Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

|----------------|---|
| As Published | http://dx.doi.org/10.1021/ja107481a щуля
Publisher	American Chemical Society (ACS)
Version	Author's final manuscript
Accessed	Fri Jun 09 14:50:55 EDT 2017
Citable Link	http://hdl.handle.net/1721.1/72343
Terms of Use	Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	
Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides

Xiaoqiang Shen, Alan M. Hyde, and Stephen L. Buchwald
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

The palladium-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides and chlorides) has been developed using dialkylbiaryl phosphine ligands. A variety of aryl, heteroaryl and vinyl halides can be prepared via this method in good to excellent yields.

Aryl halides are ubiquitous synthetic intermediates in organic chemistry that are used for numerous transformations. They are also present in a wide variety of natural products, pharmaceuticals and agrochemicals. Therefore, the development of general and regioselective methods for the preparation of functionalized aryl halides is of great importance. Sulfonate esters, often referred to as pseudo-halides, can be employed as alternatives to aryl halides in many cross-coupling reactions. Such pseudo-halides, however, cannot be used as precursors for the generation of free radicals or organometallic reagents. Traditional methods for the synthesis of aryl halides (bromides or chlorides) from phenols require either forcing conditions or multi-step procedures. Herein, we report the first example of palladium-catalyzed direct conversion of readily available aryl sulfonate esters to aryl bromides and chlorides.

Although a catalytic method has not yet been reported, several mechanistically related metal-mediated carbon–halogen bond-forming processes have been published. For example, the reductive elimination of aryl halides from Pt(IV), Ni(III), Pd(IV), and Pd(III) has been demonstrated. In addition, the reductive elimination of aryl halides from aryl palladium(II) halide complexes in the presence of a large excess of P(t-Bu)₃ has been reported. A number of copper- and nickel-mediated halide exchange reactions have also been developed in which carbon–halogen reductive elimination processes are proposed to take place.

Despite these advances in aryl–halide bond formation, to the best of our knowledge, there are few examples of the catalytic conversion of an aryl sulfonate to an aryl halide including the ruthenium-catalyzed conversion of 2-naphthyl triflate to 2-bromonaphthalene and our recent report of the palladium-catalyzed conversion of aryl triflates to aryl fluorides. This prompted us to query whether we could uncover a catalytic process to convert aryl triflates into corresponding aryl bromides and chlorides; and results are disclosed herein.

Catalysts based on dialkylbiaryl monophosphines 1–4, which have been successfully utilized as ligands in numerous transformations, were initially examined for the conversion of...
4-\textit{n}-butyl phenyltriflate into 4-\textit{n}-butylbromobenzene (5). In initial experiments, these reactions were carried out in the presence of 2.0 equivalents of Bu$_4$NBr, 1 mol\% Pd$_2$(dba)$_3$ and 3 mol\% ligand in toluene at 100 °C. This set of conditions afforded only small amounts of aryl bromide products (1–6\%, entries 1–4). Other bromide sources were tested but the results were unimpressive, with KBr providing the highest yield (11\%, entry 5). Since potassium bromide has a low solubility in toluene, we reasoned that the use of a phase transfer catalyst (PTC) might be beneficial. Adding polyethylene glycols improved the yield to 32\% (entry 6). All attempts to increase the yield of this reaction with more forcing conditions or higher catalyst loading failed. We were initially puzzled by this and wondered whether product inhibition was occurring. Therefore, we repeated the 4-\textit{n}-butyl phenyltriflate to 4-\textit{n}-butylbromobenzene reaction (eq. 1) in the presence of 1 equivalent of potassium triflate and found that the reaction was completely inhibited (entry 7). This was surprising since the triflate anion is known to be a poor nucleophile.19 In order to probe whether this result was due to the existence of an unfavorable equilibrium, 5 was heated under similar catalytic conditions with KOTf as the coupling partner. However, no conversion to aryl triflate was observed, ruling out this possibility. Our next efforts focused on the sequestration of KOTf as it was formed. After survey a broad range of Lewis acids, we found that the yield of the reaction could be increased to 50\% when Et$_3$B was used as additive (entry 8). Full conversions were observed when commercially available \textit{i}-Bu$_3$AlF or \textit{i}-Bu$_3$Al was used; however, about 50–60\% of the C–C coupling product, 1-\textit{n}-butyl-4-\textit{i}-butylbenzene, was formed in both cases (entries 9 and 10).20 The use of the bulkier \textit{i}-Pr$_3$Al additive prevented the formation of the C–C coupling product, although the desired aryl bromide was only formed in 25\% yield with the reduction product, \textit{n}-butylbenzene, now formed in 75\% yield (entry 12). Fortunately, in situ formation of dialkylaluminum alkoxides by the addition of ketones or alcohols suppressed both C–C coupling and reduction byproducts; the yield was increased to 92\% when 2-butanone was used (entry 13).

With the optimal conditions for this new transformation in hand, we next explored the reaction scope (Table 2). Both electron-poor and electron-rich aryl triflates are suitable substrates and provide aryl bromides in good yield. Significantly, heteroaryl triflates, such as quinolines, indoles, carbazoles and benzothiazoles can be efficiently converted to corresponding aryl bromides. Ester groups were well tolerated but can, in some cases, undergo unwanted transesterification. With 4-trifluoromethylsulfonyl ethylbenzoate as substrate, this undesired side reaction could be avoided by using EtOH as an additive in place of 2-butanone (Table 2, compound 8). Aromatic amines are also tolerated in these transformations as exemplified by the formation of 7-bromo-1-naphthyl amine in moderate yield from the corresponding triflate (Table 2, compound 11). In this case, the 2-butanone imine was initially formed, which was then cleaved after work up and flash chromatography. The bromination of 3-bromophenyl triflate and 4-chloro-1-naphthyl triflate demonstrates that polyhalogenated products may be efficiently formed. Vinyl triflates are also effective substrates for the bromination reaction. For example, a vinyl triflate derived from estrone is easily converted to the corresponding vinyl bromide in 92\% yield (Table 2, compound 20).

As highlighted in Table 3, aryl and vinyl triflates can also be converted to aryl and vinyl chlorides under similar reaction condition using KCl as the chloride source in good to excellent yields.21

In conclusion, a new method for the direct conversion of aryl and vinyl triflates to aryl and vinyl halides has been achieved using palladium catalysis. The use of sterically hindered dialkylbiaryl monophosphines is key for success in achieving this new transformation.
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Generous financial support from the National Institutes of Health (GM46059) is gratefully acknowledged.

References

3. For a selected review, see: Ritter K. Synthesis. 1993:735.

21. Note: About 5% of 1-n-butyl-4-iodobenzene was formed when 4-n-butyl phenyltriflate was subjected to similar catalytic condition using KI as the iodide source.
TABLE 1

Evaluation of Reaction Conditions for Bromination \(^a\)

![Diagram](image)

\(\text{Bu} \text{OTf} + \text{MBr} \xrightarrow{1 \text{ mol\% Pd}_{2}(\text{dba})_{3}} \text{PTC, Additive} \rightarrow \text{Bu} \text{-OTf} + \text{Br} \)

<table>
<thead>
<tr>
<th>Entry</th>
<th>MBr</th>
<th>Ligand</th>
<th>PTC</th>
<th>Additive</th>
<th>Yield (%) (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bu,NBr</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>1 (^c)</td>
</tr>
<tr>
<td>2</td>
<td>Bu,NBr</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>2 (^c)</td>
</tr>
<tr>
<td>3</td>
<td>Bu,NBr</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>3 (^c)</td>
</tr>
<tr>
<td>4</td>
<td>Bu,NBr</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>6 (^c)</td>
</tr>
<tr>
<td>5</td>
<td>KBr</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>11 (^c)</td>
</tr>
<tr>
<td>6</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>--</td>
<td>32 (^c)</td>
</tr>
<tr>
<td>7</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>KOTf(^d)</td>
<td>1 (^c)</td>
</tr>
<tr>
<td>8</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>Et(_3)B</td>
<td>50 (^e)</td>
</tr>
<tr>
<td>9</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>'Bu(_2)AlF</td>
<td>54 (^f)</td>
</tr>
<tr>
<td>10</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>'Bu(_2)Al</td>
<td>41 (^e)</td>
</tr>
<tr>
<td>11</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>(Pr(_3))Al</td>
<td>1 (^c)</td>
</tr>
<tr>
<td>12</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>Pr(_3)Al</td>
<td>25 (^e)</td>
</tr>
<tr>
<td>13</td>
<td>KBr</td>
<td>4</td>
<td>PEG</td>
<td>'Bu(_2)Al/2-butanoic(^h)</td>
<td>92</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1 mol\% Pd\(_{2}\)(dba\(_3\)), 3 mol\% Ligand, toluene, 100 °C.

\(^b\) Yield determined by NMR analysis.

\(^c\) Isolated yield.

\(^d\) KOTf: Potassium trifluoroacetate.

\(^e\) Et\(_3\)B: Triethylborane.

\(^f\) 'Bu\(_2\)AlF: Dibutylaluminum fluoride.

\(^g\) 'Bu\(_2\)Al: Dibutylaluminum.

\(^h\) 'Bu\(_2\)Al/2-butanoic: Dibutylaluminum 2-butanoate.
aReaction conditions: 0.25 mmol aryl triflate, 2.0 equiv of MBr, 1.5 equiv of additive, 50 mg PEG3400; poly(ethylene glycol), $M_n = \sim 3400$, toluene (1.0 mL).

bYields determined by GC analysis with an internal standard of dodecane.

cThe remaining material was the 4-n-butyl phenyltriflate.

d1.0 equiv of KOTf.

eThe remaining material was the 1-n-butyl-4-i-butylbenzene.

fTriisopropylaluminum diethyletherate as additive.

gThe remaining material was the n-butylbenzene.

h1.5 equiv of i-Bu3Al and 2-butanone as additives.
TABLE 2

Palladium-Catalyzed Conversion of Triflates to Bromidesa

<table>
<thead>
<tr>
<th>R</th>
<th>1.5–2.5 mol% Pd(\text{dba})\textsubscript{3}</th>
<th>3.75–6.25 mol% 4</th>
<th>[1.5 equiv KBr, PEG3400]</th>
<th>1.5 equiv 2-butanone</th>
<th>1.5 equiv \text{Bu}_3\text{Al}</th>
<th>toluene, 100 °C</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
<td>Br</td>
</tr>
<tr>
<td>\text{Me}</td>
<td>\text{Me}</td>
<td>\text{Me}</td>
<td>\text{Me}</td>
<td>\text{Me}</td>
<td>\text{Me}</td>
<td>\text{Me}</td>
<td>\text{Me}</td>
</tr>
<tr>
<td>\text{CO}_2\text{Et}</td>
<td>\text{CO}_2\text{Et}</td>
<td>\text{Br}</td>
<td>\text{Br}</td>
<td>\text{Br}</td>
<td>\text{Br}</td>
<td>\text{Br}</td>
<td>\text{Br}</td>
</tr>
</tbody>
</table>

\textbf{5} 82% \textbf{6} 70% \textbf{7} 60% \textbf{8} 80%c

\textbf{9} 78% \textbf{10} 90%c \textbf{11} 65% \textbf{12} 63%

\textbf{13} 75% \textbf{14} 70% \textbf{15} 76% \textbf{16} 76%

\textbf{17} 73% \textbf{18} 72% \textbf{19} 68% \textbf{20} 92% \textbf{21} 87%

aReaction conditions: 1.0 mmol triflate, 1.5–2.5 mol\% of Pd(\text{dba})\textsubscript{3}, 3.75–6.25 mol\% of 4 (4 : Pd = 1.25 : 1), 1.5 mmol KBr, 1.5 mmol 2-butanone, 1.5 mL of \text{Bu}_3\text{Al} (1M solution in toluene), 120 mg PEG3400, toluene (6.0–8.0 mL), 20–24 h; Isolated yields (average of two runs).

b1.25 equiv of \text{Bu}_3\text{Al} and EtOH as additives; contains ~5% of ethyl 4-i-butylbenzoate.

cContains 1,4-dichloronaphthalene and 1,4-dibromonaphthalene (4–10% total).
Table 3
Palladium-Catalyzed Conversion of Triflates to Chloridesa

<table>
<thead>
<tr>
<th>R</th>
<th>OTf</th>
<th>1.5–2.5 mol% Pd$_2$(dba)$_3$</th>
<th>3.75–6.25 mol% 4</th>
<th>1.5 equiv KCl, PEG3400</th>
<th>1.5 equiv 2-butanone</th>
<th>1.5 equiv iBu$_3$Al</th>
<th>toluene, 100 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aReaction conditions: 1.0 mmol triflate, 1.5–2.5 mol% of Pd$_2$(dba)$_3$, 3.75–6.25 mol% of 4 (Pd = 1.25 : 1), 1.5 mmol KCl, 1.5 mmol 2-butanone, 1.5 mL of iBu$_3$Al (1M solution in toluene), 120 mg PEG3400, toluene (6.0–8.0 mL), 20–24 h; Isolated yields (average of two runs).

b1.25 equiv of iBu$_3$Al and EtOH as additives; contains ~5% of ethyl 4-i-butylbenzoate.