Search for the $Z_{1}(4050)_{+}$ and $Z_{2}(4250)_{+}$ states in $B^{0}_{c1}K^{-}$ and $B^{+}_{c1}K^{0}_{S}$.

Lees, J. et al. “Search for the $Z_{1}(4050)_{+}$ and $Z_{2}(4250)_{+}$ states in $B^{0}_{c1}K^{-}$ and $B^{+}_{c1}K^{0}_{S}$.” Physical Review D 85.5 (2012). © 2012 American Physical Society
Search for the $Z_1(4050)^+$ and $Z_2(4250)^+$ states in $\bar{B}^0 \rightarrow K^- \pi^+$ and $B^+ \rightarrow \chi_{c1} K^0 \pi^+$

(BABAR Collaboration)

Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France

Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain

INFN Sezione di Bari, I-70126 Bari, Italy

Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy

University of Bergen, Institute of Physics, N-5007 Bergen, Norway

Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

Busker Institute of Nuclear Physics, Novosibirsk 630090, Russia

University of California at Irvine, Irvine, California 92697, USA

University of California at Riverside, Riverside, California 92521, USA

University of California at Santa Barbara, Santa Barbara, California 93106, USA

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

California Institute of Technology, Pasadena, California 91125, USA

University of Cincinnati, Cincinnati, Ohio 45221, USA

University of Colorado, Boulder, Colorado 80309, USA

Colorado State University, Fort Collins, Colorado 80523, USA

Technische Universität Berlin, Institut für Kern- und Teilchenphysik, D-14195 Berlin, Germany

Technische Universität Dresden, Institut für Kernphysik, D-01062 Dresden, Germany

Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91898 Orsay Cedex, France

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

Queen Mary, University of London, London, E1 4NS, United Kingdom

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

University of Louisville, Louisville, Kentucky 40292, USA

Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany

University of Maryland, College Park, Maryland 20742, USA

University of Massachusetts, Amherst, Massachusetts 01003, USA

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3A 2T8

INFN Sezione di Milano, Italy

Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

INFN Sezione di Napoli, I-80126 Napoli, Italy
SEARCH FOR THE $Z(4050)^+$ AND $Z(4250)^+$ STATES

The Belle Collaboration has reported the observation of two resonancelike structures in the study of $B^0 \rightarrow \chi_{c1}K^- \pi^+$ [1]. These are labeled as $Z_1(4050)^+$ and $Z_2(4250)^+$, both decaying to $\chi_{c1} \pi^+$ [2]. The Belle Collaboration also reported the observation of a resonancelike structure, $Z(4430)^+ \rightarrow \psi(2S)\pi^+$, in the analysis of $B \rightarrow \psi(2S)K\pi$ [3, 4]. These claims have generated a great

I. INTRODUCTION

The Belle Collaboration has reported the observation of two resonancelike structures in the study of $B^0 \rightarrow \chi_{c1}K^- \pi^+$ [1]. These are labeled as $Z_1(4050)^+$ and $Z_2(4250)^+$, both decaying to $\chi_{c1} \pi^+$ [2]. The Belle Collaboration also reported the observation of a resonancelike structure, $Z(4430)^+ \rightarrow \psi(2S)\pi^+$, in the analysis of $B \rightarrow \psi(2S)K\pi$ [3, 4]. These claims have generated a great

052003-3
deal of interest [5]. Such states must have a minimum quark content $c\bar{c}$, and thus would represent an unequivocal manifestation of four-quark meson states.

The BABAR Collaboration did not see the $Z(4430)^+$ in an analysis of the decay $B \rightarrow \psi(2S)K\pi$ [6]. Points of discussion are as follows:

(i) The method of making slices of a three-body B decay Dalitz plot can produce peaks which may be due to interference effects, not resonances.

(ii) The angular structure of the $B \rightarrow \psi(2S)K\pi$ decay is rather complex and cannot be described adequately by only the two variables used in a simple Dalitz plot analysis.

In the BABAR analysis [6], the $B \rightarrow J/\psi K\pi$ decay does not show evidence for resonances either in the $J/\psi\pi$ or in the $J/\psi K$ systems. All resonance activity seems confined to the $K\pi$ system. It is also observed that the angular distributions, expressed in terms of the $J=0$ Legendre-polynomial moments, show strong similarities between $B \rightarrow \psi(2S)K\pi$ and $B \rightarrow J/\psi K\pi$ decays. Therefore, the angular information provided by the $B \rightarrow J/\psi K\pi$ decay can be used to describe the $B \rightarrow \psi(2S)K\pi$ decay. It is also observed that a localized structure in the $\psi(2S)\pi$ mass spectrum would yield high angular momentum Legendre-polynomial moments in the $K\pi$ system. Therefore, a good description of the $\psi(2S)\pi$ data using only $K\pi$ moments up to $L = 5$ also suggests the absence of narrow resonant structure in the $\psi(2S)\pi$ system.

In this paper, we examine $B \rightarrow \chi_{c1} K\pi$ decays following an analysis procedure similar to that used in Ref. [6]. In contrast to the analysis of Ref. [1], we model the background-subtracted, efficiency-corrected $\chi_{c1}\pi^+$ mass distribution using the $K\pi$ mass distribution and the corresponding normalized $K\pi$ Legendre-polynomial moments, and then test the need for the inclusion of resonant structures in the description of the $\chi_{c1}\pi^+$ mass distribution.

This paper is organized as follows. A short description of the BABAR experiment is given in Sec. II, and the data selection is described in Sec. III. Section IV shows the data, while Secs. V and VI are devoted to the calculation of the efficiency and the extraction of branching fraction values, respectively. In Sec. VII we describe the fits to the $K\pi$ mass spectra, and in Sec. VIII we show the Legendre-polynomial moments. In Sec. IX we report the description of the $\chi_{c1}\pi^+$ mass spectra, while Sec. X is devoted to the calculation of limits on the production of the $Z_{1}(4050)^+$ and $Z_{2}(4250)^+$ resonances. We summarize our results in Sec. XI.

II. THE BABAR EXPERIMENT

This analysis is based on a data sample of 429 fb$^{-1}$ recorded at the $\Upsilon(4S)$ resonance by the BABAR detector at the PEP-II asymmetric-energy e^+e^- storage rings. The BABAR detector is described in detail elsewhere [7]. Charged particles are detected and their momenta measured with a combination of a cylindrical drift chamber and a silicon vertex tracker, both operating within the 1.5 T magnetic field of a superconducting solenoid. Information from a ring-imaging Cherenkov detector is combined with specific ionization measurements from the silicon vertex tracker and cylindrical drift chamber to identify charged kaon and pion candidates. Photon energy and position are measured with a CsI(Tl) electromagnetic calorimeter, which is also used to identify electrons. The return yoke of the superconducting coil is instrumented with resistive plate chambers for the identification of muons. For the later part of the experiment the barrel-region chambers were replaced by limited streamer tubes [8].

III. DATA SELECTION

We reconstruct events in the decay modes [9]:

$$\bar{B}^0 \rightarrow \chi_{c1} K^- \pi^+, \quad (1)$$

$$B^+ \rightarrow \chi_{c1} K^0_S \pi^+, \quad (2)$$

where $\chi_{c1} \rightarrow J/\psi \gamma$, and $J/\psi \rightarrow \mu^+ \mu^-$ or $J/\psi \rightarrow e^+ e^-$. For each candidate, we first reconstruct the J/ψ by geometrically constraining an identified $e^+ e^-$ or $\mu^+ \mu^-$ pair of tracks to a common vertex point and requiring a χ^2 fit probability greater than 0.1%. For $J/\psi \rightarrow e^+ e^-$ we introduce bremsstrahlung energy-loss recovery. If an electron-associated photon cluster is found in the electromagnetic calorimeter, its three-momentum vector is incorporated into the calculation of $m(e^+e^-)$ [10]. The fit to the J/ψ candidates includes the constraint to the nominal J/ψ mass value [2].

A K_S^0 candidate is formed by geometrically constraining a pair of oppositely charged tracks to a common vertex (χ^2 fit probability greater than 0.1%). For the two tracks the pion mass is assumed without particle-identification requirements. The K_S^0 fit includes the constraint to the nominal mass value.

The J/ψ, K^{\pm}, and π^{\pm} candidates forming a B meson decay candidate are geometrically constrained to a common vertex, and a χ^2 fit probability greater than 0.1% is required. Particle identification is applied to both K and π candidates. The K_S^0 flight length with respect to the B^+ vertex must be greater than 0.2 cm.

A study of the scatter diagram $E_{\gamma} vs m(J/\psi \gamma)$ (not shown) reveals that no χ_{c1} signal is kinematically possible for $E_{\gamma} < 190$ MeV. Therefore, we consider only photons with a laboratory energy above this value. We select the χ_{c1} signal within $\pm 2 \sigma_{\chi_{c1}}$ of the χ_{c1} mass, where $\sigma_{\chi_{c1}}$ and the χ_{c1} mass are obtained from fits to the $J/\psi \gamma$ mass spectra using a Gaussian function for the signal and a second-order polynomial for the background, separated by B and J/ψ decay modes. The values of $\sigma_{\chi_{c1}}$ range from 14.6 MeV/c^2 to 17.6 MeV/c^2.

052003-4
We further define B meson decay candidates using the energy difference $\Delta E \equiv E_B^* - \sqrt{s}/2$ in the center-of-mass (c.m.) frame and the beam-energy-substituted mass defined as $m_{ES} = \sqrt[4]{(s/2 + \vec{p}_1 \cdot \vec{p}_B)/E_i^2 - \vec{p}_B^2}$, where (E_i, \vec{p}_i) is the initial state e^+e^- four-momentum vector in the laboratory frame and \sqrt{s} is the c.m. energy. In the above expressions E_B is the B meson candidate energy in the c.m. frame, and \vec{p}_B is its laboratory frame momentum. The B decay signal events are selected within $\pm 2.0\sigma_{m_{ES}}$ of the fitted central value, where the $\sigma_{m_{ES}}$ values are listed in Table I and are determined by fits of a Gaussian function plus an ARGUS function [11] to the data.

The resulting ΔE distributions have been fitted with a linear background function and a signal Gaussian function whose width values ($\sigma_{\Delta E}$) are also listed in Table I. Further background rejection is performed by selecting events within $\pm 2.0\sigma_{\Delta E}$ of zero. Table I also gives the values of event yield and purity, where the purity is defined as signal/(signal + background). The ΔE distributions shown in Fig. 1 have been summed over the $J/\psi \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow e^+e^-$ decay modes. Clear signals of the B decay modes (1) and (2) can be seen. We obtain 1863 candidates for $B^0 \rightarrow \chi_{c1}K^-\pi^+$ decays with 78% purity, and 628 $B^+ \rightarrow \chi_{c1}K_S^0\pi^+$ events with 79% purity. A study of the ΔE and $J/\psi\gamma$ spectra in the sideband regions does not show any B or χ_{c1} signal, respectively. We conclude that the observed background is consistent with being entirely of combinatorial origin.

The resulting $J/\psi\gamma$ invariant mass distributions for channels (1) and (2) are shown in Fig. 2.

In order to estimate the background contribution in the signal region, we define ΔE sideband regions in the intervals $(7-9)\sigma_{\Delta E}$ on both sides of zero. We obtain a “background-subtracted” distribution of events by subtracting the corresponding distribution for ΔE sideband events from that of events in the signal region.

IV. DALITZ PLOTS

The Dalitz plots for $\bar{B}^0 \rightarrow \chi_{c1}K^-\pi^+$ events in the signal and sideband regions are shown in Fig. 3. The shaded area defines the Dalitz plot boundary; it is obtained from a simple phase-space Monte Carlo (MC) simulation [12] of B decays, smeared by the experimental resolution. For the sidebands, events can lie outside the boundary. We observe a vertical band due to the presence of the
The resulting fitted efficiency for \(\Delta E \) sidebands. The shaded area defines the Dalitz plot boundary.

\(\bar{K}^*(892)^0 \) resonance and a weaker band due to the \(\bar{K}^*_2(1430)^0 \) resonance. We do not observe significant accumulation of events in any horizontal band.

The Dalitz plots for \(B^+ \to \chi_{c1}K^0\pi^+ \) candidates in the signal and sideband regions are shown in Fig. 4 and show features similar to those in Fig. 3.

V. EFFICIENCY

To compute the efficiency, signal MC events (full-MC) for the different channels have been generated using a detailed detector simulation where \(B \) mesons decay uniformly in phase space. They are reconstructed and analyzed in the same way as real events. We express the efficiency as a function of \(m(K\pi) \) and \(\cos\theta \), the normalized dot product between the \(\chi_{c1} \) momentum and that of the kaon momentum, both in the \(K\pi \) rest frame. To smooth statistical fluctuations, this efficiency is then parametrized as follows.

We first fit the efficiency as a function of \(\cos\theta \) in separate 50 MeV/c\(^2\) intervals of \(m(K\pi) \), in terms of Legendre polynomials up to \(L = 12 \):

\[
e(\cos\theta) = \sum_{L=0}^{12} a_L(m)Y_L^0(\cos\theta).
\]

For each value of \(L \), we fit the \(a_L(m) \) as a function of \(m(K\pi) \) using a sixth-order polynomial in \(m(K\pi) \).

The resulting fitted efficiency for \(B^0 \) decay is shown in Fig. 5(a). We observe a significant decrease in efficiency for \(\cos\theta \sim +1 \) and \(0.72 < m(K^-\pi^+) < 0.92 \) GeV/c\(^2\), and for \(\cos\theta \sim -1 \) and \(0.97 < m(K^-\pi^+) < 1.27 \) GeV/c\(^2\).

The former is due to the failure to reconstruct pions with low momentum in the laboratory frame and the latter to a similar failure for kaons. A similar effect is observed in Fig. 5(b) for the \(B^+ \) decay mode.

In Fig. 6 we plot the efficiency projection as a function of \(m(\chi_{c1}\pi^+) \) for channels (1) and (2), summed over the \(J/\psi \) decay modes. We observe a loss in efficiency at the edges of the \(\chi_{c1}\pi^+ \) mass range. However, these losses do not affect the regions of the reported \(Z \) resonances. Using these fitted functions we obtain efficiency-corrected branching fractions.

\[
\mathcal{B}(B^0 \to \chi_{c1}K^-\pi^+) = 0.547 \pm 0.013 \pm 0.026
\]

and
SEARCH FOR THE Z(4050)\(^+\) AND \ldots

\[\frac{\mathcal{B}(B^+ \to \chi c_1 K^0\pi^+)}{\mathcal{B}(B^+ \to J/\psi K^0\pi^+)} = 0.501 \pm 0.024 \pm 0.028. \]

(5)

Systematic uncertainties are summarized in Table II and have been evaluated as follows:

1. We obtain the uncertainty on the background subtraction by modifying the model used to fit the \(\Delta E\) distributions. The signal was alternatively described by the sum of two Gaussian functions, and the background was parametrized by a second-order polynomial.

2. We compute the uncertainty on the efficiency by making use of the binned efficiency on the \((m(K\pi), \cos\theta)\) plane. In each cell we randomize the generated and reconstructed yields according to Poisson distributions. Deviations from the fitted efficiencies give the uncertainty on this quantity.

3. We vary the bin size for the binned efficiency calculation.

4. We include a systematic error due to the uncertainty on the \(\chi_{c1} \to J/\psi \gamma\) branching fraction [2].

5. We assign a 1.8\% uncertainty to the \(\gamma\) reconstruction efficiency.

6. We modify the \(\Delta E\) and \(m_{ES}\) selection criteria and assign systematic uncertainties based on the variation of the extracted branching fractions.

We note that the systematic uncertainties are dominated by the uncertainty on the \(\chi_{c1} \to J/\psi \gamma\) branching fraction.

The branching fractions measured in Ref. [6] are

\[\mathcal{B}(\bar{B}^0 \to J/\psi K^-\pi^+) = (1.079 \pm 0.011) \times 10^{-3}, \]

(6)

\[\mathcal{B}(B^+ \to J/\psi K^0\pi^+) = (1.101 \pm 0.021) \times 10^{-3}, \]

(7)

where the latter value has been corrected for \(K^0_\ell\) and \(K^0\) \(\to \pi^0\pi^0\) decays [2].

Multiplying the ratio in Eq. (4) by the \(\bar{B}^0 \to J/\psi K^-\pi^+\) branching fraction in Eq. (6), we obtain

\[\mathcal{B}(\bar{B}^0 \to \chi_{c1} K^-\pi^+) = (5.11 \pm 0.14 \pm 0.28) \times 10^{-4}. \]

(8)

This may be compared to the Belle measurement [1]:

\[\mathcal{B}(\bar{B}^0 \to \chi_{c1} K^-\pi^+) = (3.83 \pm 0.10 \pm 0.39) \times 10^{-4}. \]

Multiplying the ratio in Eq. (5) by the \(B^+ \to J/\psi K^0\pi^+\) branching fraction in Eq. (7), we obtain

\[\mathcal{B}(B^+ \to \chi_{c1} K^0\pi^+) = (5.52 \pm 0.26 \pm 0.31) \times 10^{-4}, \]

(9)

so that, after all corrections, the branching fractions corresponding to decay modes (1) and (2) are the same within uncertainties.

VII. FITS TO THE K\(\pi\) MASS SPECTRA

We perform binned-\(\chi^2\) fits to the background-subtracted and efficiency-corrected \(K\pi\) mass spectra in terms of \(S, P,\) and \(D\) wave amplitudes. The fitting function is expressed as

\[\frac{dN}{dm} = N \left[f_S G_S(m) + f_P G_P(m) + f_D G_D(m) \right], \]

(10)

where \(m = m(K\pi)\), the integrals are over the full \(m(K\pi)\) range, and the fractions \(f\) are such that

\[f_S + f_P + f_D = 1. \]

(11)

The \(P\)- and \(D\)-wave intensities, \(G_P(m)\) and \(G_D(m)\), are expressed in terms of the squared moduli of relativistic Breit-Wigner functions with parameters fixed to the PDG values for \(K^*(892)\) and \(K^*_2(1430)\), respectively [2]. For the \(S\)-wave contribution \(G_S(m)\) we make use of the LASS [13] parametrization described by Eqs. (11)–(16) of Ref. [6].

The above model gives a good description of the data for the decays \(B \to J/\psi K\pi\) [6]. However, for \(B \to \chi_{c1} K\pi\) the above resonances do not describe the high mass region of the \(K\pi\) mass spectra well. A better fit is obtained by including an additional incoherent spin-1 \(K^*(1680)\) [2] resonance contribution. The fit results are shown by the solid curves in Fig. 7, and the resulting intensity contributions are summarized in Table III. In Figs. 7(a) and 7(b) the

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
Contribution & \(\bar{B}^0 \to \chi_{c1} K^-\pi^+\) & \(B^+ \to \chi_{c1} K^0\pi^+\) \\
\hline
1. Background subtraction & 1.6 & 1.0 \\
2. Efficiency & 1.5 & 1.6 \\
3. Efficiency binning & 1.1 & 1.9 \\
4. \(\chi_{c1}\) branching fraction & 4.4 & 4.4 \\
5. \(\gamma\) reconstruction & 1.8 & 1.8 \\
6. \(\Delta E\) and \(m_{ES}\) selections & 1.0 & 1.0 \\
Total (%) & 5.4 & 5.5 \\
\hline
\end{tabular}
\caption{Systematic uncertainties (%) for the \(B \to \chi_{c1} K\pi\) relative branching fraction measurements.}
\end{table}

![FIG. 7](image-url)
TABLE III. S, P, D-wave fractions (in %), and χ^2/NDF (NDF = number of degrees of freedom) from the fits to the $K\pi$ mass spectra in $B^0 \to \chi_{c1}K^-\pi^+$ and $B^+ \to \chi_{c1}K^0_S\pi^+$. The second P-wave entry in the two χ_{c1} channels corresponds to the fraction of $K^*(1680)$.

<table>
<thead>
<tr>
<th>Channel</th>
<th>S wave</th>
<th>P wave</th>
<th>D wave</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to \chi_{c1}K^-\pi^+$</td>
<td>40.4 \pm 2.2</td>
<td>37.9 \pm 1.3</td>
<td>11.4 \pm 2.0</td>
<td>58/54</td>
</tr>
<tr>
<td>$B^+ \to \chi_{c1}K^0_S\pi^+$</td>
<td>42.4 \pm 3.5</td>
<td>37.1 \pm 3.2</td>
<td>10.1 \pm 3.1</td>
<td>55/54</td>
</tr>
</tbody>
</table>

VIII. THE $K\pi$ LEGENDRE-POLYNOMIAL MOMENTS

We compute the efficiency-corrected Legendre-polynomial moments $\langle Y^0_L \rangle$ in each $K\pi$ mass interval by correcting for efficiency, as explained in Sec. V, and then weighting each event by the $Y^0_L(\cos \theta)$ functions. A similar procedure is performed for the ΔE sideband events, for which the distributions are subtracted from those in the signal region. We observe consistency between the B^0 and B^+ data. Therefore, in the following we combine the B^0 and B^+ distributions.

This yields the background-subtracted and efficiency-corrected Legendre-polynomial moments $\langle Y^0_L \rangle$. They are shown for $L = 1, \ldots, 6$ in Fig. 8. We notice that the $\langle Y^0_6 \rangle$ moment is consistent with zero, as are higher moments (not shown).

These moments can be expressed in terms of S, P, and D-wave $K\pi$ amplitudes [15]. The P and D waves can be present in three helicity states and, after integration over the decay angles of the χ_{c1}, the relationship between the moments and the amplitudes is given by Eqs. (26)–(30) of Ref. [6]. We notice that, ignoring the presence of resonances in the exotic charmonium channel, the equations involve seven amplitude magnitudes and six relative phase values, and so they cannot be solved in each $m(K\pi)$ interval. For this reason, it is not possible to extract the amplitude moduli and relative phase values from Dalitz plot analyses of the $\psi K\pi$ or $\chi_{c1}K\pi$ final states.

In Fig. 8 we observe the presence of the spin-1 $K^*(890)$ in the $\langle Y^0_2 \rangle$ moment and S-P interference in the $\langle Y^0_0 \rangle$ moment. We also observe evidence for the spin-2 $K^*_2(1430)$ resonance in the $\langle Y^0_4 \rangle$ moment. There are some similarities between the moments of Fig. 8 and those from $B \to J/\psi K\pi$ decays in Ref. [6]. However, we also observe a significant structure around 1.7 GeV/c^2 in $\langle Y^0_0 \rangle$ which is absent in the $B \to J/\psi K\pi$ decays. We attribute this to the presence of the $K^*_0(1680)$ resonance produced in $B \to \chi_{c1}K\pi$ but absent in $B \to J/\psi K\pi$. The presence of scalar Z resonances should show up especially in high $\langle Y^0_L \rangle$ moments.

From the $\langle Y^0_L \rangle$ we obtain the normalized moments

$$\langle Y^N_L \rangle = \frac{\langle Y^0_L \rangle}{n},$$

where n is the number of events in the given $m(K\pi)$ mass interval.

IX. MONTE CARLO SIMULATIONS

We model $B \to \chi_{c1}K\pi$ using the resonant structure obtained from the analysis of the $K\pi$ mass spectra and $K\pi$ Legendre-polynomial moments. For this purpose we
generate a large number of MC events according to the following procedure.

(i) $B \to \chi_{c1} K \pi$ events are generated uniformly in phase space [12]. The B mass is generated as a Gaussian line shape with parameters obtained from a fit to the data.

(ii) We weight each event by a factor $w_{m(K\pi)}$ derived from the resonant structure in the $K\pi$ system described in Sec. VII [Eq. (10)] and displayed in Table III.

(iii) We incorporate the measured $K\pi$ angular structure by giving weight w_L to each event according to the expression

$$w_L = \sum_{i=0}^{L_{\text{max}}} \langle Y^0_i \rangle Y^0_i (\cos\theta).$$

The moments correspond to the combined data from the decay modes of Eqs. (1) and (2). The $\langle Y^0_i \rangle$ are evaluated for the $m(K\pi)$ value by linear interpolation between consecutive $m(K\pi)$ mass intervals.

(iv) The total weight is thus

$$w = w_{m(K\pi)} \cdot w_L.$$

The generated distributions, weighted by the total weight w, are then normalized to the number of data events obtained after background subtraction and efficiency correction.

We first test the method using as a control sample the combined data from $B^0 \to J/\psi K^- \pi^+$ and $B^+ \to J/\psi K^0 \pi^+$, where no resonant structure is observed in the $J/\psi \pi$ mass distributions [6]. In this case we generate $B \to J/\psi K \pi$ events and use the $K \pi$ resonant structure and Legendre-polynomial information from the same channels. We compare the MC simulation to the $J/\psi \pi$ mass projection from data in Fig. 9. We obtain $\chi^2/\text{NDF} = 223, 162, 180/152$ for $L_{\text{max}} = 4, 5, 6$, respectively. We conclude that $L_{\text{max}} = 5$ gives the best description of the data.

We now perform a similar MC simulation for $B \to \chi_{c1} K \pi$ using moments from the same channels. We obtain $\chi^2/\text{NDF} = 53, 46, 49/58$ for $L_{\text{max}} = 4, 5, 6$, respectively. The result of the simulation with $L_{\text{max}} = 5$ is superimposed on the data in Fig. 10, and the corresponding χ^2/NDF is given in Table IV. The excellent description of the data indicates that the angular information from the $K\pi$ channel with $L_{\text{max}} = 5$ is able to account for the structures observed in the $\chi_{c1} \pi$ projection. This indicates the absence of significant structure in the exotic $\chi_{c1} \pi^+$ channel.

We perform a MC simulation where, to the data from $B^0 \to \chi_{c1} K^- \pi^+$, we add an arbitrary fraction (~25%) of events which include a $Z_2(4250)^+$ resonance decaying to $\chi_{c1} \pi$. These $Z_2(4250)^+$ events are obtained from phase-space MC $B^0 \to \chi_{c1} K^- \pi^+$ events weighted by a simple Breit-Wigner function. We then compute Legendre-polynomial moments for the total sample and use them to predict the $\chi_{c1} \pi$ mass distribution as described above. The $\chi_{c1} \pi$ mass spectrum for these events is shown in Fig. 11(a). We obtain $\chi^2/\text{NDF} = 103, 91, 88/58$ for $L_{\text{max}} = 4, 5, 6$, respectively. Therefore, in the presence of a $Z_2(4250)^+$ resonance, it is not possible to obtain a good description of the $\chi_{c1} \pi$ mass distribution using $L_{\text{max}} = 5$.

We then increase the value of L_{max} and obtain a good description of this MC simulation with $L_{\text{max}} = 15$, as

![FIG. 9](color online). Background-subtracted and efficiency-corrected $J/\psi \pi$ mass distribution for the $B \to J/\psi K \pi$ control sample with the superimposed curves resulting from the MC simulation described in the text. The solid curve is obtained using the total weight w obtained with $L_{\text{max}} = 5$, and the dotted curve by omitting the angular-dependence factor w_L.

![FIG. 10](color online). Background-subtracted and efficiency-corrected $\chi_{c1} \pi$ mass distribution from $B \to \chi_{c1} K \pi$. The solid curve results from the MC simulation described in the text, which uses the moments from the same channels. The dotted curve shows the result of the simulation when the w_L weight is removed.
We now test a “mixed” simulation where we use $L_{\text{max}} = 3$ up to a $K\pi$ mass of 1.2 GeV/c^2 and $L_{\text{max}} = 4$ for the rest of the events. This choice is justified by the presence of spin 0 and 1 resonances mostly in the low $K\pi$ mass region, while the $K^*_2(1430)$ contributes for $m(K\pi) > 1.2$ GeV/c^2. This simulation gives a satisfactory description of the $B \to \chi_{c1} K\pi$ data with $\chi^2/\text{NDF} = 63/58$ but gives a bad description of the MC sample of Fig. 11(a), yielding $\chi^2/\text{NDF} = 140/58$.

We now fit the MC sample including a simple Breit-Wigner function (with the width fixed to the simulated value) to describe the $Z_2(4250)^+$ [Fig. 11(b)]. We obtain the solid curve, which has $\chi^2/\text{NDF} = 75/56$, a $Z_2(4250)^+$ mass consistent with the generated value, and a yield consistent with the generated one. The dashed curve represents the background model from the mixed simulation. The MC test therefore validates the use of this background model for a quantitative evaluation of the upper limits described in Sec. X.

The data-MC comparisons for the different simulations are summarized in Table IV.

X. SEARCH FOR Z₁(4050)+ AND Z₂(4250)+

We have shown, in the previous sections, that in the absence of Z resonances, the simulation with $L_{\text{max}} = 5$ gives a good description of the $B \to J/\psi K\pi$ and $B \to \chi_{c1} K\pi$ data. We now test the possible presence of the $Z_1(4050)^+$ and $Z_2(4250)^+$ resonances in $B \to \chi_{c1} K\pi$ decay. Therefore, we adopt the minimum L_{max} configuration (mixed) described in Sec. IX and investigate whether something else is needed by the data.

For this purpose we perform binned χ^2 fits to the $\chi_{c1} \pi^+$ mass spectrum. In these fits the normalization of the background component is determined by the fit. We observe that this background model predicts an enhancement in the mass region of the Z resonances. We then add, for the signal, relativistic spin-0 Breit-Wigner functions with parameters fixed to the Belle values for the signals [1]. We compute statistical significance using the fitted fraction divided by its uncertainty.

We first perform fits to the total mass spectrum.

Fit (a) is shown in Fig. 12(a), and includes both $Z_1(4050)^+$ and $Z_2(4250)^+$ resonances.

Fit (b) is shown in Fig. 12(b), and includes a single broad $Z(4150)^+$ resonance.

In both cases the fits give fractional contributions consistent with zero for the Z resonances.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Y_L^N</th>
<th>L_{max}</th>
<th>χ^2/NDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \to J/\psi K\pi$</td>
<td>$B \to J/\psi K\pi$</td>
<td>5</td>
<td>162/152</td>
</tr>
<tr>
<td>$B \to \chi_{c1} K\pi$</td>
<td>$B \to \chi_{c1} K\pi$</td>
<td>5</td>
<td>46/58</td>
</tr>
<tr>
<td>$B \to \chi_{c1} K\pi$</td>
<td>$B \to \chi_{c1} K\pi$</td>
<td>Mixed</td>
<td>63/58</td>
</tr>
<tr>
<td>$B \to \chi_{c1} K\pi$ window</td>
<td>$B \to \chi_{c1} K\pi$</td>
<td>5</td>
<td>45/47</td>
</tr>
<tr>
<td>$B \to \chi_{c1} K\pi$ window</td>
<td>$B \to \chi_{c1} K\pi$</td>
<td>Mixed</td>
<td>56/47</td>
</tr>
</tbody>
</table>

TABLE IV. The value of χ^2/NDF for different MC-data comparisons; “Y_L^N” indicates the channel used to obtain the normalized moments. The mixed algorithm is explained in the text. The definition of “window” is given in Sec. X.
We next fit the \(\chi_{c1} \pi \) mass spectrum in the Dalitz plot region \(1.0 < m^2(K \pi) < 1.75 \) GeV\(^2\)/c\(^4\) in order to make a direct comparison to the Belle results [1]. Figures 12(c) and 12(d) show the \(\chi_{c1} \pi \) mass spectrum for this mass region (labeled as “window” in Table V), where the Belle data show the maximum of the reported resonance activity. This sample accounts for 25% of our total data sample. Table IV gives the corresponding \(\chi^2/\text{N.D.F} \) values for the MC simulations described in Sec. IX, in this mass window.

Fit (c) is shown in Fig. 12(c), and includes both \(Z_1(4050)^+ \) and \(Z_2(4250)^+ \) resonances.

Fit (d) is shown in Fig. 12(d), and includes a single broad \(Z(4150)^+ \) resonance.

In each case the fit gives a \(Z \) resonance contribution consistent with zero.

The results of the fits are summarized in Table V, and in every case the yield significance does not exceed 2\(\sigma \).

We compute upper limits integrating the region of positive branching fraction values for a Gaussian function having the above mean and \(\sigma \) values, and obtain the following 90% C.L. limits for the \(Z_1(4050)^+ \) and \(Z_2(4250)^+ \) resonances:

\[
\mathcal{B}(\bar{B}^0 \to Z_1(4050)^+ K^-) \times \mathcal{B}(Z_1(4050)^+ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5},
\]

\[
\mathcal{B}(\bar{B}^0 \to Z_2(4250)^+ K^-) \times \mathcal{B}(Z_2(4250)^+ \to \chi_{c1} \pi^+) < 4.0 \times 10^{-5},
\]

\[
\mathcal{B}(\bar{B}^0 \to Z^+ K^-) \times \mathcal{B}(Z^+ \to \chi_{c1} \pi^+) < 4.7 \times 10^{-5}.
\]

Table V. Results of the fits to the \(\chi_{c1} \pi \) mass spectra. The columns \(N_\sigma \) and Fraction give, for each fit, the significance and the fractional contribution of the \(Z \) resonances.

<table>
<thead>
<tr>
<th>Data</th>
<th>Resonance</th>
<th>(N_\sigma)</th>
<th>Fraction (%)</th>
<th>(\chi^2/\text{N.D.F})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Total</td>
<td>(Z_1(4050)^+)</td>
<td>1.1</td>
<td>1.6 (\pm) 1.4</td>
<td>57/57</td>
</tr>
<tr>
<td></td>
<td>(Z_2(4250)^+)</td>
<td>2.0</td>
<td>4.8 (\pm) 2.4</td>
<td></td>
</tr>
<tr>
<td>b) Total</td>
<td>(Z(4150)^+)</td>
<td>1.1</td>
<td>4.0 (\pm) 3.8</td>
<td>61/58</td>
</tr>
<tr>
<td>c) Window</td>
<td>(Z_1(4050)^+)</td>
<td>1.2</td>
<td>3.5 (\pm) 3.0</td>
<td>53/46</td>
</tr>
<tr>
<td></td>
<td>(Z_2(4250)^+)</td>
<td>1.3</td>
<td>6.7 (\pm) 5.1</td>
<td></td>
</tr>
<tr>
<td>d) Window</td>
<td>(Z(4150)^+)</td>
<td>1.7</td>
<td>13.7 (\pm) 8.0</td>
<td>53/47</td>
</tr>
</tbody>
</table>

052003-11
XI. CONCLUSIONS

We use 429 fb\(^{-1}\) of data from the BABAR experiment at SLAC to search for the \(Z_1(4050)^+\) and \(Z_2(4250)^+\) states decaying to \(\chi_{c1}\pi^+\) in the decays \(B^0 \rightarrow \chi_{c1} K^- \pi^+\) and \(B^+ \rightarrow \chi_{c1} K^0 \pi^+\), where \(\chi_{c1} \rightarrow J/\psi \gamma\).

We measure the following branching fractions for the decays \(B^0 \rightarrow \chi_{c1} K^- \pi^+\) and \(B^+ \rightarrow \chi_{c1} K^0 \pi^+\):

\[
\mathcal{B}(B^0 \rightarrow \chi_{c1} K^- \pi^+) = (5.11 \pm 0.14 \pm 0.28) \times 10^{-4}
\]

and

\[
\mathcal{B}(B^+ \rightarrow \chi_{c1} K^0 \pi^+) = (5.52 \pm 0.26 \pm 0.31) \times 10^{-4}.
\]

In our search for the \(Z\) states, we first attempt to describe the data assuming that all resonant activity is concentrated in the \(K\pi\) system. We use the decay \(B \rightarrow J/\psi K\pi\) as a control sample, since no resonant structure has been observed in the \(J/\psi \pi\) mass spectrum. In this case a good description of the data is obtained by a MC simulation which makes use of the known resonant structure in the \(K\pi\) mass spectrum together with a Legendre-polynomial description of the angular structure as a function of \(K\pi\) mass.

The same procedure is then applied to our data on the decays \(B \rightarrow \chi_{c1} K\pi\), and a good description of the \(\chi_{c1} \pi\) mass distribution is obtained. This indicates that no significant resonant structure is present in the \(\chi_{c1} \pi\) mass spectrum, as observed for the \(J/\psi \pi\) mass distribution [6]. We also observe that this background model predicts an enhancement in the mass region of the \(Z\) resonances. We then report 90\% C.L. upper limits on possible \(B^0 \rightarrow Z^+ K^-\) decays.

In conclusion, we find that it is possible to obtain a good description of our data without the need for additional resonances in the \(\chi_{c1} \pi\) system.

ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel).