An integrated organic circuit array for flexible large-area temperature sensing

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/ISSCC.2010.5434013</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Nov 25 13:06:58 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/72077</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
7.5 An Integrated Organic Circuit Array for Flexible Large-Area Temperature Sensing

David Da He, Ivan A. Nausieda, Kyungbum Kevin Ryu, Akintunde I. Akinwande, Vladimir Bulovic, Charles G. Sodini

Massachusetts Institute of Technology, Cambridge, MA

Traditionally, several technologies have been used for temperature sensing, including integrated silicon ΔV_{BE} and ΔV_t circuits, resistance temperature detectors, and thermocouples [1]. The organic thin-film transistor (OTFT) is a new technology suitable for temperature sensing because of two key advantages. First, OTFTs have the ability to be fabricated on flexible and large-area substrates [2]. This ability allows an OTFT temperature sensor to be used for applications such as electronic skin, biomedical thermal imaging, and structural temperature monitoring [2]. Second, the OTFT’s semiconductor trap states make OTFTs highly responsive to temperature. This paper presents the first integrated OTFT temperature sensing circuit array. The array is compatible with flexible and large-area substrates, and its outputs are 22 times more responsive than the MOSFET implementation while dissipating 90nW of power per cell.

The pentacene-based OTFTs are fabricated using an integrated photolithographic process that is kept below 95°C to ensure compatibility with large-area and flexible substrates [3]. Figure 7.5.1 shows the measured OTFT transfer characteristics as die temperature is increased from -20°C to 60°C. In comparison to the OTFT, Fig. 7.5.2 shows simulated BSIM3 silicon pMOSFET transfer characteristics versus temperature. Two important differences are observed between the OTFT and the MOSFET. First, the OTFT’s current increases with temperature in both subthreshold and above-threshold regimes, whereas the MOSFET’s above-threshold current decreases with temperature. Second, when biased at a constant I_D, the OTFT’s V_{DS} is approximately 20 times more responsive to temperature than the MOSFET’s V_{DS}. Both differences are due to the fact that pentacene is a disordered semiconductor with substantial trap states [4].

A temperature sensing circuit that takes advantage of OTFT’s responsiveness to temperature is shown in Fig. 7.5.3. OTFTs M_1, M_2, and M_3 form two current mirrors that bias the two branches at different I_D. Diode-connected and identically sized M_1 and M_2 act as temperature sensing transistors whose V_{GS1} and V_{GS2} are functions of temperature. The differential output $V_{O}=V_{GS1}-V_{GS2}$ performs curvature cancellation and removes any common-mode V_t drifts of M_1 and M_2.

If M_1 and M_2 are subthreshold MOSFETs, then this circuit is analogous to a ΔV_{BE} circuit. From Fig. 7.5.3’s MOSFET implementation, one can graphically see that V_{GS2} decreases faster than V_{GS1} over the same temperature range. Because of this, the transfer curves converge at a higher I_D. As a result, the circuit’s output $V_{O}=V_{GS1}-V_{GS2}$ decreases with temperature.

The OTFT temperature sensing circuit is fabricated with the device dimensions shown in Fig. 7.5.4 and occupies an area of 1mm×1mm. Wide transistors are used in order to lower the V_{DP} voltage and to increase the temperature sensing area. The circuit uses a 5V voltage supply and a 3nA current sink from an Agilent 4156C. At each temperature, 240 samples of V_O are taken at two samples/second and the standard deviation of the samples is 1.9mV. The averaged V_O at each temperature is plotted in Figure 7.5.4. The temperature responsivity ($|dV_O/dT|$) is 6.3mV/°C and the temperature sensitivity is $2.5+10^{-9}$ppm/°C. The maximum power dissipation of the circuit is 170nW at 50°C. In the unit of temperature, the implementation shows that V_{GS2} decreases slower than V_{GS1} over the same temperature range of ISINK and VDD bias settings. In Fig. 7.5.6 (left), V_O is plotted versus temperature as ISINK is swept from 0.5nA to 10nA. The R^2 value remains above 98% for ISINK=0.5nA to 4.3nA. Linearity worsens at high ISINK currents because the high V_{DP} of M_1 and M_2 cause the current mirrors to enter the triode regime. In Fig. 7.5.6 (right), V_O is plotted versus temperature as VDD is swept from 2V to 10V. Transistors M_1 and M_2 are in the saturation regime as long as VDD stays above 3V, where the R^2 value remains above 98% and is nominally independent of VDD because the circuit’s operating point is set by ISINK.

In conclusion, this work has demonstrated the first integrated OTFT temperature sensing circuit array compatible with large-area and flexible substrates (die Photo Fig. 7.5.7). The circuit outputs an average responsivity of 6.8mV/°C, which is 22 times more responsive than the MOSFET implementation while dissipating 90nW of power per cell from a 5V supply. Output linearity is guaranteed across the array as long as the current mirrors stay in the saturation regime. The linearity enables two-point calibrations, which remove the effects of cell-to-cell variations and make large-area implementations feasible.

Acknowledgements:

The authors would like to thank Peter Holloway of National Semiconductor for his inputs. The devices were fabricated at Microsystems Technology Labs at MIT. This work was funded in part by the FCRP Focus Center for Circuit & System Solutions (G2S2) under contract 2003-CT-888, Hewlett Packard, and the Canadian NSERC Scholarship.

References:

Figure 7.5.1: The OTFT's device cross-section and measured transfer characteristics versus temperature (W/L=1,000µm/5µm).

Figure 7.5.2: The BSIM3 pMOSFET's simulated transfer characteristics versus temperature (W/L=10µm/0.18µm).

Figure 7.5.3: The temperature sensing circuit with its operating principles stylized for MOSFET and OTFT.

Figure 7.5.4: The OTFT temperature sensing circuit schematic and averaged V_O versus temperature with best-fit line.

Figure 7.5.5: The OTFT temperature sensing circuit array's schematic, measured outputs, and output variations.

Figure 7.5.6: The dependence of output linearity on I_{sink} (left) and V_{DD} (right) with R^2 values (bottom).
Figure 7.5.7: Die photo of the 3×3 OTFT temperature sensing circuit array.