = \alpha_1 (\partial \mathcal{H}_{ij}^{(0)} + \mathcal{H}_{ij}^{(1)}) + \alpha_2 (\partial \mathcal{I}_{ij}^{(0)} + \mathcal{I}_{ij}^{(1)}) + \alpha_3 (\partial \mathcal{J}_{ij}^{(0)} + \mathcal{J}_{ij}^{(1)}) + \frac{1}{2} \mathcal{T}_{ij},$$

(95)

Notice that this corresponds to an IZ + NZ integration for FZ field points, where we have neglected the FZ integration because it is subdominant.

The integrals presented above have to be carried out also in the IZ, where the PN expansion is not valid anymore. In GR, however, such divergences can be ignored, using a regularization scheme. Since both the true solution and an appropriately regularized solution satisfy the field equations in the NZ, their difference due to the IZ contribution is only through a homogeneous solution. Such homogeneous solutions are regular in the NZ and FZ, but can be divergent in the IZ. They are characterized by the multipole moments of the respective objects, which can be determined by studying tidal perturbations around a strongly gravitating object. One can then perform matching of the metric solution, as for the scalar solution, but the metric matching is beyond the scope of this paper. In what follows, we only consider the regularized contribution, following Hadamard partie finie (FP) regularization [62]. We comment more on the divergent contribution at the end of this section.

A. Even-parity sector

Let us focus on the metric perturbation in the even-parity sector first. The leading-order term both in the PN and $1/r$ expansion at infinity is formally given by

$$\mathcal{h}_{ij} = \mathcal{h}_{ij}^r + \mathcal{h}_{ij}^\alpha,$$

(96)
\[b_{ij}^{\gamma} = \frac{4}{r} \int_{M} T_{ij}^{(0)} d^3 x, \quad (97) \]
\[b_{ij}^{T} = -\frac{8\alpha}{r} \int_{M} \mathcal{J}_{ij} d^3 x, \quad (98) \]

where we have defined \(\mathcal{J}_{ij} = \partial_{\gamma} T_{ij}^{(0)} + \mathcal{J}_{ij}^{(1)} \). The source terms \(\mathcal{H}_{\mu \nu}^{(1)} \) and \(\mathcal{T}_{\mu \nu} \) do not contribute to this expression since they identically vanish in the NZ where \(R_{\mu \nu} = 0 \).

We can estimate the order of magnitude of both \(b_{ij}^{\gamma} \) and \(b_{ij}^{T} \) as follows:
\[b_{ij}^{\gamma} \sim O \left(\beta \frac{m}{r} v^{-2} \partial^2 \right) = \xi \frac{m}{r} v^2 \times O(1), \quad (99) \]
\[b_{ij}^{T} \sim O \left(\frac{\alpha_3 \alpha}{m^2} \frac{v^4}{r} \partial \right) = \xi \frac{m}{r} v^2 \times O(v^4). \quad (100) \]

Here we factored out \(v^2 \) in the final expressions, since the GR leading quadrupolar field is also proportional to \(v^2 \). Clearly, the dominant contribution comes from Eq. (99).

Let us now make this computation more precise. The stress-energy tensor will contain self-interactions of the form \(\partial_{\lambda_i} \partial_{\lambda_j} \) and cross terms of the form \(\partial_{\lambda_i} \partial_{\lambda_j} \). The former case leads to divergent integrals, so we do not consider them here. Let us concentrate on the latter, which take the form
\[T_{ij}^{(0)} = \beta \left(\partial_{\lambda_i} \partial_{\lambda_j} - \frac{1}{2} \delta_{ij} \partial_{\mu} \partial^{\mu} \right) \]
\[= \beta q_2 \left[2 \left(\frac{1}{r_{1j}} \right) \left(\frac{1}{r_{2j}} \right) - \delta_{ij} \left(\frac{1}{r_{1j}} \right) \left(\frac{1}{r_{2j}} \right) \right], \quad (101) \]

which sources the metric perturbation
\[b_{ij} = \frac{4}{r} \int_{M} T_{ij}^{(0)} d^3 x, \]
\[= -\frac{4\pi}{r} \beta q_1 q_2 (2 \delta_{ij}^{(1)} \delta_{ij}^{(2)} b - \delta_{ij}^{(1)} \delta_{ij}^{(2)} b) + (1 \leftrightarrow 2), \]
\[= -\frac{16\pi}{r} \beta b_1 b_2 n_{ij}, \quad (103) \]

where we used an integration formula for the triangle potential given in Appendix B. We can see that this correction is 0PN relative to the radiative metric perturbation in GR, just as we predicted in Eq. (99). However, this correction turns out to be still smaller in the energy flux than the dipole scalar radiation, which gives a \(-1\)PN correction.

B. Odd-parity sector

We now focus on the odd-parity sector, for which the solution is given by the term proportional to \(\alpha_4 \) in Eq. (94), namely,
\[b_{ij} = b_{ij}^{K}, \quad (104) \]
\[b_{ij}^{K} = -\frac{8\alpha_4}{r} \int_{M} \mathcal{K}_{ij}^{(1)} d^3 x. \quad (105) \]

The stress-energy contribution \(b_{ij}^{T} \) is the same as in Eq. (103).

The \(K \) contribution to Eq. (104) is more involved. The leading-order behavior of the \(K \) tensor is
\[\mathcal{K}_{ij}^{(1)} = \partial_{k} \epsilon_{jkl} h_{00,il} + \partial_{j} \epsilon_{jkm} (h_{lm,ik} + h_{lk,im}) + \partial_{i} \epsilon_{ilm} (h_{0k,m} + h_{mk,0} - h_{0l,m} + h_{lm,0}) - \partial_{j} \epsilon_{ikl} (2 h_{i[m,l]m} - 2 h_{i[m,l]m} - h_{00,il}) - 2 \partial_{l} \epsilon_{ikl} h_{i[m,l]m} + (i \leftrightarrow j). \quad (106) \]

Other terms are of higher PN order. By substituting \(h_{ij} = h_{00,il} \) into Eq. (106), and using \(\epsilon_{ijkl} h_{\mu \nu \rho \sigma} = \epsilon_{ijkl} \partial_{\mu} = 0 \), we get
\[\mathcal{K}_{ij}^{(1)} = 2 \partial_{k} \epsilon_{jkl} h_{00,il} - 2 \partial_{km} \epsilon_{jkl} h_{0[l,m]l} - 2 \partial_{k} \epsilon_{jkl} h_{0[l,m]l} + 2 \partial_{l} \epsilon_{ikl} \partial_{m} h_{00,il} + (i \leftrightarrow j). \quad (107) \]

The \(\mathcal{K}_{ij} \) term in Eq. (104) is then a sum of four terms, namely,
\[b_{ij}^{K} = \sum_{n=1}^{4} b_{ij}^{(n)}, \quad (108) \]

where we have defined
\[b_{ij}^{(1)} = -\frac{16\alpha_4}{r} \int_{M} \partial_{k} \epsilon_{jkl} h_{00,il} d^3 x + (i \leftrightarrow j), \quad (109) \]
\[b_{ij}^{(2)} = +\frac{16\alpha_4}{r} \int_{M} \partial_{km} \epsilon_{jkl} h_{0[l,m]l} d^3 x + (i \leftrightarrow j), \quad (110) \]
\[b_{ij}^{(3)} = +\frac{16\alpha_4}{r} \int_{M} \partial_{k} \epsilon_{jkl} h_{0[l,m]l} d^3 x + (i \leftrightarrow j), \quad (111) \]
\[b_{ij}^{(4)} = -\frac{16\alpha_4}{r} \int_{M} \partial_{k} \epsilon_{jkl} h_{00,il} d^3 x + (i \leftrightarrow j). \quad (112) \]

When we substitute the PN metric into the above terms, the right-hand sides depend on the velocity vectors \(v_{\lambda}^{A} \) (which depend on time only). The field \(\partial_{\lambda} \) is given in Eq. (90) and its derivative can be computed simply from that equation. Since this field is a NZ one, it depends on time through the positions of the objects, which implies that its time derivative can be converted into a spatial derivative via \(\partial_{\lambda} f(r_{\lambda}) = -v_{\lambda}^{A} \partial_{\lambda} f(r_{\lambda}) \).
Let us begin by making a simple order of magnitude estimate of how large the regularized contribution is. For this, it suffices to look at Eqs. (99) and (109):

\[h^T_{ij} \sim \mathcal{O}\left(\frac{\beta}{r} \frac{m}{r} v^2 \partial^2 \right), \]
\[h^K_{ij} \sim \mathcal{O}\left(\frac{\alpha_4}{m^2} \frac{m}{r} v^5 \partial \right). \]

The \(\partial \) field here is that of the NZ, and hence

\[h^T_{ij} \sim \xi_4 \frac{m}{r} v^2 \chi^2 \mathcal{O}(\chi^2 v^6 + \eta \chi v^9 + \eta^2 v^{14}), \]
\[h^K_{ij} \sim \xi_4 \frac{m}{r} v^2 \mathcal{O}(\chi v^7 + \eta v^{12}), \]

where \(\chi \) stands for the magnitude of \(\chi_1^i \) and \(\chi_2^j \). From this analysis, \(h^T_{ij} \) is clearly larger for rapidly spinning objects, leading to a 2PN effect.

For the nonspinning case, one might expect the \(\mathcal{K} \) contribution to lead to a 6PN effect, but as we explain in Appendix C, these leading-order effects actually vanish. This cancellation can also rather easily be seen by integrating by parts in Eqs. (109)–(112). After discarding boundary terms (taking into account the boundary term is obviously vanishes by the antisymmetry of the Levi-Civita tensor. We carry out a more careful analysis in Appendix C, where we explicitly show that the leading and first sub-leading order terms vanish. The first non-vanishing term is then of \(\mathcal{O}(v^3) \) smaller than the order of magnitude estimates in Eqs. (115) and (116), leading to 7PN and 4.5PN contributions at \(\mathcal{O}(\chi^0) \) and \(\mathcal{O}(\chi^1) \), respectively.

Since the largest contribution seems to arise for spinning BHs from the \(h^T_{ij} \) term, let us consider this in more detail. Two possible contributions are generated here: one that depends only on self-interaction terms, and one that depends on the cross-interaction. The former leads to divergent integrals, which need to be matched from strong-field solutions, and we do not consider these here. The latter leads to the metric deformation

\[h^T_{ij} = -\frac{4 \pi \beta}{r^3} \mu_1^i \mu_1^j \left[2 \partial_1^{(i)} \partial_2^{(j)} - \delta_1^{(i)} \delta_2^{(j)} \right] + \mathcal{O}(\chi^0) \]
\[= \frac{8 \pi \beta}{r^3} \left[2 \mu_1^i \mu_2^j - 12 \mu_2^i \mu_2^j \right] + 3n_{12}^i \left[5(n_{12}^i \mu_1^k) (n_{12}^j \mu_2^l) - \mu_{1k}^i \mu_{2l}^j \right] + \mathcal{O}(\chi^0) \]

which is clearly of the order predicted in Eq. (115), i.e. 2PN order relative to GR. This is of the same order as the energy flux correction carried by the pseudoscalar radiation.

C. Multipole moments

In this subsection, we discuss the additional contribution from the IZs, which enter as additional homogeneous solutions in the NZ and FZ. These contributions are homogeneous in the sense that they arise from sources that have support only in the IZs, and thus they vanish in the NZ and FZ [see e.g. the discussion prior to Eq. (45)]. The homogeneous solutions are characterized by the mass and current multipole moments of the strong-field bodies, which must be determined by matching to strong-gravity solutions in the IZ. When we solve the nonlinear equations of motion iteratively, the source terms in general can be classified into two pieces: a self-interaction part and a cross-interaction part, as in the case of \(\partial \) in Sec. IV. The cross-interaction part is sourced by the companion, while the self-interaction part is not.

The self-interaction part is rather easy to handle because matching involves only a single isolated object. As described in Sec. IV B, these self-interaction terms can be thought of as homogeneous solutions that have support only in the IZ. As such, in the small-coupling approximation, they satisfy homogeneous field equations that take Einstein form. If the spin of the object is neglected, the only possible linear perturbation to such a homogeneous solution that is compatible with asymptotic flatness is a shift of the body’s mass (in the \(1/r \) piece of the \((i, t) \) and diagonal parts of the metric). In essence, this is a consequence of Birkhoff’s theorem, which holds for homogeneous solutions. Such a shift is consistent with the strong-field, nonspinning BH solution in EDGB theory found in [28]. In that case, the mass shift is simply \(m_\Lambda \rightarrow (49/80)\xi_2 m_\Lambda \).

For spinning objects, one expects there to be higher multipole moments in the strong-field solution. However, one should be able to absorb current dipole moment modifications by a redefinition of the spin parameter, while the mass dipole momemt will be absorbed by the redefinition of the position of the center of mass. Therefore, the leading-order corrections that survive are the mass quadrupole moment, which produces a metric perturbation in the NZ proportional to \(1/r^3 \). As we will see, when we consider FZ solution, there is an additional factor of \(v^3 \) that enters.

Therefore, contributions to the energy flux from the quadrupole or higher multipole moments are at least 3PN order relative to that from the GR quadrupole formula. We will later find that corrections to the energy flux due to scalar radiation appear at \(-1 \)PN and 2PN relative order for the even- and odd-parity cases, respectively. Hence, the contributions from the multipole moments that we discussed here are definitely smaller than those introduced by scalar radiation in the even-parity case, and at most, the same order in the odd-parity case.
Let us take a look at spinning BHs in the odd-parity sector in more detail. At $O(\chi)$ there is freedom in adding a homogeneous solution proportional to $1/r^2$ in the h_{ij} component. This corresponds to a freedom in shifting the Kerr parameter measured at infinity. Reference [6] set this homogeneous solution to zero so that there is no shift in the Kerr parameter. At $O(\chi^2)$, there should be corrections proportional to $1/r^3$ in h_{ij} which shifts the quadrupole moment. Since there is no parameter in the Kerr geometry that can absorb this correction in the quadrupole moment, this $1/r^3$ correction cannot be eliminated.

The effective source term that reproduces this correction should look like

$$\Box h_{ij} = -4\pi Q_A u_i u_j (\delta_{kl} - 3 \hat{S}_{i,k} \hat{S}_{l,l}) \delta^{(3)}(x - x_1)_{jl} + (1 \leftrightarrow 2),$$

where $Q_A = O(\xi_4 m_A^2 \lambda^2)$ and $\hat{S}_{i,k} \equiv S^i_k/m_\lambda^2$ is a unit spin angular momentum vector. The solution of this wave equation at $O(1/r)$ is given by

$$h_{ij} = \frac{1}{r} \sum_{m=0}^{\infty} \frac{1}{m!} \frac{\partial^m}{\partial \tau^m} u_i u_j (\delta_{kl} - 3 \hat{S}_{i,k} \hat{S}_{l,l}) Q_1 \times \int_M \delta^{(3)}(x - x_1)_{kl} (\mathbf{n} \cdot \mathbf{x})^m d^3x + (1 \leftrightarrow 2).$$

The leading-order contributions at $m = 0$ (2PN) and $m = 1$ (2.5PN) vanish, leading to the first nonzero contribution at $m = 2$

$$h_{ij} = O\left(\frac{1}{r} Q \omega^2 v^2\right) = \xi_4 \frac{m}{r} \omega^2 \times O(\chi^2 v^2),$$

which is 3PN relative to GR. Therefore, the self-interacting correction in the metric at $O(\chi^2)$ is smaller compared to the corrections in the energy flux carried by the scalar field and the metric field with regularized modification.

The cross-interaction part is more complicated. In this case, we have to consider the induced multipole moments due to the presence of the secondary object. Thus, even if we consider nonspinning objects, higher multipole moments might be induced. Another important difference is that neither the mass monopole nor the spin dipole can be simply absorbed by a redefinition of the mass and spin of each object. This is because the shifts of these multipole moments depend on the orbital parameters, such as separation b. Notice, however, that the effects of the secondary object propagate only through the scalar field or the gravitational tidal force.

The order of magnitude of the former scalar field effect is more complicated to estimate and it depends on the situation. In the even-parity case, θ sourced by the secondary body at the position of the primary body is proportional to $1/b$. In EDGB theory, since θ has shift symmetry within the context of the classical theory, the effects are suppressed by the gradient of the field, i.e. they are proportional to $1/b^2$. In the odd-parity case, there is again shift symmetry and the monopole scalar charge is absent. Because of these two reasons, the suppression is proportional to $1/b^3$ in CS theory. These suppressions will be sufficient to conclude that the effects are relatively at least 1PN and 3PN in the even and odd-parity cases, respectively, which is smaller than the effects induced by scalar radiation.

In the odd-parity nonspinning case, the latter gravitational tidal force dominates over the scalar propagation effect. To calculate this tidal force properly requires asymptotic matching between the IZ solution and a strong-field, perturbed Schwarzschild solution in CS gravity. Perturbations of the Schwarzschild spacetime can be decomposed as a sum over electric and magnetic tidal tensors (see e.g. [58]). The former scale as $1/b^3(1 + v^2 + v^4 + ...)$, while the latter scales as $v/b^3(1 + v^2 + v^4 + ...)$ [54]. Such tidal deformations will induce gravitational waves that will scale as the second-time derivatives of the electric and magnetic quadrupole deformations, i.e. they will scale as $\omega^2/v^3(1 + v^2 + v^4 + ...)$ and $3\omega^2/v^3(1 + v^2 + v^4 + ...)$. In GR, the leading-order effect is induced by the electric quadrupole moment and it scales as ω^2/v^3, a 5PN order effect. In CS, we expect the magnetic quadrupole moment to provide the leading-order deformation, and at the level of energy flux, this couples to the GR metric perturbation produced by the radiative current quadrupole moment, leading to 6PN correction. This interpretation seems to be consistent with the results of Pani, et al. [63] which suggest that this scales as a 6PN order effect.

VI. ENERGY FLUX

The inspiral of a compact binary system is controlled by the system’s change in binding energy and angular momentum. The binding energy changes according to the dissipation of energy carried by all dynamical fields, which here includes the metric perturbation and the scalar field. The stress-energy tensor (SET) associated with each field quantifies the density and flux of energy and momentum. The energy loss is calculated as the integral of the energy flux through a 2-sphere of radius r in the limit $r \to \infty$ and in the direction of the sphere’s outward unit normal n^{μ}. That is, for some field ϕ (be it h_{ij}, \dot{h}_{ij}, or θ) with SET $T^{(\phi)}_{\mu \nu}$,

$$E^{(\phi)} = \lim_{r \to \infty} \int_{S^2_r} \langle T^{(\phi)}_{\mu \nu} n^{\nu} \rangle r^2 d\Omega,$$

where the angle brackets with subscript ω stand for orbit averaging.

The total energy flux can be ordered in powers of ζ as

$$\dot{E} = \dot{E}_G + \zeta \delta \dot{E} + O(\zeta^2).$$

The GR energy flux \dot{E}^{GR} is given by the GR metric perturbation only, without any contributions from the scalar field.
at $O(\delta^0)$, as there is no scalar field in GR. For circular orbits, this is

$$\delta E_{GR} = -\frac{32}{5} \eta^2 \nu^{10}. \quad (123)$$

The $O(\delta)$ correction, $\delta \tilde{E}$, can be decomposed into

$$\delta \tilde{E} = \delta \tilde{E}^{(a)} + \delta \tilde{E}^{(b)}, \quad (124)$$

where the first term is the scalar field contribution and the second term is the contribution of the deformed metric perturbation.

The scalar field contribution is calculated with the SET given by Eq. (7):

$$\delta \tilde{E}^{(a)} = \beta \lim_{r \rightarrow \infty} \int_{S_t^2} \langle \tilde{\delta} n^i \tilde{\delta} \theta \rangle_\omega r^2 d\Omega. \quad (125)$$

Since we are taking the $r \rightarrow \infty$ limit, θ must be that valid in the FZ.

The metric deformation contribution to the energy flux is slightly more subtle. This modification to the GR flux can have three distinct sources: (i) the effective SET in terms of h_{ij} and θ_{ij} may be functionally different, but as shown in [38], this is not so for the class of theories we consider here; (ii) the orbital equations of motion, and the associated relations $m/b = \nu^2$ and $\omega = \nu^3/m$, might be modified at $O(\delta)$, as was partially calculated in [28]; (iii) The generation mechanism of the FZ metric perturbation is modified, i.e. the radiative part of the metric perturbation is deformed. We consider here only the dissipative modifications introduced by (iii), as (ii) would require an analysis of the equations of motion, which is beyond the scope of this paper.\(^8\)

Letting $H_{\alpha\beta} = h_{\alpha\beta} + \mathcal{O}(\delta^2)$, the effective SET of GWs is given by [38]

$$T^{(H)}_{\mu\nu} = \frac{1}{32\pi} \langle H^{TT}_{\alpha\beta;\mu,\lambda} H^{\alpha\beta}_{\mu\nu} \rangle_\lambda. \quad (126)$$

\(^7\)Reference [38] showed that the TT gauge exists in quadratic gravity as $r \rightarrow \infty$. Any non-TT propagating mode that is sourced in the NZ vanishes in the FZ at all orders. This is in contrast to scalar-tensor theories in the Jordan frame, where the scalar “breathing” mode is present in the metric. This difference comes from the way the metric deformation and the scalar field couple in the field equations. In the quadratic gravity case, θ does not multiply $G_{\mu\nu}$ in the field equations (the Einstein-Hilbert sector of the action is unmodified), while the opposite is true in scalar-tensor theories in the Jordan frame. Therefore, in the former $\theta_{\mu\nu}$ and θ decouple in the $r \rightarrow \infty$ limit and there is no breathing mode. In contrast, in the latter the coupling between $\theta_{\mu\nu}$ and θ remains in the limit $r \rightarrow \infty$, leading to a nonvanishing breathing mode and a modification to the effective SET.

\(^8\)The distinction between (ii) and (iii) can be ambiguous at higher PN order, because how the orbital parameters are modified depends on the gauge choice. However, as long as we impose the harmonic gauge condition on both GR and the deformed metric perturbations, we do not have to worry about this gauge issue at least up to next-to-leading PN order.

where the angle brackets with a subscript λ stand for a quasilocal average over several wavelengths and TT stands for the transverse-traceless projection

$$H^{TT}_{ij} = \Lambda_{ij,k} H_{kk}, \quad \Lambda_{ij,k} = P_{ik} P_{j} - \frac{1}{2} P_{ij} P_{kk}. \quad (127)$$

with $P_{ij} = \delta_{ij} - n_{ij}$ the projector onto the plane perpendicular to the line from the source to a FZ field point. Expanding this SET in orders of δ, the $O(\delta^0)$ part leads to \tilde{E}_{GR}, while the $O(\delta)$ part is

$$T^{(b)}_{\mu\nu} = \frac{1}{16\pi} \langle h^{TT}_{\alpha\beta;\mu,\lambda} n^\alpha n^\beta \rangle_\lambda \quad (128)$$

which leads to

$$\delta \tilde{E}^{(b)} = \frac{1}{16\pi} \lim_{r \rightarrow \infty} \int_{S_t^2} \langle h^{TT}_{\alpha\beta;\mu,\lambda} n^\alpha n^\beta \rangle_\lambda r^2 d\Omega. \quad (129)$$

As before, the $h_{\alpha\beta}$ and $n_{\alpha\beta}$ are those valid in the FZ.

A. Scalar field correction to the energy flux

1. Even-parity sector

In the even-parity case, ϑ^{FZ} is dominated by the dipole component [Eq. (73)], which we repeat here for convenience: $\vartheta^{FZ} = D D_{ij}/r$, where D_i is the NZ dipole given in Eq. (74). This is inserted into the energy loss formula, Eq. (125). Since the FZ scalar field depends on retarded time, both time and spatial derivatives can be written as time derivatives of the NZ moments. This gives

$$\delta \tilde{E}^{(\delta)} = -\beta \int_{S_\omega} \langle D_i D_{ij} \rangle_\omega d\Omega = -\frac{4\pi}{3} \beta \langle D_i D_i \rangle_\omega, \quad (130)$$

which for circular orbits gives

$$\delta \tilde{E}^{(\delta)} = -\frac{4\pi}{3} \beta \omega^4 |D|^2 = -\frac{4\pi}{3} \frac{\beta}{m^2} (m_2 q_1 - m_1 q_2)^2 \nu^8. \quad (131)$$

Note that here, as before, the $m \rightarrow 0$ limit diverges, because the effective theory breaks down on short length scales and $\xi \ll 1$ is violated.

When the compact bodies are BHs, their scalar monopole charges are given by Eq. (63), $q_\lambda = 2\alpha_3/|\beta n_{\lambda}|$, which then leads to

$$\delta \tilde{E}^{(\delta)} = -\frac{1}{3}\frac{\delta m^2}{\eta^2 m^2} \nu^8. \quad (132)$$

Comparing this with the GR energy flux, we find

$$\frac{\delta \tilde{E}^{(\delta)}}{\tilde{E}_{GR}} = \frac{5}{96} \frac{\delta m^2}{\eta^4 m^2} \nu^{-2}, \quad (133)$$

PHYSICAL REVIEW D 85, 064022 (2012)
a relative -1PN effect. That is, the energy lost to the scalar field due to dipole radiation would enter as a lower-order in v effect than the energy loss in GR. If one takes the limit $m_2 \rightarrow \infty$ while keeping (m_1, v) fixed, then the above ratio scales as $m_1^{-4};$ i.e. the energy flux ratio is sensitive to the smallest horizon scale of the system. The effect is of a similar size for comparable stellar-mass binary and EMRI system. A SMBH-SMBH binary experiences the smallest effect.

2. Odd-parity sector: spinning bodies

The scalar field ϕ^{FZ} is here dominated by the quadrupole component [Eq. (83)], which we repeat here for convenience $\phi^{FZ} = \tilde{\mu}_{ij} n^i / r = -\omega^2 \mu_{ij} n^i / r,$ where the quadrupole tensor μ_{ij} is defined in Eq. (82). Inserting this into the energy loss formula [Eq. (125)] gives

$$\delta \dot{E}^{(\theta)} = -\beta \int_{S_\infty} (\tilde{\mu}_{ij} \tilde{\mu}_{k(i)j(i)k}) \omega d\Omega,$$

$$= -\frac{4\pi}{15} \beta [(2 \tilde{\mu}_{ij} \tilde{\mu}^{ij} + (\tilde{\mu}^i)^2)] \omega, \quad (134)$$

Let us evaluate this for quasicircular orbits with non-precessing spins. The third time derivative of the quadrupole tensor μ_{ij} becomes

$$\ddot{\tilde{\mu}}_{ij} = b^{-3} (m_1 v_{12}^i \mu_{2}^0 - m_2 v_{12}^i \mu_{1}^0), \quad (135)$$

and the total energy flux is

$$\delta \dot{E}^{(\theta)} = -\frac{5}{48} \xi_4 [\tilde{\Delta}^2 + 2((\Delta \dot{\cdot} \dot{\nu}_{12})^2) \omega] v^4, \quad (136)$$

where $\dot{\nu}_{12}$ is the unit vector in the direction of the relative velocity and the dimensionless quantity $\tilde{\Delta}$ is defined as

$$\tilde{\Delta}^i = \frac{m_2}{m} \tilde{\chi}_1 \tilde{\xi}_1 - \frac{m_1}{m} \chi_2 \tilde{\xi}_2. \quad (137)$$

Notice that $\delta \dot{E}^{(\theta)}$ in Eq. (136) is finite in the EMRI limit. Note also that when both spins are perpendicular to the orbital plane, $\tilde{\Delta}$ is as well, and the second term of $\delta \dot{E}^{(\theta)}$ vanishes. Comparing Eq. (136) with GR,

$$\frac{\delta \dot{E}^{(\theta)}}{E^{GR}} = \frac{25}{1536} \xi_4 \frac{1}{\eta^2} [\tilde{\Delta}^2 + 2((\Delta \dot{\cdot} \dot{\nu}_{12})^2) \omega] v^4, \quad (138)$$

hence scalar radiation in the odd-parity sector is clearly a relative 2PN effect. This effect was not included in the work of Pani et al. [63], who found a 7PN correction, since their simulations did not include spins. If one takes the limit $m_2 \rightarrow \infty$ while keeping (m_1, v) fixed, then the above ratio scales as $m_1^{-2} m_2^{-2};$ i.e. the energy flux ratio is sensitive to the geometric mean of the two horizon scales in the system. This implies that the effect is greatest for comparable stellar-mass binaries.

3. Odd-parity sector: nonspinning bodies

The odd-parity $\delta E^{(\sigma)}$ in Eq. (89) can be used to evaluate the energy loss in Eq. (125):

$$\delta \dot{E}^{(\theta)} = -256 \xi_4 \eta \dot{m}^2 \eta^2 \left(\frac{m}{b} \right)^8 \int_{S_\infty} d\Omega \left[\partial_i \left(e^{ijkl} n^i v_{12}^i n_{12}^{(l)} \right) \right]^2$$

$$= -256 \xi_4 \eta^2 \dot{m}^2 \eta^2 \left(\frac{m}{b} \right)^{10} \int_{S_\infty} d\Omega \left(e^{ijkl} n^i v_{12}^i n_{12}^{(l)} \right)^2$$

$$= -\frac{64}{15} \xi_4 \eta^2 \dot{m}^2 \left(\frac{m}{b} \right)^2. \quad (139)$$

Compared to the GW radiation in GR [Eq. (123)], this scalar radiation becomes

$$\frac{\delta \dot{E}^{(\theta)}}{E^{GR}} = \frac{2}{3} \frac{\dot{m}^2}{m^2} \xi_4 v^{14}, \quad (140)$$

which shows that this is a relative 7PN effect. In contrast with the cases of even-parity and odd-parity with spins, this effect is dominantly controlled by the total mass, rather than the mass ratio. The effect is greatest for a system of stellar-mass BHs.

The above result can be compared to numerical calculations recently performed by Pani et al. [63]. They estimated the effect of scalar radiation in dynamical CS gravity [36] for nonspinning, circular EMRIs. They numerically solved the master perturbation equations on a Schwarzschild background to obtain the time evolution of the scalar field and the metric perturbation, caused by a nonspinning point-particle. Figure 3 compares their results to ours, found in Eq. (140). Observe that the numerical results of Pani et al. are in excellent agreement with our

FIG. 3 (color online). Comparison of Eq. (140) to the numerical results of Pani et al. [63]. The latter can be mapped to the generic quadratic gravity action of Eq. (4) by letting $\alpha_1 = -\alpha_{CS}/4,$ which then implies that $\xi_4 = -\xi_{CS}/16.$ We here used $\xi_{CS} = 6.25 \times 10^{-3},$ which is equivalent to their parameter $\xi_{CS} = 0.01.$ Observe that at low velocities, in the regime where the PN approximation is valid, the two curves agree.
post-Newtonian calculation, which extends it to comparable mass-ratios (notice the factor of \(\delta m/m \)).

B. Metric deformation correction to the energy flux

For the even-parity case, the correction to the energy flux that arises from the deformation to the gravitational metric perturbation is at least of 0PN order relative to GR. This is a higher PN order compared to the scalar dipole radiation found in Sec. VI A 1, and thus, we will not consider it further.

For the odd-parity case with spinning BHs, one of the leading contribution comes from the metric correction sourced by \(T_{ij}^{(h)} \), which is given in Eq. (117). Inserting this metric perturbation into Eq. (129), the energy flux correction relative to GR becomes

\[
\frac{\delta E^{(h)}}{E_{\text{GR}}} = \frac{75}{16} \frac{\xi_4}{\eta} \chi_1 \chi_2 \left(S_1 S_2 \left(\frac{2 \Omega_{ij}^{12}}{\omega} - 3 n_{(ij)}^{12} \right) \right) \omega^4, \tag{141}
\]

which is of relative 2PN order, just as the contribution due to scalar radiation in Eq. (138). Notice that both the metric deformation and scalar field corrections to the energy flux are of \(\mathcal{O}(\chi^2) \), but the latter is larger by a factor of \(\mathcal{O}(\eta^{-1}) \).

We expect \(\mathcal{O}(\chi) \) corrections to the energy flux due to the metric deformation to be higher PN order. For very slowly spinning binaries, however, they may give larger corrections compared to the \(\mathcal{O}(\chi^2) \) 2PN ones presented here.

In the odd-parity sector with nonspinning objects, the regularized contributions to the metric deformation can only provide energy flux corrections of at least 7PN order.

However, as explained in Sec. V C, we expect that matching strong-field solutions to the nonregular NZ ones may generate 6PN corrections in the energy flux, similar to those found by Pani et al. [63].

VII. IMPACT ON GRAVITATIONAL WAVE PHASE

How do all these modifications to the energy flux affect the GW observable? To answer this question, we compute the Fourier transform of the phase of the GW response function in the stationary phase approximation (SPA), where we assume the GW phase changes much more rapidly than the GW amplitude [64].

We begin by parameterizing all the corrections to the energy flux that we have studied so far via the following power law:

\[
\dot{E} = \dot{E}_{\text{GR}} (1 + A \omega^a), \tag{142}
\]

where \((A, a)\) are summarized in Table II for the four different sectors considered.

With the generic energy flux parameterization, the orbital phase for a quasicircular inspiral becomes

\[
\phi(F) = \int \frac{dE}{d\omega} \left(\frac{dE}{d\omega} \right)^{-1} \omega d\omega = \phi_{\text{GR}}(F) \left[1 + \frac{5}{a-3} A (2\pi m F)^{a/3} \right], \tag{143}
\]

where \(F = \omega = 2\pi F \) are the linear and angular orbital frequency, \(\phi_{\text{GR}} = -1/(32\eta)(2\pi m F)^{-5/3} \) is the GR orbital phase and \(E(\omega) = -(\mu/2)(m\omega)^2 \) is the binary’s binding energy to Newtonian order. Recall here that \(m = m_1 + m_2 \) is the total mass of the binary, while \(\mu = m_1 m_2/m \) is the reduced mass and \(\eta = \mu/m \) is the symmetric mass ratio.

Equation (143) is not valid when \(a = 5 \) (a 2.5PN correction), as then the integrand becomes proportional to \(\omega^{-1} \), which leads to a log term.

Before we compute the Fourier phase, we must first define \(t_0 \), the time at which the stationary phase condition is satisfied \(F(t_0) = f/2 \), where \(f \) is the GW frequency. This condition can be solved to yield

\[
t_0 = t_{0,\text{GR}} \left(1 - \frac{8}{a-3} A (\pi m f)^{a/3} \right), \tag{144}
\]

where \(t_{0,\text{GR}} \) is the GR \(t_0 \). Again, this expression is not valid at \(a = 8 \), because once more the correction to \(t_0(f) \) would be a log term.

With this at hand, we can now compute the Fourier phase in the SPA:

\[
\Psi_{GW} = 2\phi(t_0) - 2\pi f t_0
= \Psi_{GR} \left[1 - \frac{40}{(a-5)(a-8)} A \eta^{-a/5}(\pi m f)^{a/3} \right], \tag{145}
\]

where \(\Psi_{GR} = (3/128)(\pi M f)^{-5/3} \), and where \(M = \eta^{3/5} m \) is the chirp mass. Again, these expressions are not valid when \(a = 5 \) or \(a = 8 \), for the reasons described above.

The corrections to the GW phase found here map directly to the parameterized post-Einsteinian (ppE) framework [29]. In that framework, one postulates that modified gravity theories affect the Fourier phase of the GW response function in the SPA via

\[
\Psi_{GW}^{\text{ppE}} = \Psi_{GR} + \beta_{\text{ppE}} (\pi M f)^{b_{\text{ppE}}}, \tag{146}
\]

where \((\beta_{\text{ppE}}, b_{\text{ppE}})\) are ppE parameters. We see that this is identical to the corrections introduced by a change in the energy flux, with the mapping
\[\beta_{\text{ppE}} = -\frac{15}{16} \frac{A}{(a-5)(a-8)} \eta^{-a/5}, \quad b_{\text{ppE}} = \frac{a-5}{3}. \]

This is not surprising, as the ppE framework was in part motivated by studying power-law (in velocity) modifications to the energy flux and the binding energy [29].

We have then found that a large number of energy flux corrections associated with extra gravitational and scalar field emissions can be mapped to the ppE framework. In the even-parity case, the leading-order frequency exponent is

\[b_{\text{ppE}} = -\frac{7}{3}, \]

while in the odd-parity case \(b_{\text{ppE}} = -1/3 \), unless the binary is nonspinning in which case \(b_{\text{ppE}} = +3 \).

The results found in this paper could help in the generalization of the ppE framework to more generic quasicircular inspirals. The original framework considered only nonspinning, equal mass inspirals, while recently Cornish et al. [30] generalized it to nonspinning, unequal mass systems through \(A \rightarrow A' \). In this paper we have found that \(A \) does not only depend on a simple power law of \(\eta \), but also on the mass difference \(\delta m/m = \sqrt{1 - 4\eta} \) and on combinations of the spins. For single detections, however, such a generalization is not needed as one only measures a single number, \(\beta_{\text{ppE}} \), and one cannot extract the dependences on \(\eta, \delta m/m, \) and the spins.

Although we currently lack any GW detections, we can still estimate the projected constraints that such detections would place on quadratic gravity. According to Table II, the even-parity sector leads to the strongest deviations from GR, since \(a = 5 \) is the most negative. Therefore, we consider EDGB theory, \((\alpha_1, \alpha_2, \alpha_3, \beta) = (1, -4, 1, \alpha_{\text{EDGB}}) \alpha_{\text{EDGB}} \), as a simple subcase of the even-parity sector. Let us first imagine that we have detected a GW with Ad. LIGO and signal-to-noise ratio (SNR) of 20 that is consistent with GR and that originates from a nonspinning BH binary with masses \((m_1, m_2) = (6, 12)M_\odot\). Given such a detection, Cornish et al. [30] estimated the projected bound \(|\beta_{\text{ppE}}| \leq 5 \times 10^{-4}\) for \(b_{\text{ppE}} = -\frac{7}{3} \), which implies \(|\alpha_{\text{EDGB}}| \leq 4 \times 10^5 \) cm. Let us now assume that we have detected a GW with LISA classic with an SNR of 879 and still consistent with GR, but that originates from a nonspinning BH binary with masses \((m_1, m_2) = (10^6, 3 \times 10^6)M_\odot\) at \(z = 1 \). Given such a detection, Cornish et al. [30] estimated a bound on \(|\beta_{\text{ppE}}| \leq 10^{-6}\) for the same value of \(b_{\text{ppE}} \) as before, which leads to \(|\alpha_{\text{EDGB}}| \leq 10^{10} \) cm. In both cases, notice that these projected bounds are consistent with the small-coupling requirement \(\xi \ll 1 \); i.e. saturating the projected Ad. LIGO and LISA constraints we have \(\xi_{\text{Ad. LIGO}} \sim 3 \times 10^{-2} \) and \(\xi_{\text{LISA}} \sim 10^{-5} \) for those particular binary systems, which is clearly much less than unity.

Comparing these results with the current constraint obtained by the Cassini satellite, \(|\alpha_{\text{EDGB}}| \leq 8.9 \times 10^{11} \) cm [33], we see that Ad. LIGO and LISA could constrain \(\alpha_{\text{EDGB}} \) much more strongly. Unfortunately, it seems difficult to put constraints on EDGB with binary pulsar observations, since NSs have no scalar monopole charge in this theory. We emphasize again that this is opposite to the expectation from scalar-tensor theories, in which NSs have scalar monopole charges while BHs do not. Finally, one cannot estimate the bounds one could place on dynamical CS gravity, since one would have to properly account for modifications to the conservative equations of motion, which we have not calculated here.

VIII. CONCLUSIONS AND DISCUSSIONS

We have studied the binary inspiral problem in a wide class of quadratic gravity theories in the slow-motion, weak-gravity regime. The structure of a compact object in such theories affects the exterior scalar field sourced by the object. Despite this, we can model a compact object by an effective scalar field source characterized by its scalar monopole and dipole moments. The scalar monopole charge is enhanced inversely proportional to the mass of the object, while the dipole charge is independent of the mass for a fixed dimensionless spin parameter. With this effective source, we then derived and solved the modified field equations for the scalar field and metric deformation.

We find that the scalar field generically emits dipole radiation in the even-parity sector, and quadrupole radiation in the odd-parity sector. Such radiation affects the rate of change of the binary energy at relative \(-1\)PN order in the even-parity case and relative \(2\)PN order in the odd-parity case. The quadrupole contribution depends quadratically on the BH spins, and thus it is suppressed for nonspinning binaries. In that case, the odd-parity contribution becomes of relative \(7\)PN order, as found numerically in [63]. We have found excellent agreement between their numerical results and our analytical calculations.

We have also calculated the metric perturbation in the FZ and its associated energy flux. In the even-parity sector, the dominant metric contribution leads to a \(0\)PN relative correction in the energy flux, which is smaller than the \(-1\)PN correction induced by scalar dipolar radiation. In the odd-parity sector and for spinning BHs, the metric perturbation leads to a \(2\)PN modification to the energy flux, which is of the same order as that induced by quadrupolar scalar radiation. In the odd-parity sector and for nonspinning BHs, we expect the energy flux correction due to the metric deformation is suppressed to at least \(6\)PN order, as found by Pani et al. [63].

Whether these corrections can be measured or constrained depends on whether they are degenerate with GR terms in the physical observable, i.e. the waveform. A \(-1\)PN effect cannot be degenerate, as there are no such terms predicted in GR. A \(2\)PN effect, however, could be degenerate with a spin-spin interaction for quasicircular inspirals with aligned or counter-aligned spin components. That is, a renormalization of the spin magnitudes of...
both bodies can eliminate this 2PN effect, assuming one truncates the waveform at that order. If higher-order PN waveforms are used, or if the orbit is more generic (i.e. if there is precession or eccentricity), then this degeneracy can be broken.

We also calculated the effects of such energy flux modifications on the gravitational waveform. The waveform phase depends sensitively on the rate of change of the orbital frequency, which in turn is governed by the rate of change of energy. We calculated the corrections that would be induced in the waveform and mapped them to the ppE framework. We then used a recent ppE study \[30\] to estimate the constraints that Ad. LIGO and LISA could potentially place on quadratic gravity theories. Given a GW detection, we found that the magnitude of the new length scale introduced by quadratic gravity theories (associated with a ratio of their coupling constants) could constrain at a level controlled by the smallest length-scale probed in the inspirals, i.e. the size of the smallest compact object’s event horizon or surface. The best projected bounds achievable with Ad. LIGO will thus come from stellar-mass BH or NS inspirals, while LISA will benefit the most from EMRIs. Since NSs have no scalar monopole charge in EDGB theory, this theory cannot be constrained from binary pulsar observations. This property is diametrically opposite to scalar-tensor theories where BHs have no hair.

There are several possible avenues for future work. Since we here mainly considered corrections due to the dissipative sector of the theory, one possibility is to calculate the nondissipative corrections that would modify the binding energies (here, we mean both gravitational and scalar binding energies) and the equations of motion. There are two effects that should be accounted for: new scalar-scalar forces and metric deformations. Let us consider the former first. In the even-parity case, compact objects have an associated scalar monopole charge, and thus, there is an additional scalar force with a \(1/r\) potential that should lead to a relative 0PN non-dissipative correction in the equations of motion. Similarly, in the odd-parity case, a spinning compact body possesses a current dipole charge, and hence, dipole-dipole interactions should arise. Since the dipole potential is proportional to \(1/r^2\), while the dipole charge couples to the first derivative of the potential, the binding energy and the equations of motion should be corrected at relative 2PN order.

Another nondissipative modification is induced by deformations of the background metric tensor. In the even-parity sector, such corrections enter at relative 0PN order, as found by Yunes and Stein \[28\]. In the odd-parity sector, there is no metric deformation for isolated nonspinning BHs, but for spinning ones at \(O(\chi)\), there is a correction proportional to \(r^{-4}\) to the \((i, i)\) components \[6\], which then leads to a 4.5PN correction in the equations of motion when we consider boosted BHs. At \(O(\chi^2)\), there should be a correction in the quadrupole moment compared to the Kerr BH, leading to a 2PN correction relative to GR. This then implies the following: (i) in the even-parity case, the conservative corrections to the equations of motion do not affect the leading-order modification to the waveforms, since this is dominated by the \(-1PN\) scalar radiation effect; (ii) in the odd-parity case, the conservative corrections from the metric deformation can be neglected at \(O(\chi)\), but those due to the metric deformation at \(O(\chi^2)\) and the scalar-scalar force will contribute at the same order as the effect calculated here. A complete analysis of the waveform observable would thus require the calculation of such a scalar-scalar, conservative effect.

Another possibility could be to study modified quadratic gravity in the context of BH perturbation theory. This would be a tremendous effort that would have to be split into separate parts. First, one would have to find an analytic, strong-field solution for arbitrarily fast rotating BHs in quadratic gravity. This has only been found in the slow-rotation limit both in the even-parity \[28\] and odd-parity sectors \[6\]. Once this is accomplished, one would have to study the evolution of metric perturbations away from this solution. Such evolution equations would have to be decoupled in terms of some master function to derive Teukolsky-like master equations. Finally, with these equations at hand, one would have to solve them numerically, when the perturbations are sourced by a small object in a tight orbit. Such an analysis would be interesting because one would be able to derive not only the corrections to the energy flux carried out to infinity, but also that which is absorbed by the BH horizon and which we ignored in this paper.

A final follow-up would be to study how NS solutions are modified in quadratic gravity \[65,70\] and how the energy flux from NS binaries is modified. This could then lead to direct constraints on quadratic gravity theories from double binary pulsar observations. Such constraints could be stronger, relative to current Solar System constraints, as they could potentially provide constraints of roughly the order of magnitude of the NS radius. Of course, in the case of EDGB theory or dynamical CS gravity, these constraints might not be stronger as NSs have no scalar monopole charge in such theories.

ACKNOWLEDGMENTS

We would like to thank Cliff Will, Eric Poisson, and Luc Blanchet for invaluable teachings regarding the PN approximation. We also acknowledge Richard O’Shaughnessy, Yanbei Chen, Yacine Ali-Haïmoud, and Misao Sasaki for useful comments on the manuscript, and Paolo Pani, Vitor Cardoso, and Leonardo Gualtieri for making some of their data accessible to us. N.Y. thanks the Yukawa Institute for Theoretical Physics for their hospitality. K.Y. is supported by the Japan Society for the Promotion of Science (JSPS) Grant No. 22.900.
APPENDIX A: THE BALDING OF NEUTRON STARS IN EDGB GRAVITY

In this appendix, we consider the scalar field equation in EDGB gravity for isolated NSs. Integrating the evolution equation, we find

$$\int \sqrt{-g} \nabla \varphi \, d^4x \approx \int \sqrt{-g} R_{GB}^2 \, d^4x, \quad \text{(A1)}$$

where we have defined the Gauss-Bonnet invariant $R_{GB}^2 = R^2 - 4R_{\mu\nu}R^{\mu\nu} + 3R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$. Since the Gauss-Bonnet combination is a topological invariant, the right-hand side identically vanishes for any simply connected, asymptotically flat spacetime. Moreover, since we are considering isolated NSs, these must be stationary, and so the time integration can be removed.

With all of this and using Stokes’ theorem, Eq. (A1) becomes

$$\int \sqrt{-g}(\partial_\varphi \varphi) n^i dS = \int \sqrt{-g}(\partial_\varphi \varphi) dS = 0, \quad \text{(A2)}$$

where n^i is the radial unit vector and the integral is performed over the 2-sphere at spatial infinity. Notice that $\sqrt{-g} \sim r^2$, while the scalar field must decay at infinity for it to have a finite energy.

Equation (A2) does not vanish at spatial infinity for all scalar field solutions, i.e. if we model $\varphi = \varphi / r$ with φ_0 a constant, then Eq. (A2) leads to the unique solution $\varphi_0 = 0$. This is a physicists’ proof that the EDGB scalar field cannot have scalar monopole charge for a spherically symmetric NS. Similarly, one can show that NSs cannot have scalar monopole charge in dynamical CS gravity; the proof laid out above carries through with the replacement $R_{GB}^2 \rightarrow *RR$, since $*RR$ is also a topological invariant.

APPENDIX B: INTEGRATION TECHNIQUES

In this appendix, we provide some useful integration techniques. When computing near-zone integrals, we are faced many times with integrals of the form

$$\int d^3x \frac{x_{(l)}}{r_1 r_2}. \quad \text{(B1)}$$

When the point-particle approximation is valid, such near-zone integrals can be Hadamard regularized by keeping only the finite part. Let us then define [66]

$$Y_{(L)}(x_1, x_2) = -\frac{1}{2\pi} FP_{B \to 0} \int d^3x [x^i] \frac{x_{(L)}}{r_1 r_2}, \quad \text{(B2)}$$

to be evaluated in the near zone and where $FP_{B \to 0}$ stands for the finite part operator (in the limit $B \to 0$) and $[x]$ is an analytic continuation factor [66]. The solution to this integral is

$$Y_{(L)} = \frac{b}{l + 1} \sum_{q=0}^l x_{(L-q)} x_Q. \quad \text{(B3)}$$

The first few $Y_{(L)}$ are simply

$$Y_0 = Y = b, \quad Y_i = \frac{b}{2} (x_i^1 + x_i^2), \quad \text{(B4)}$$

$$Y_{(ij)} = \frac{b}{3} (x_i^1 x_j^2 + x_i^2 x_j^1), \quad \text{(B5)}$$

$$Y_{(ijk)} = \frac{b}{4} (x_i^1 x_j^2 x_k^3 + x_i^1 x_j^3 x_k^2 + x_i^2 x_j^1 x_k^3), \quad \text{(B6)}$$

The solution to the $Y_{(L)}$ integral can also be derived by using certain Poisson integral identities [61]:

$$P(f g, i) = -\frac{1}{2} [f g + P(f g, ii) + P(g f, ii) - B_p(f g)], \quad \text{(B7)}$$

where we have defined

$$P(f) = \frac{1}{4\pi} \int_M \frac{f(t, x')}{[x - x']} d^3x', \quad \text{(B8)}$$

and the boundary term is

$$B_p(g) = \frac{1}{4\pi} \int_{\partial R} \left[\frac{g(t, x')}{[x - x']} \partial_{\nu} \ln [g(t, x')|x - x'] \right]_{r = R} R^2 d\Omega'. \quad \text{(B9)}$$

As usual, we retain only those terms that are independent of the boundary ∂R.

Finally, there is yet another type of integral that commonly appears in near-zone integration:

$$\int_M \frac{d^3x'}{[x' - x_1][x' - x_2][x' - x_3]}, \quad \text{(B10)}$$
Let us then define the so-called triangle potential \[G(x_1, x_2, x_3) = \frac{1}{4\pi} \int_{\mathcal{M}} \frac{d^3x'}{|x' - x_1||x' - x_2||x' - x_3|}. \] (B11)

It is a bit of a miracle that the above integral has the closed-form solution \(G(x_A, x_B, x_C) = 1 - \ln(\Delta(ABC)) \), with \(\Delta(ABC) = |x_A - x_B| + |x_B - x_C| + |x_C - x_A| \).

One can show that the triangle potential satisfies a set of relations, including \[\hat{\delta}_i^{(1)} \hat{\delta}_j^{(2)}(x_1, x_2, x) = \frac{1}{2} \left[\frac{1}{b} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) - \frac{1}{r_1 r_2} \right], \]
\[\hat{\delta}_k^{(1)} \hat{\delta}_j^{(2)}(x_1, x_2, x) = -\frac{1}{2} \left[n_{ij} n_{k}^{(2)} + n_{ik} n_{j}^{(2)} - n_{jk} n_{i}^{(2)} \right] + 3 \frac{n_{ij}^{(2)}}{b^2} \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \] (B12)

and more generally
\[\hat{\delta}_i^{(B)} \hat{\delta}_j^{(C)} G(ABC) = \frac{1}{\Delta(ABC)^2} (n_{AB}^{(B)} - n_{BC}^{(B)})(n_{AC}^{(C)} + n_{BC}^{(C)}) \]
\[+ \frac{1}{r_{BC} \Delta(ABC)} (\delta_{ij} - n_{BC}^{(B)} n_{BC}^{(C)}), \] (B13)

where \(G(ABC) = G(x_A, x_B, x_C) \).

APPENDIX C: ODD-PARITY, NONSPINNING, REGULARIZED CONTRIBUTION IN THE METRIC CORRECTION

We consider here the odd-parity sector for nonspinning binaries, where, for the scalar field, the magnetic-type dipole moment vanishes, \(\mu_A = 0 \), since \(x_A = 0 \). For the regularized contribution, we only need to consider the cross-interaction terms since the isolated nonspinning BH solution in the odd-parity case is simply the Schwarzschild metric. The \(\hat{K}_{ij}^{(1)} \) source term gives the largest correction and one is left only with the pseudoscalar generated by interaction terms, as given in Eq. (61).

The metric deformation is given by Eq. (94), the \(m = 0 \) piece of which can be split as in Eqs. (109)–(112). Before tackling each of these terms separately, let us point out that many of them identically vanish. For example, one of the contributions in Eq. (109) is proportional to
\[I_{ijmn} = m_1 \epsilon_{ijk} \int_{\mathcal{M}} \hat{\delta}_k^{(1)} \hat{\delta}_l^{(2)} \left(\frac{1}{r_1} \right) d^3x \]
\[+ m_2 \epsilon_{ijk} \int_{\mathcal{M}} \hat{\delta}_k^{(1)} \hat{\delta}_l^{(2)} \left(\frac{1}{r_2} \right) d^3x \]
\[= -2 \pi m_1 \epsilon_{ijk} \lim_{\lambda \to 0} \hat{\delta}_k^{(1)} \hat{\delta}_l^{(2)} Y(x_1, x_2) \]
\[- 2 \pi m_2 \epsilon_{ijk} \hat{\delta}_k^{(1)} \hat{\delta}_l^{(2)} Y(x_1, x_2) = 0. \] (C1)

It is critical in this calculation and in the calculations that follow to replace the \(x' \) derivatives by particles derivatives, i.e. derivatives with respect to \(x_i' \) and \(x_j' \).

Let us then tackle the first contribution to the dissipative metric deformation. Equations (109)–(112) can then be rewritten as
\[h_{ij}^{(1)} = 2048 \pi \alpha_2^2 \frac{m_1^2 m_2}{\beta} [b \omega^2 (I_{ij} + I_{2ij}) - v_{1a}(I_{3ij} + I_{4ij}) - v_{2a}(I_{5ij} + I_{6ij} + (i \leftrightarrow j)) + (1 \leftrightarrow 2), \] (C2)
\[h_{ij}^{(2)} = -2046 \pi \alpha_2^2 \frac{m_1^2 m_2}{\beta} v_{1[n}(I_{3ij}]n + I_{4ij} + I_{5ijn}] \]
\[+ I_{6ij} + (i \leftrightarrow j)) + (1 \leftrightarrow 2), \] (C3)
\[h_{ij}^{(3)} = 2046 \pi \alpha_2^2 \frac{m_1^2 m_2}{\beta} \frac{v_{1[n}(I_{7ij})n + I_{8ij} + (i \leftrightarrow j)} \]
\[+ (1 \leftrightarrow 2), \] (C4)
\[h_{ij}^{(4)} = -2048 \pi \alpha_2^2 \frac{m_1^2 m_2}{\beta} v_{1[n}(I_{7ij})n + I_{8ij} + (i \leftrightarrow j) \]
\[+ (1 \leftrightarrow 2), \] (C5)

where we have defined
\[I_{ij} = \epsilon_{klm} \epsilon_{pqrs} n_{12a} f_{12}^{(1)} p_{k,qr,l}l, \]
\[I_{3ijn} = \epsilon_{jklm} \epsilon_{pqrs} v_{12a} f_{12}^{(1)} p_{k,qr,il}l, \]
\[I_{5ijn} = \epsilon_{jklm} \epsilon_{pqrs} v_{12a} f_{12}^{(1)} p_{k,qr,il}l, \]
\[I_{7ijn} = \epsilon_{jklm} \epsilon_{pqrs} v_{12a} f_{12}^{(1)} p_{k,qr,il}l, \]
\[I_{8ijn} = \epsilon_{jklm} \epsilon_{pqrs} v_{12a} f_{12}^{(1)} p_{k,qr,il}l, \] (C6)

and
\[f_{ABC}^{(p)} = \lim_{\lambda \to 0} \hat{\delta}_k^{(1)} \hat{\delta}_l^{(2)} G(ABC), \] (C7)

with \(A, B, C \) denoting the multi-index lists. We provide a more detailed discussion of \(J \) tensors in Appendix D. One can then show through explicit computation that the two terms combine to give \(I_{1ij} + I_{2ij} = 0, I_{3ijn} + I_{4ijn} = 0, I_{5ijn} + I_{6ijn} = 0, \) and \(I_{7ijn} + I_{8ijn} = 0. \) Therefore \(h_{ij}^{(1-4)} = 0 \) at leading order.

Let us now look at contributions that are smaller by \(O(v) \). Such a correction can arise from two different terms: (i) the \(O(v) \) correction to the source term with \(m = 0 \) in the sum of Eq. (94), or (ii) the \(O(v^2) \) correction to the source term with \(m = 1 \) in the sum of Eq. (94). For case (i), the next-order terms consist of two time derivatives and one factor of \(h_{0i} \) (or three time derivatives and one factor of \(h_{ij} \), which when combined are \(O(v^2) \) smaller than the \(O(v^0) \) contribution shown to vanish previously. Also, the
next-order terms in the PN metric appears at $O(v^5)$ higher relative to the leading-order terms. Finally, δ^{N2} in Eq. (55) expanded as in Eq. (2.77) of [60] with $m = 1$ in the sum, gives an $O(v)$ relative contribution to $\delta_\theta \delta_t$, but explicit calculation shows that

$$\delta^{N2} = \frac{8}{\pi} \frac{C_1 m_2}{m_1} \epsilon_{ijk} \frac{\partial}{\partial t} \left[v_{12k} \int_{\mathcal{M}} \left(\frac{1}{r_1} \right)_{jkl} \left(\frac{1}{r_2} \right)_{jil} d^3 x \right]$$

$$= \frac{8}{\pi} \frac{C_2 m_2}{m_1} \epsilon_{ijk} \frac{\partial}{\partial t} \left[v_{12k} \delta^{(1)}_{il} \delta^{(2)}_{jl} \int_{\mathcal{M}} \left(\frac{1}{r_1} \right)_{i} d^3 x \right]$$

$$= 16 \frac{C_2}{\beta} m_2 \epsilon_{ijk} \frac{\partial}{\partial t} \left[v_{12k} \{ \delta^{(1)}_{il} \delta^{(2)}_{jl} b \} = 0. \right]$$

For case (ii), the resulting δh_{ij} contains one n^i vector. The correction to the energy flux consists of δh_{ij} multiplied by h^{TT}_{ij} and averaged over a 2-sphere. However, since the leading contribution in h^{TT}_{ij} contains even numbers of n^i vectors, the correction only contains angular integrals of odd numbers of n^i's which vanish exactly upon integration.

Since there is no $O(G^3, v)$ relative contribution to $\delta_\theta \delta_t$, the first, nonvanishing contribution must be at least $O(v^5)$ smaller than what we computed in Eqs. (C2)–(C5), which amounts to a 7PN correction to the energy flux carried by the metric deformation, in the odd-parity, nonspinning case.

APPENDIX D: EVALUATING J TENSORS

Recall that the definition of the J tensors is

$$J_{A,B,C}^{(3)} = \lim_{3\to p} \frac{\delta^{(1)}_{A} \delta^{(2)}_{B} \delta^{(3)}_{C}}{r_{p3}} \mathcal{G}(ABC).$$

(D1)

The limit $3 \to p$ which appears must be taken with care. There may be terms proportional to

$$\lim_{3\to p} \frac{1}{r_{p3}},$$

(D2)

which have no finite part. In the evaluation of the J tensors, only the finite part of the limit is kept. That is, a function can be expanded as a Laurent series about these points, and the finite part scales as $(r_{p3})^0$ in the limit as $3 \to p$.

Another type of problematic limit is

$$\lim_{3\to p} n^i_{p3} \text{ or } \lim_{3\to p} n^i_{p3},$$

(D3)

which does not formally exist, since it depends on the path taken as we describe below. Parameterize the path that particle 3 takes to the location of particle p by the continuously differentiable path $\gamma(\lambda)$, with λ a parameter of path length and $\gamma = 0$ the location of particle p. There are an infinite number of paths one could choose, and each can be parameterized in two senses. Taking the limit along this path “from below” (i.e. from smaller values of λ to larger values)

$$\lim_{3\to p, \gamma} n^i_{p3} = -\dot{\gamma}_i(0),$$

(D4)

where $\dot{\gamma}_i$ is the tangent vector to the curve γ. Taking the limit from above, we find

$$\lim_{3\to p, \gamma} n^i_{p3} = +\dot{\gamma}_i(0).$$

(D5)

The limit depends on the path’s tangent at the point of particle p, and the direction in which the limit is taken. Clearly, the final answer must be unique, which implies the limit must vanish.

A unique prescription to this problem is formalized as the Hadamard regularization [68]. This can be summarized as follows. All possible paths are considered, with tangent vectors $\dot{\gamma}_i$. The average is then taken by integrating, e.g.

$$\lim_{3\to p} \cdots n^i_{p3} \cdots = \int \frac{d^4 \mathcal{O}(\dot{\gamma}_i)}{4\pi} \cdots \dot{\gamma}_i^i \cdots.$$ (D6)

The first few such limits, for example, are

$$\lim_{3\to p} n^i_{p3} = 0,$$ (D7)

$$\lim_{3\to p} n^i_{p3} = \frac{1}{3} \delta^{ij}.$$ (D8)

064022-25