Site-Specific Incorporation of 3-Nitrotyrosine as a Probe of pK_{a} Perturbation of Redox-Active Tyrosines in Ribonucleotide Reductase

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Yokoyama, Kenichi, Ulla Uhlin, and JoAnne Stubbe. “Site-Specific Incorporation of 3-Nitrotyrosine as a Probe of pK_{a} Perturbation of Redox-Active Tyrosines in Ribonucleotide Reductase.” Journal of the American Chemical Society 132.24 (2010): 8385–8397.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/ja101097p</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/72363</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
</tbody>
</table>

Detailed Terms
Site-specific incorporation of 3-nitrotyrosine as a probe of pK_a perturbation of redox-active tyrosines in ribonucleotide reductase

Kenichi Yokoyama†, Ulla Uhlin§, and JoAnne Stubbe†,‡,*
Departments of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139–4307 and Department of Molecular Biology, Swedish University of Agricultural Science, Uppsala Biomedical Center, Box 590, SE-75124 Uppsala, Sweden

†Department of Chemistry, Massachusetts Institute of Technology
‡Department of Biology, Massachusetts Institute of Technology
§Department of Molecular Biology, Swedish University of Agricultural Science

Abstract

E. coli ribonucleotide reductase catalyzes the reduction of nucleoside 5'-diphosphates into 2'-deoxynucleotides and is composed of two subunits: α2 and β2. During turnover, a stable tyrosyl radical (Y·) at Y122-β2 reversibly oxidizes C439 in the active site of α2. This radical propagation step is proposed to occur over 35 Å, to use specific redox-active tyrosines (Y122 and Y356 in β2, Y731 and Y730 in α2), and to involve proton-coupled electron transfer (PCET). 3-Nitrotyrosine (NO$_2$Y, pK_a7.1) has been incorporated in place of Y122, Y731 and Y730 to probe how the protein environment perturbs each pK_a in the presence of the second subunit, substrate (S), and allosteric effector (E). The activity of each mutant is <4×10^{-3} that of the wt subunit. The [NO$_2$Y730]-α2 and [NO$_2$Y731]-α2 each exhibits a pK_a of 7.8 – 8.0 with E and E/β2. The pK_a of [NO$_2$Y730]-α2 is elevated to 8.2 - 8.3 in the S/E/β2 complex, while no further perturbation is observed for [NO$_2$Y731]-α2. Mutations in pathway residues adjacent to the NO$_2$Y that disrupt H bonding minimally perturb its K_a. The pK_a of NO$_2$Y122-β2 alone or with α2/S/E is > 9.6. X-ray crystal structures have been obtained for all NO$_2$Y-α2 mutants (2.1 – 3.1 Å resolution), which show minimal structural perturbation compared to wt-α2. Together with the pK_a of the previously reported NO$_2$Y356-β2 (7.5 in the α2/S/E complex, Yee, C. et al, *Biochemistry* 2003, 42, 14541-14552.), these studies provide a picture of the protein environment of the ground state at each Y in the PCET pathway and are the starting point for understanding differences in PCET mechanisms at each residue in the pathway.
Class Ia ribonucleotide reductases (RNRs) play a crucial role in DNA replication and repair catalyzing the reduction of nucleoside 5′-diphosphates (dNDPs) to 2′-deoxyribonucleoside 5′-diphosphates (dNDPs).1-3 α catalyzing the reduction of nucleotide 5′-diphosphates (dNDPs).1-3 E. coli RNR consists of two homodimeric subunits: α2 and β2. α2 houses the binding sites for substrates (S) and effectors (E), where S is UDP, CDP, ADP or GDP and E is ATP, dATP, TTP or GTP that control the specificity and rate of nucleotide reduction. β2 harbors the radical initiator, a diferric tyrosyl radical (Y$_{122}$·) cofactor, which reversibly and transiently oxidizes C439 in the active site of α2. This thyl radical initiates nucleotide reduction. The crystal structure of E. coli α24·5 and of β26·7 have been independently solved. A crystal structure of the class Ib RNR from Salmonella typhimurium containing both subunits has also been reported at 4.5 Å resolution and may be indicative of an intermediate in the formation of the active RNR complex that has remained elusive.8 A docking model by Uhlin and Eklund using the structures of α2 and β2 has been generated based on shape complementarity, in which the stable Y$_{122}$· in β2 is > 35 Å from the C439 in α2. This distance is too large for electron tunneling, given the enzyme’s turnover number of 1-10 s$^{-1}$.11 These observations led to the proposal that the radical propagation proceeds by a hopping mechanism through conserved aromatic amino acid residues located in α2 and β2 (Fig. 1).4,12-15 The present paper reports the site-specific incorporation of the unnatural amino acid 3-nitrotyrosine (NO$_2$Y) in place of Y$_{122}$ in β2 and Y$_{731}$ and Y$_{730}$ in α2. The studies with these constructs reveal that NO$_2$Y is an excellent probe of how the protein environment modulates the pK$_d$ of the henol, which is important for thinking about the different mechanisms of proton-coupled electron transfer (PCET) between Y$_{122}$ and C439.

Evidence for the radical propagation pathway shown in Fig. 1 has come from a number of different experiments. Initially, site-directed mutagenesis of each of the conserved aromatic residues on the proposed pathway demonstrated that each is necessary for RNR activity.13,16,17 However, the inactivity of these mutants precluded further mechanistic investigation. Strong support for the redox role of Y$_{356}$ in β2 was obtained by site-specific incorporation of a variety of tyrosine analogs in place of this residue by the use of expressed protein ligation (EL) methodology. β2 with 3,4-dihydroxyphenylalanine (DOPA) at 356 generated DOPA radical (DOPA·) in a kinetically-competent fashion when incubated with α2/S or α2/S/E.18 A series of fluorotyrosine analogs (F$_n$Y, n = 2, 3, 4) incorporated into this position allowed modulation of the residue’s reduction potential and pK$_d$-19-20 both of which lay an important role in PCET.14,15 Comparison of the activities of Y$_{356}$F$_n$Y-β2s relative to wt-β2 as a function of pH showed that nucleotide reduction could be modulated by reduction potential.19 In addition, studies with 3,5-F$_2$Y-β2 showed no obligate coupling between the electron and proton transfer at this residue during radical transport.21 These results suggest that PCET through Y$_{356}$ involves orthogonal (bidirectional) PCET in which electron and proton are transferred to different acceptors (Fig. 1).14,15

Crystallographic data of E. coli α2 suggests that PCET within this subunit may occur by a mechanism distinct from that proposed for 356 in β. Y$_{731}$, Y$_{730}$- and C439-α2 are within H bonding distance of one another and the unusual orientation of Y$_{731}$ and Y$_{730}$ relative to one another (Fig. 1) suggests that π-π stacking may occur. This structural insight, in conjunction with theory, has resulted in the proposal of co-linear PCET within α2 in which an electron and a proton are transferred between the same donor/acceptor pair (Fig. 1).4,12,14,15,22 Radical propagation in α2 has also been investigated by site-specific incorporation of 3-aminoxyrosine (NH$_2$Y) in place of Y$_{731}$- and Y$_{730}$- in α by the orthogonal aminoacyl tRNA synthetase (RS)/tRNA method.23 The NH$_2$Y residues of [NH$_2$Y$_{731}$]-α2 and [NH$_2$Y$_{730}$]-α2 in the presence of β2/S and β2/S/E are oxidized to an aminotyrosyl radical (NH$_2$Y·) in a kinetically competent fashion suggesting that these Y residues are redox active. Recent
studies, in which NH2Y was incorporated “off-pathway”,24 in conjunction with the
Y731NH2Y-α2 and Y730NH2Y-α2 studies suggest that radical propagation occurs by a
specific pathway.

Several additional results support the proposal of a co-linear PCET (also called hydrogen
atom transfer, HAT) mechanism within α. The first is our studies with a photoreactive-
Y356R2C19mer peptide complexed to α. This 20mer-peptide, identical to the 20 C-terminal
amino acid residues of β including Y356, contains an appended photo-oxidant at its N-
terminus. It forms a complex with α2 and makes deoxynucleotides subsequent to light-
mediated oxidation of Y356, thus acting as a competent surrogate for the entire β2.25’26 The
results with the α mutant Y730F and different photooxidants supports the proton-dependent
hopping mechanism.26-27 The second is the observation that [NH2Y731]- and [NH2Y730]-
α2 and, more recently, [NH2Y356]-β2 (E. C. Minnihan, and J. Stubbe, unpublished results) are
active in nucleotide reduction. An energetic analysis of the possible mechanisms of
oxidation of C439-α2 by NH2Y730-α2 supports a hydrogen atom transfer mechanism.23

The experimental data obtained thus far suggest different mechanisms of PCET occur at
different residues within the pathway, which in part is a reflection of differences in the
protein environment at each site.4-614 In order to think about the mechanism of PCET at
each site (Fig. 1), a knowledge of the H bonding interactions and pKα perturbations of each Y
within the pathway is necessary.14-15 Given the number of enzymes that utilize a
active in nucleotide reduction. An energetic analysis of the possible mechanisms of
oxidation of C439-α2 by NH2Y730-α2 supports a hydrogen atom transfer mechanism.23

As a demonstration of its utility, we previously introduced NO2Y in place of Y356 in β2 and
showed that its pKα was perturbed 0.2 pH units in the presence of α2/ADP/dGTP, relative to
the pKα of N-acetyl-3-nitrotyrosine amide in aqueous solution.29 We proposed that NO2Y
would be an excellent probe for a several reasons, albeit with some caveats. First, its pKα of
7.1 is in the middle of the pH range where most proteins, including RNR, are stable. Second,
the absorption maximum for its phenol and phenolate at 360 nm and 424 nm, respectively,
possess moderately large extinction coefficients and absorption features removed from the
protein envelope, facilitating titrations as a function of pH. Finally, in the case of probing
redox active Ys, NO2Y is harder to oxidize than Y by 210 mV at pH 7. Thus in the case of
RNR, its incorporation would result in protein incapable of nucleotide reduction due to a
block in the pathway, while retaining sensitivity to environmental changes associated with S
and E binding. A drawback associated with the NO2Y probe is that it can form an
intramolecular H bond with the OH of the phenol. Its strength will depend on the orientation
of the NO2 group relative to the plane of the phenyl ring and the hydrophobicity of its
environment. Studies of α- and p-substituted nitrophenols (Table S1) reveal that the o-
substituted phenols have elevated pKαs relative to the p-substituted phenols with the extent
of pKα elevation being dependent on solvent.30’34 The ability to form intramolecular H
bonds will undoubtedly perturb reporting on intermolecular H bonding within the protein.
However, if the orientation of the NO2 group remains similar with different mutants, relative
pKαs will be informative.

In this work, we have used the NO2Y-RS/tRNA pair, recently evolved by the Chin and Mehl
groups,35 to successfully incorporate NO2Y in place of Y731 and Y730 of α2 and Y122 of β2.
The EPL method, used to incorporate NO2Y in place of Y356, is not applicable for Y731 and
Y730, due to the large size of the protein and the buried nature of the backbone of these
residues. The pKα of each of these NO2Ys (Fig. 1) has been determined in the presence of a
single protein subunit and in the α2β2/E and α2β2/E/S complexes. Together with the
previously determined pKα of NO2Y at 356-β2,29 the data suggest distinct, position-
dependent pKαs with minimal perturbations for the three Ys (730, and 731-α2 and 356-β2)
that form transient radicals, compared to the large perturbation at the stable Y· site, Y\(_{122}\). In addition, substrate binding perturbs the pK\(_a\) of NO\(_2\)Y only at 730. Additional mutations adjacent to the NO\(_2\)Y substitution were introduced at positions 731, 730, and 439 in α2, to investigate the effect of the H bonding interactions (Fig. 1) on the pK\(_a\). Minimal effects were observed. Finally, the crystal structures for all the NO\(_2\)Y-α2s have been obtained to 2.1 – 3.1 Å resolution and show minimal structural perturbations relative to the wt-α2 crystallized under identical conditions. The NO\(_2\) group is planar with the phenol ring of residue 730 and shows two orientations (planar and perpendicular to the phenol ring) in residue 731. The results of NO\(_2\)Y incorporation in these three positions provide the foundation for thinking about differences in mechanism of PCET at different residues in the pathway. The results further demonstrate that NO\(_2\)Y is a sensitive reporter on protein environment.

Materials and methods

Luria Bertani (LB) medium, BactoAgar, 100 mm Petri dish plates were obtained from Becton-Dickinson. NO\(_2\)Y, M9 salts, ampicillin (Amp), L-arabinose (L-Ara), chloramphenicol (Cm), all amino acids, ATP, 2′-deoxyguanosine 5′-triphosphate (dGTP), cytidine 5′-diphosphate (CDP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich. Isoproyl-β-thiogalactopyranoside (IPTG), dithiothreitol (DTT), cytidine 5′-triphosphate (dCTP), adenine 5′-diphosphate (ADP), NADPH, ethylenediamine tetraacetic acid (EDTA), Bradford Reagent, Sephadex G-25, phenylmethanesulfonyl fluoride (PMSF) and streptomycin sulfate were purchased from Sigma-Aldrich.

\[\text{Construction of pBAD-nrdA-Y}_{730Z} \text{ and BAD-nrdA-Y}_{731Z} \]

nrdA was amplified by PCR using pMJ1-nrdA44 as a template with primers, nrdA-f and nrdA-r (Table S2) that harbor NcoI and XhoI restriction sites, respectively. Introduction of the NcoI site changed the first base of the second codon, A to G, which mutated the second
amino acid, Asn to Asp. PCR was carried out as described above for 40 cycles with an annealing temperature of 58°C. The product was digested with NcoI and Xhol and subcloned into pBAD/MycHis-A to give pBAD-nrdA. The TAG codon (Z) was inserted at 730 or 731 using primers Y730Z-f and Y730Z-r for 730, and Y731Z-f and Y731Z-r for 731 (Table S2). The mutation accompanied by NcoI site introduction in the first PCR was repaired using primers nrdA-repair-f and nrdA-repair-r (Table S2) to give pBAD-nrdA-Yα730Z and pBAD-nrdA-Yα731Z.

Construction of EVOL-NO₂Y

pEVOL43 carries two copies of an RS gene, one with SalI and BglII sites and the other with NdeI and Srl sites in the upstream and downstream regions of the gene, respectively. SalI and BglII sites were introduced into the 3-nitrotyrosine RS (NO₂Y-RS) gene by PCR using pSUP-3NT/835 as a template and primers RS-f and RS-r (Table S2). PCR was carried out for 30 cycles with an annealing temperature of 55°C. Adenine was then added to the 3′-terminus of the PCR product for TA ligation by incubation with GO-Taq Hot start polymerase (Promega) in the presence of 0.2 mM dATP at 72°C for 30 min. The product was ligated with PCR2.1-TOPO (Invitrogen) following the manufacturer’s protocol. The resulting plasmid was first digested with BglII and a 3.9 kb DNA fragment containing NO₂Y-RS gene was isolated and further digested with SalI. The second NO₂Y-RS gene with NdeI and PsrI sites was prepared by digesting pSUP-3NT/8 with NdeI and PsrI. The two NO₂Y-RS gene fragments were sequentially introduced into pEVOL. Initially, the NO₂Y-RS gene flanked by NdeI/PsrI was ligated into pEVOL. The NO₂Y-RS gene flanked with BglII/SalI was then ligated into the new construct to give pEVOL-NO₂Y.

Expression of [NO₂Y₇30]-α2 and [NO₂Y₇31]-α2

E. coli TOP10 was transformed with pSUP-3NT/835 (CmR) and pBAD-nrdA-Y₇30Z and grown overnight on LB agar plates. All growths were carried out in the presence of Cm (25 mg/L) and Amp (100 mg/L). A single colony was picked and grown in LB to saturation (~16 h). Two mL of this solution was diluted into 200 mL LB in a 500 mL baffled flask and grown at 37°C until saturation. A portion of this culture (100 mL) was then inoculated into a fermenter containing 10 L of GMML medium (pH 6.8) supplemented with Cm (25 mg/L), Amp (100 mg/L), 17 amino acids (Glu, Gln, Asp, Asn, Lys, Val, Arg, Leu, His, Ile, Ala, Pro, Trp, Gly, Met, Thr, Ser, 0.2 g/L each), 0.05% (w/v) glucose, 0.05% (w/v) L-ara, 0.1% (w/v) L-arabinose and 1X heavy metal solution. The heavy metal stock solution (100X) contained the following per L: 45.500 mg of Na₂MoO₄·2H₂O, 250 mg of CoCl₂, 175 mg of CuSO₄·5H₂O, 1 g of MnSO₄·H₂O, 8.75 g of MgSO₄·7H₂O, 1.25 g of ZnSO₄·7H₂O, 1.25 g of FeCl₃·4H₂O, 2.5 g of CaCl₂·2H₂O and 1 g of H₃BO₃, dissolved in 1 M HCl. NO₂Y (2 mM) was added at the beginning of the culture and growth was continued for 30 h (OD₆₀₀ = 2.6 – 2.8) at which time the cells were harvested by centrifugation, frozen in liquid N₂ and stored at −80°C. Typically, 5-6 g of wet cell paste/L were obtained. Expression of [NO₂Y₇31]-α2 and all double mutants were carried out in an identical fashion using the appropriate pBAD constructs.

Purification of [NO₂Y₇30]-α2 and [NO₂Y₇31]-α2

[NO₂Y]-α2s were typically purified from 60-80 g of cell paste. All purification steps were carried out at 4°C. The cell paste was re-suspended in 5 volumes of buffer A (50 mM Tris pH 7.6, 1 mM EDTA, 1 mM PMSF and 5 mM DTT). The cells were lysed by a single passage through a French pressure cell operating at 14 000 psi. After removal of cell debris by centrifugation (20000g, 20 min, 4°C), DNA was precipitated by dropwise addition of 0.2 volumes of buffer A containing 8% (w/v) streptomycin sulfate. The mixture was stirred for an additional 15 min, and the precipitated DNA was removed by centrifugation (20000g, 20
Solid (NH₄)₂SO₄ (3.9 g per 10 mL of supernatant) was then added over 15 min (66% saturation). The solution was stirred for an additional 20 min and the precipitated protein was isolated by centrifugation (20000g, 20 min, 4°C). The pellet was dissolved in a minimal volume of buffer A and desalted using a Sephadex G-25 column (5 cm × 50 cm, 1 L), which had been equilibrated in buffer A. The column was washed with 2 L of buffer A containing 50 mM NaCl followed by a gradient (1 L × 1 L) of 50-500 mM NaCl in buffer A. Fractions (10 mL each) containing [NO₂Y]-α2 were judged by SDS-PAGE and differences of phenolate absorption (A₄₉₀nm) at pH 7.6 and 9.0. [NO₂Y]-α2 was typically eluted at 210-250 mM NaCl. Pooled fractions were then directly loaded onto a dATP affinity column (1.5 cm × 4 cm, 100 mL), which had been equilibrated in buffer A. The column was washed with 10 column volumes of buffer A. [NO₂Y]-α2 was then eluted with buffer B (50 mM Tris pH 7.6, 5% glycerol, 1 mM EDTA, 15 mM MgSO₄, and 5 mM DTT) supplemented with 5 mM ATP and 5 mM DTT. Fractions containing NO₂Y-α2, judged by SDS-PAGE, were pooled and concentrated by ultrafiltration (Amicon YM-30, Millipore) and loaded onto Q-sepharose HP (Sigma-Aldrich, 3 × 5 cm, 35 mL), which had been equilibrated in buffer C (50 mM Tris pH 8.0, 5% glycerol, 1 mM EDTA, 15 mM MgSO₄, and 5 mM DTT). The column was washed with buffer C containing 50 mM NaCl and 1 mM ATP. ATP was added to re-equilibrate the protein eluting over a larger volume. The protein was eluted using a gradient (300 mL × 300 mL) of 50-500 mM NaCl in the same buffer. Fractions containing [NO₂Y]-α2 (typically, 160 - 210 mM NaCl), judged by SDS-PAGE, were then concentrated by ultrafiltration as above and desalted using a Sephadex G-25 column (1.1 × 100 cm, 100 mL) equilibrated with buffer B. The resultant protein solution was concentrated to ~90 μM, frozen in liquid N₂, and stored at −80°C. Typically, 1-3 mg of [NO₂Y]-α2s were obtained per g of wet cell paste.

Generation and expression of [NO₂Y₁₂₂]-β2

A TAG codon was introduced by PCR using pBAD-nrdB-NS547 as a template and primers, Y122Z-f and Y122Z-r (Table S2). NrdB encoded in pBAD-nrdB-NS5 has a StrepII tag (WSHPQFEK) at its N-terminus followed by a 5 amino acid linker (SLGGH). The resulting plasmid, pBAD-nrdB-NS5-Y₁₂₂ (Amp⁸), was introduced into E. coli TOP10 together with pEVOL-NO₂Y (Cm⁸) and grown overnight on LB agarose plates. All growths were carried out in the presence of Cm (25 mg/L) and Amp (100 mg/L). A single colony was picked and grown in 5 mL LB to saturation (~16 h). Two mL of this solution was diluted into 200 mL LB in a 500 mL baffled flask and grown at 37°C until saturation (~10 h). A portion of this culture (100 mL) was then inoculated into a fermenter containing 10 L of the 17 amino acids supplemented GMML medium described above. NO₂Y (2 mM) was added at the beginning of the culture and growth was continued for 15 h (OD₆₀₀ = 1.5-1.8) at which point the cells were harvested by centrifugation, frozen in liquid N₂ and stored at −80°C. Typically, 2-3 g of wet cell paste/L were obtained.

Purification of [NO₂Y₁₂₂]-β2

[NO₂Y₁₂₂]-β2 was purified from 30-40 g wet cell paste. Although the [NO₂Y₁₂₂]-β2 is strep-tagged, the standard protocol for β2 purification was used for large scale preparations due to the poor binding of tagged [NO₂Y₁₂₂]-β2 to Stre-Tactin sepharose (IBA, St. Louis, MO). All steps were carried out at 4°C. The cell paste was re-suspended in 5 volumes of buffer D (50 mM Tris pH 7.6, 5% glycerol and 0.5 mM PMSF). The cells were lysed by a single passage through a French pressure cell operating at 14,000 psi. Fe²⁺(NH₄)₂(SO₄)₃ and sodium ascorbate (5 mg each per g cell paste) were added to the lysate and stirred for 10 min. After removal of cell debris by centrifugation (20000g, 20 min,
4 °C), DNA was precipitated by drowise addition of 0.2 volumes of buffer D containing 6% (w/v) streptomycin sulfate. The mixture was stirred for an additional 15 min, and the precipitated DNA was removed by centrifugation (20000g, 20 min, 4°C). Solid (NH₄)₂SO₄ (3.9 g er 10 mL of supernatant) was then added over 15 min (66% saturation). The solution was stirred for an additional 20 min and the precipitated protein was isolated by centrifugation (20000g, 20 min, 4°C). The pellet was dissolved in a minimal volume of buffer D and desalted using a Sephadex G-25 column (5 cm × 50 cm, 1 L). The desalted protein was loaded onto DEAE Fast Flow column (5 cm × 13 cm, 250 mL), which had been equilibrated in buffer D. The column was washed with 1.5 L of buffer D containing 100 mM NaCl followed by a gradient (1 L × 1 L) of 100-500 mM NaCl in buffer D. Fractions containing [NO₂Y₁₂₂]-β2 were judged by SDS-PAGE and A₃⁴⁰nm; the absorption feature of diferric cluster and 3-nitrophenol. [NO₂Y₁₂₂]-β2 typically eluted at 190 – 220 mM NaCl. The resulting fractions were then diluted two-fold using buffer D and were loaded onto a Q-Sepharose fast flow column (4.5 cm × 10 cm, 150 mL), which had been equilibrated in buffer D. The column was washed with 1.5 L of buffer D containing 150 mM NaCl followed by a gradient (1 L × 1 L) of 150-500 mM NaCl in buffer D. Fractions containing [NO₂Y₁₂₂]-β2 (220-250 mM NaCl), judged by SDS-PAGE, were pooled and concentrated by ultrafiltration (Amicon YM-30, Millipore) to ~500 μL. Typically, 7 mg of [NO₂Y₁₂₂]-β2 were obtained per g of wet cell paste. The iron content was determined by the ferrozine assay.48 For activity assays, Strep-Tactin sepharose (IBA, St. Louis, MO) was used to remove contaminating wt-β2 from [NO₂Y₁₂₂]-β2. Typically 4-5 g of cell paste was used. Cell lysis, streptomycin sulfate precipitation and ammonium sulfate precipitation were carried out as described above. After removal of ammonium sulfate using Sephadex G-25, the desalted protein was loaded onto Strep-tactin sepharose column (1 cm × 5 cm, 4 mL), which had been equilibrated in buffer D. The column was washed with buffer D and [NO₂Y₁₂₂]-β2 was eluted with 2.5 mM des thiobiotin in buffer D. Typically, 0.4 mg of [NO₂Y₁₂₂]-β2 was obtained per g of wet cell paste. The decreased yield is due to a low affinity of [NO₂Y₁₂₂]-β2 for the resin. Protein concentration and iron content were determined as described above.

Generation and expression of double mutants: [NO₂Y₇₃₀]-α2(Y₇₃₁F), [NO₂Y₇₃₀]-α2(Y₇₃₁A), [NO₂Y₇₃₀]-α2(C₄₃⁹S), [NO₂Y₇₃₀]-α2(C₄₃⁹A), and [NO₂Y₇₃₁]-α2(Y₇₃₀F)

Mutations were introduced by PCR as described above with primers in Table S2. pBAD-nrdA-Y₇₃₁Z was used as a template for [NO₂Y₇₃₀]-α2(Y₇₃₁F), [NO₂Y₇₃₀]-α2(Y₇₃₁A), [NO₂Y₇₃₀]-α2(C₄₃⁹S) and [NO₂Y₇₃₀]-α2(C₄₃⁹A), and pBAD-nrdA-Y₇₃₁Z was used as a template for [NO₂Y₇₃₁]-α2(Y₇₃₀F). PCR products were amplified in *E. coli* DH5α and their DNA sequences were confirmed. Expression and purification of these proteins were carried out as described above for NO₂Y-α2 single mutants.

Determination of protein purity and NO₂Y incorporation

The purity of each [NO₂Y]-α2 and [NO₂Y]-β2 was determined from SDS-PAGE and Coomassie staining using Quantity One software (BioRad). The amount of NO₂Y incorporated into α2 or β2 was determined by its phenolate absorption subsequent to its incubation in 6 M guanidine in 50 mM TAS pH 9.0 at room temperature for 1 h. The measurement was repeated in triplicate. N-acetyl-3-nitrotyrosine amide, prepared as previously described29 and recrystallized from methanol, was used as a standard. The solvent was removed in vacuo over P₂O₅ for 18 h, until no further changes in weight were
observed. The extinction coefficient of N-acetyl-3-nitrotyrosine amide was determined by weight and UV-vis spectrum.

K_D for the interaction of β2 and [NO$_2$Y–α2s in the presence of CDP/ATP by the competitive inhibition assay

The assay mixture in a final volume 300 μL consisted of 0.15 μM β2, 1 mM CDP, 1.6 mM ATP, 50 μM TR, 1 μM TRR, 0.2 mM NADH in RNR assay buffer. The reaction was initiated by adding a mixture of 0.3 μM wt α2 and variable amounts of [NO$_2$Y–α2s (0, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0 μM) and the A$_{340nm}$ ($ε$ = 6.22 mM$^{-1}$cm$^{-1}$), corresponding to NADPH consumption, was monitored at 25°C. The data were fit to eq. 1.

$$[\text{NO}_2Y-\alpha2]_{\text{bound}} = \text{[NO}_2Y-\alpha2]_{\text{free}} / (K_d + [\text{NO}_2Y-\alpha2]_{\text{free}})$$

where [NO$_2$Y-α2]$_{\text{bound}}$ is the concentration of the NO$_2$Y-α2β2 complex, [α2β2]$_{\text{max}}$ is the concentration of the wt-α2β2 complex in the absence of [NO$_2$Y-α2], and K_d is the dissociation constant of [NO$_2$Y]–α2 from β2. [α2β2]$_{\text{max}}$ was 0.09 μM under these assay conditions. Each data point represents an average of three independent measurements. The K_d for the subunit interaction between α2 and [NO$_2$Y122]–β2 was measured in the identical manner using 0.15 μM wt α2 and 0.3 μM wt β2.

Spectrophotometric and Radioactive Activity Assays

The spectrophotometric and radioactive RNR assays were performed as described. Typically, [NO$_2$Y-α2s (1 or 2 μM), wt β2 (2, 5 or 10 μM) was incubated with CD (1 mM), ATP (3 mM) in the presence of TR, TRR and NADH in RNR assay buffer. [5-3H]-CDP (5150 - 5230 cpm/nmol, ViTrax, Placentia, CA) was used in the radioactive assay.

Determination of the pK$_a$ of NO$_2$Y in [NO$_2$Y]-α2s and [NO$_2$Y$_{356}$]-β2 in the presence of E, E/β2 (or α2) and E/β2/(or α2)/S

To determine the pK$_a$ of NO$_2$Y in the α2 mutants, the absorption spectra from 250 to 700 nm were determined at 25 °C at each pH. Each step in the titration was carried out in a separate cuvette. Good’s buffers (50 mM, MES (pH 6.0 – 6.8), HEPES (pH 7.0 – 8.0), and TAPS (pH 8.2 – 9.2) contained 1 mM EDTA and 15 mM MgSO$_4$. Each buffered solution contained: [NO$_2$Y]-α2 (7.5 μM) and E (ATP or dGTP at 1 mM and 0,1 mM, respectively), E/β2 (7.5 μM), or E/β2/S (CDP or ADP at 1 mM). The pH was redetermined after mixing all components. To compensate for differences in baseline absorption, all spectra were zeroed at 700 nm. All titrations were conducted in triplicate. Analysis of the titration data was carried out using eq.2,

$$A = \frac{(ε_h K_a [H^+]+ε^-)[NO_2Y-α]}{(K_a [H^+]+1)}$$

where A is the absorbance of the phenolate, $ε^-$ is the extinction coefficient of phenolate at its $λ_{\text{max}}$, and $ε_h$ is the extinction coefficient of the phenol at the same wavelength as the phenolate $λ_{\text{max}}$. The data from the lot of A vs pH was fit to eq.2 using Kaleidagraph and non-linear least squares curve fitting to determine $ε_h$, $ε^-$ and pK$_a$.

[NO$_2$Y$_{356}$]-β2, previously prepared by EPL29 was used to determine the pK$_a$ in the complex with α2/ATP/CDP. The titration was carried out as described above, in the presence of E/α2 (1 mM ATP, 7.5 μM α2), or E/α2/S (1 mM CDP). The data were fit to eq.2 to determine the pK$_a$.

J Am Chem Soc. Author manuscript; available in PMC 2011 June 23.
Incorporation of NO

Results

Incorporation of NO$_2$Y into α2

The Chin and Mehl groups35 recently reported the evolution of a suppressor tRNA/RS pair for site-specific incorporation of NO$_2$Y into superoxide dismutase (SOD) expressed in *E. coli*. Initially their construct pSUP-3NT/8, containing the genes for both the tRNA and the RS was used in combination with pTrc containing nrdA (the gene for RNR α) with the TAG codon in place of the tyrosine codon at 730 or 731. pTrc plasmid has recently been successfully used by us to incorporate NH$_2$ into the same positions of α2.23 Expression was carried out in GMML medium42 or in the minimal medium used for NO$_2$Y incorporation into SOD.35 Under these conditions, however, only very weak expression of truncated α2 was observed. In an effort to enhance expression of α, we cloned nrdA into pBAD/MycHis-A to generate pBAD-nrdA and attempted expression in richer medium.50 *E. coli* TOP10 cells were transformed with pSUP-3NT/8 and pBAD-nrdA-Y$_{730}$Z or pBAD-nrdA-Y$_{731}$Z and grown in GMML medium containing NO$_2$Y, D-glucose, L-ara and 17 proteinogenic amino acids excluding Cys, Tyr and Phe. Under these conditions, protein expression was robust, giving rise to predominantly truncated α and a small amount of full-length protein (Fig. 2a, left gel). Fortunately, most of the truncated protein was insoluble, and thus full-length α was successfully isolated by our standard procedure for α purification which uses a dATP affinity column,46 followed by an additional Q Sepharose column (Fig. S1). Typically 2.8 mg of [NO$_2$Y$_{730}$]-α2 and 1.0 mg of [NO$_2$Y$_{731}$]-α2 are isolated per g of cell paste. More recently we have used the newly constructed pEVOL-NO$_2$Y (see below) that results in higher expression levels of full length [NO$_2$Y730(731)]-α2 (Fig. 2a, right gel).

pH titration of NO$_2$Y in [NO$_2$Y$_{122}$]-β2

The absorption spectrum of [NO$_2$Y$_{122}$]-β2 was determined between pH 7.0 and 10.6 at 25 °C as above. For a pH higher than 9.0, CHES (pH 9.0 – 10.0) and CAPS (pH 10.3 – 10.6) were used. Titrations were carried out with [NO$_2$Y$_{122}$]-β2 (7.5 μM), with [NO$_2$Y$_{122}$]-β2 (7.5 μM)/α2 (7.5 μM)/ATP (1 mM)/CDP (1 mM), or with apo-[NO$_2$Y$_{122}$]-β2 (7.5 μM). The pH was measured after mixing all components. To compensate for differences in baseline absorption, all spectra were zeroed at 700 nm. Ao-[NO$_2$Y$_{122}$]-β2 was prepared using hydroxyquinoline as a chelator in the presence of 1 M imidazole.41

Crystallization, data collection and refinement

Wt-α2 and [NO$_2$Y]-α2s were co-crystallized with a 20mer peptide4 that corresponds to the last 20 amino acids of β2. Crystals were grown for approximately one week at 4 °C using the hanging drop vapor diffusion method in EasyXtal Tool plates (QIAGEN). Each drop consisted of 2 μL α-mutant (8-9 mg/ml) and peptide (30 mg/ml) and 2 μL of a solution containing 1.5 M Li$_2$SO$_4$, 2 mM DTT and 25 mM sodium citrate (pH 6). The final pH of each drop was 6.0-6.5. The crystals were quickly washed in a 1.5 M Li$_2$SO$_4$ solution containing 20% ethylene glycol, mounted in fiber loops and flash-frozen in liquid N$_2$.

All sets of data were collected at 100 K at the European Synchrotron Radiation Facility stations (Grenoble, France). The crystals are of the rhombohedral space group R32 with hexagonal axes approximately 225, 225 and 337 Å, containing 3 molecules per asymmetric unit. Due to the freezing of the crystals, the cells are slightly smaller than the previous data sets of data collected at 4 °C.5 Y$_{122}$ was prepared using hydroxyquinoline as a chelator in the presence of 1 M imidazole.41
The purity of \([\text{NO}_2\text{Y}_{730}]\)-\(\alpha\)2 and \([\text{NO}_2\text{Y}_{731}]\)-\(\alpha\)2 was determined to be ~95% and ~80%, respectively, based on the intensities of the Coomassie stained protein bands on SDS-PAGE gel (Fig. S1 and Table S4). At pH 9.2, these mutants exhibit a phenolate \(\lambda_{\text{max}}\) of 442 nm and 437 nm, respectively, which is red-shifted 18 nm and 13 nm from the phenolate \(\lambda_{\text{max}}\) of \(N\)-acetyl-3-nitrotyrosine amide \(29\) (424 nm) in the same buffer (Fig. 3a). To calculate the extent of \(\text{NO}_2\text{Y}\) incorporation into \(\alpha\), each \([\text{NO}_2\text{Y}]\)-\(\alpha\)2 was denatured in 6 M guanidine HCl in 50 mM TAP pH 9.2. Both denatured mutants exhibited a phenolate \(\lambda_{\text{max}}\) of 435 nm, identical to that of the \(N\)-acetyl-3-nitrotyrosine amide in the same buffer (Fig. S2).\(51\) The extinction coefficient \(6434\text{nm}\) of \(N\)-acetyl-3-nitrotyrosine amide in 6 M guanidine (pH 9.2) was determined to be \(4890\text{ M}^{-1}\text{cm}^{-1}\). By measuring \(A_{435\text{nm}}\) of the denatured \([\text{NO}_2\text{Y}]\)-\(\alpha\)2, the concentration of \(\text{NO}_2\text{Y}\) in each mutant was determined. These numbers allowed the determination of the purity of \([\text{NO}_2\text{Y}_{730}]\)-\(\alpha\)2 and \([\text{NO}_2\text{Y}_{731}]\)-\(\alpha\)2 to be 93 ± 3% and 79 ± 3%, respectively, which correlate well with the purity of \(\alpha\) determined from SDS-PAGE analysis (Table S4), suggesting that the impurity is associated with other proteins and that incorporation of \(\text{NO}_2\text{Y}\) into both \([\text{NO}_2\text{Y}]\)-\(\alpha\)2s, is high (98 ± 2%).

Incorporation of \(\text{NO}_2\text{Y}\) into \(\beta\)2

In contrast with the results using pSUP-3NT/8 for the incorporation of \(\text{NO}_2\text{Y}\) into \(\alpha\), efforts to express full-length \(\beta\) with \(\text{NO}_2\text{Y}\) at 122 were unsuccessful, despite detection of substantial amounts of truncated protein. Recently, the Schultz group has developed a new plasmid, pEVOL, in which aminoacyl-RS expression is controlled by the strong ara inducible promoter, araBAD.\(43\) pEVOL has been demonstrated to improve suppression relative to other constructs in a number of cases.\(43\) Thus, the \(\text{NO}_2\text{Y}-\text{RS}\) was cloned into pEVOL resulting in pEVOL-\(\text{NO}_2\text{Y}\) and used to examine \(\text{NO}_2\text{Y}\) incorporation in place of \(\text{Y}_{122}\) in \(\beta\)2. Successful expression of full-length \(\beta\)2 was observed when the protein was expressed in the amino acid supplemented minimal medium using pEVOL-\(\text{NO}_2\text{Y}\) and pBAD-\(\text{nrdB}\)-\(\text{NS5}\)\(-\text{Y}_{122}\)Z (Fig. 2b). \(\text{pBAD-\(\text{nrdB}\)-\(\text{NS5-Y}_{122}\)Z}\) encodes \(\beta\) with StreptII tag and a 5 amino acid linker (SLGGH) at the N-terminus and a TAG codon (Z) at position 122. We have previously confirmed that the N-terminal Strept-tag does not affect the RNR activity.\(47\) Strept-tagged \(\beta\)2 will be referred to as \(\beta\). Attempts to purify \([\text{NO}_2\text{Y}_{122}]\)-\(\beta\) with the Strept-tactin affinity resin were inefficient due to poor binding, yielding 0.4 mg \(\beta\)2 per g cell-paste. Thus, \([\text{NO}_2\text{Y}_{122}]\)-\(\beta\)2 was purified by our standard procedure for non-tagged proteins using anion exchange column chromatography. Typically 6-7 mg \([\text{NO}_2\text{Y}_{122}]\)-\(\beta\) per g cell paste with 90% purity based on SDS-PAGE gel analysis, was obtained (Fig. 2b, Table S4).

As isolated, the absorption spectrum of the purified \([\text{NO}_2\text{Y}_{122}]\)-\(\beta\)2 showed broad features between 325 and 400 nm and no sharp feature associated with a Y: at 410 nm (Fig. 3b). The ferrozine assay revealed 2.9 ± 0.2 Fe/\(\beta\)2, suggesting that \([\text{NO}_2\text{Y}_{122}]\)-\(\beta\)2 has a diferric cluster (met-form). Thus, if \(\text{NO}_2\text{Y}\)- is formed, it is short-lived. Incorporation of \(\text{NO}_2\text{Y}\) was confirmed to be ~98% as described above for \(\alpha\) (Table S4). Subtraction of the absorption spectrum of the diferric cofactor cluster (normalized for the iron content) from that of \([\text{NO}_2\text{Y}_{122}]\)-\(\beta\)2 gave a spectrum with a \(\lambda_{\text{max}}\) at 363 nm (\(\epsilon = 3400 ± 240\text{ M}^{-1}\text{cm}^{-1}\), Table 1, Fig. 3b), consistent with a phenol form of \(\text{NO}_2\text{Y}\).

Finally, incorporation of \(\text{NO}_2\text{Y}\) in place of \(\text{Y}_{356}\) was also attempted. Since the truncated \(\beta\) was soluble, C-terminal Strept-tagged \(\beta\)\(47\) was used to facilitate the separation of full-length \(\beta\) from truncated \(\beta\). The use of pEVOL-\(\text{NO}_2\text{Y}\) and pBAD-NrdB-\(\text{Y}_{356}\)Z resulted in expression of full-length \(\beta\) that was not observed when the protein was expressed in the absence of \(\text{NO}_2\text{Y}\) (Fig. S3). However, the purified full-length \(\beta\) did not exhibit the phenolate absorption at pH 9.2 under native or denaturing conditions, suggesting the absence of \(\text{NO}_2\text{Y}\) incorporation. An ESI-MS analysis showed the purified \(\beta\) has a molecular mass 15 Da larger than the wt protein (Fig. S4), which corresponds to an addition of an NH\(_2\) group. No signal corresponding to \([\text{NO}_2\text{Y}_{356}]\)-\(\beta\)2 was observed. Previous workers have reported that \(\text{NO}_2\text{Y}\)
can be reduced to NH$_2$Y by heme proteins in the presence of thiols or ascorbic acid. Since residue 356 is surface exposed, it is likely to have been reduced in E. coli cells.

Determination of the K_d for Subunit interactions

The K_d for subunit interactions in wt-RNR is weak [0.06 - 0.2 μM in the presence of CDP and ATP,49 (A. Q. Hassan and J. Stubbe, unpublished results) and 0.4 μM in the absence of nucleotides54]. Perturbation of subunit interactions by NO$_2$Y incorporation was thus a concern as 731 is thought to reside at the subunit interface. Thus, the K_d was determined by the procedure of Climent et al49, using the [NO$_2$Y]-α2 and [NO$_2$Y$_{122}^{-}$]-β2 as a competitive inhibitor of wt-α2 and -β2 interactions. This method gave a K_d of 1.32 ± 0.10 μM, 0.51 ± 0.07 μM and 0.40 ± 0.06 μM for [NO$_2$Y$_{730}^{-}$]-α2, [NO$_2$Y$_{731}^{-}$]-α2 and [NO$_2$Y$_{122}^{-}$]-β2, respectively (Table 2). Since the formation of the phenolate of NO$_2$Y could perturb subunit interactions, the K_d was also determined at pH 6.8 where the phenol is completely protonated. The observed K_d for [NO$_2$Y$_{731}^{-}$]-α2 (0.53 ± 0.07 μM) is essentially the same as that at pH 7.6. In general, the interactions are weaker than those observed in wt RNR. Unexpectedly, the K_d of [NO$_2$Y$_{730}^{-}$]-α2 is higher than that of [NO$_2$Y$_{731}^{-}$]-α2, even though Y$_{731}^{-}$-α2 is closer to the subunit interface.4 This knowledge facilitated design of studies, pH* determination and activity assays, where the subunits need to be associated.55

Catalytic activity of NO$_2$Y-α2s: levels of endogenous wt-α

The genes for RNR are essential and therefore expression of [NO$_2$Y]-β or [NO$_2$Y]-α mutants in E. coli is accompanied by expression of small amounts of the endogenous wt-subunit. The purification protocol for [NO$_2$Y$_{356}^{-}$]-β2 made by EPL ensured the removal of wt-β and thus a lower limit of detection of deoxynucleotide formation for this mutant of < 1/10⁴ that of wt-β2 was set.29 The absence of activity was expected based on the experimentally measured differences in peak potentials of the NO$_2$Y and Y of 210 mV (pH 7.6)29 and our previous studies with F$_Y$ (n = 2-4) at the same position, which suggested that when the F$_Y$ was more difficult to oxidize than Y by 200 mV, RNR was inactive.20

Activity of [NO$_2$Y$_{122}^{-}$]-β2 with an N-terminal Streptag and without a tag, purified by affinity chromatography and by conventional chromatography methods, respectively, was determined. In the former case, the [NO$_2$Y$_{122}^{-}$]-β2 had activity 1/250 and in the latter case < 1/10⁴ of the wt-β2 (Table 3). Thus, [NO$_2$Y$_{122}^{-}$]-β2 is inactive.

The activity assays of [NO$_2$Y$_{730}^{-}$]- and [NO$_2$Y$_{731}^{-}$]-α2, Table 3, revealed activity levels of 0.5 – 1.5% for [NO$_2$Y$_{730}^{-}$]-α2 (1/200 to 1/100) to 0.4 - 2.9% for [NO$_2$Y$_{731}^{-}$]-α2(1/250 to 1/30) that of wt-α2. Three arguments support our conclusion that the observed activity is predominantly associated with endogenous wt-α. First there is a rough correlation between the levels of expression of the mutants and their activity (Table 3): the higher the yield of the mutant protein, the lower the activity. Expression of [NO$_2$Y$_{731}^{-}$]-α, for example, with two different suppression constructs gives rise to activity that varies 5 fold. Second, a number of double mutants, described below, with NO$_2$Y and a block (he) in the ET pathway, all have activities in the range of 1 to 3% (1/30 to 1/100) of wt. The Phe mutants themselves have been deemed inactive with similar levels of activity.13 Third, the activity measured for [NO$_2$Y]-α2 assayed at 2 μM is independent of the concentration of β2 (2 μM, 5 μM or 10 μM) used in the assay mixture. Based on the K_d for subunit interactions, the RNR activity would have been expected to increase with the increasing concentrations of β2 due to increased α2β2 complex formation.55

Finally, we have recently developed an affinity chromatography method to remove endogenous levels of wt-α2 from [NH$_2$Y]-α2s by constructing an N-terminally tagged α, into which the unnatural amino acid is incorporated (E. C. Minnihan, and J. Stubbe,
unpublished results). Use of this construct to generate \([\text{NO}_2\text{Y}_{730}]\)-α2 gave protein of 92% purity and activity 0.5% that of wt-α2 at pH 7.6. The activity is also 0.50 ± 0.02% that of wt-α at pH 6.5 and 8.6. If the mechanism of oxidation of C439 involves hydrogen atom transfer, then at pH 8.6 the relative activity should be reduced to <25% of that at pH 6.8, as the NO2Y is predominantly the phenolate at pH 8.6 (see titration data below and Table 4). From the arguments presented above we have assumed that all the \([\text{NO}_2\text{Y}]\)-α2s and β2s are inactive and that the detected activity is associated with endogenous wt-α or with the infidelity of the RS associated with mischarging the tRNA with Y.

Determination of the pKₐs of \([\text{NO}_2\text{Y}]\)-α2s

The ability to form \([\text{NO}_2\text{Y}]\)-α2β2 complexes incapable of turnover has enabled us to determine the pKₐ of NO2Y at positions 730 and 731 in α2 in the presence S (ADP or CDP) and S/E air (CDP/ATP or ADP/dGTP). As noted above, S and E are critical as they trigger the active conformation for PCET. The pH measurements of the α2β2 complex were performed between pH 6.0 – 9.2 with \([\text{NO}_2\text{Y}]\)-α2 and β2 in which 65% of \([\text{NO}_2\text{Y}_{730}]\)-α2 and 77% of \([\text{NO}_2\text{Y}_{731}]\)-α2 are in a complex based on the Kₐ (Table 2). An additional experiment was carried out with 92% complex formation with similar results. The errors in the pKₐ values were ± 0.05 pH units. The protein stability was also ascertained at the two pH extremes (6.0 and 9.2) by incubating the wt RNR at these pH for 15 min followed by an activity assay at pH 7.6. In each case 95% of the activity was retained. The results of a typical pH titration in the presence of E are shown in Fig. 4. As the pH increases, the absorption of the phenol decreases concomitant with an increase in the absorption of the phenolate with an isosbestic point at 393 nm.

Plots of the intensity of the phenolate absorption vs pH are shown in Fig. 5. The data is best fit to eq.229 for a species undergoing a single deprotonation. The pKₐ of NO2Y in each \([\text{NO}_2\text{Y}]\)-α2 are summarized in Tables 4A and 4B and can be compared to the pKₐ of NO2Y in the C-terminal 20mer peptide of β2.29 The pKₐ of \([\text{NO}_2\text{Y}_{730}]\)-α2 with E is 7.9 and 7.8 for ATP and dGTP, respectively. These pKₐ remain unchanged upon addition of β2. Addition of S to the \([\text{NO}_2\text{Y}_{730}]\)-α2/E/β2 complex, either a purine or a pyrimidne, increased the pKₐ by 0.4 pH units. The pKₐ of NO2Y at 731 is similar to 730 when titrated with E or E/β2, however, no further change is observed on S addition.

The extinction coefficients for the phenolate of each NO2Y in α2 were also determined by fits to eq. 2 and are 6400 ± 250 and 5200 ± 300 M⁻¹cm⁻¹ for \([\text{NO}_2\text{Y}_{730}]\)-α2 and \([\text{NO}_2\text{Y}_{731}]\)-α2, respectively (Table 1). These values are larger than those determined for N-acetyl-3-nitrotyrosine amide under the same conditions (λmax 424 nm, ε424nm 4610 M⁻¹cm⁻¹). The extinction coefficients of phenols were also calculated from the absorbance at λmax at pH 6.0 (Table 1). The differences in extinction coefficients and shifts in λmax of the mutants are reporting on their surrounding environment, but are difficult to interpret. To obtain insights about the effects of surrounding environment, the absorption spectra of N-acetyl-3-nitrotyrosine amide were determined in various organic solvents with 1% triethylamine (Fig. S5, Table S5). Red-shifted phenolate absorptions (440 – 458 nm) were observed in non-protic polar solvents (DMSO, DMF and acetonitrile). In contrast, in protic solvents (water, ethanol and methanol), the phenolate absorbs at shorter wavelength, 418 – 424 nm. Thus, the red shifts of NO2Y observed at 731 and 730 may suggest a less protic environment. π–π stacking interactions and NO2 group orientation, however, can also affect the phenolate absorption, and theoretical studies using structures described below are ongoing to better understand the environment of each Y.

pH Titration of \([\text{NO}_2\text{Y}]\)-β2

The pH titration of \([\text{NO}_2\text{Y}_{122}]\)-β2 was carried out between pH 7.0 – 10.0 (Fig. 6a) with the spectra from pH 7.6 - 8.6 being identical. At pH 9.0, a decrease in A360nm is observed.

J Am Chem Soc. Author manuscript; available in PMC 2011 June 23.
without a corresponding increase in the region of the phenolate, 420 - 450 nm. At pH > 9.2, further decrease in absorption in the 320 – 360 nm region occurs along with an increase in the phenolate region, although no isosbestic point is apparent. The unusual absorption spectra at pHs greater than 9 for [NO$_2$Y$_{122}$]-β2 may be due to the decomposition of the diferric cluster that generates apo-β2 which then allows titration of NO$_2$Y$_{122}$. Quantitation of iron in [NO$_2$Y$_{122}$]-β2 at pH 10.0, for example, showed complete iron loss (Table S6) and the phenolate absorption observed is close to that predicted from the pK$_a$ of this residue in apo-β2 (see below). Thus, the pK$_a$ of the iron loaded form (met-form) cannot be directly determined. Since the spectra between pH 7.6 - 8.6 are identical, and 10% of phenolate would result in a detectable change in absorbance (0.007, assuming an ε = 4200 M$^{-1}$cm$^{-1}$), a lower limit of detection of the pK$_a$ of the phenol can be set at 9.6. The pK$_a$ perturbation of NO$_2$Y$_{122}$ is thus greater than 2.5 pH units. Results from the titration of [NO$_2$Y$_{122}$]-β2 with wt-α2/E/S are similar to the titration without α2 (Fig. S6).

In contrast, a pH titration of NO$_2$Y was successfully carried out between pH 7.0 - 10.6 with apo-[NO$_2$Y$_{122}$]-β2 which does exhibit an isosbestic point (Fig. 6b). Titration above pH 10.8 was not possible due to protein precipitation. These data, fit to eq. 2, gave a pK$_a$ of 9.8. This pK$_a$ is close to the lower limit of pK$_a$ for the met-form (9.6), indicating that the diferric cluster does not significantly lower the phenol pK$_a$. The λ_{max} and the extinction coefficient of phenolate were minimally perturbed from that of N-acetyl-3-nitrotyrosine amide in water (Table 1).

The pK$_a$ of NO$_2$Y$_{356}$-β2 was also revisited using ATP/CDP. [NO$_2$Y$_{356}$]-β2 prepared by EPL29 was used due the reduction of NO$_2$Y in 356 of β2 incorporated by the orthogonal tRNA/RS methodology. The pK$_a$ with ATP/α2 and ATP/α2/CDP are very similar to the previously determined pK$_a$ with dGTP/α2/ADP (Table 4c). For all the NO$_2$Y mutants, ATP/CDP and dGTP/ADP gave almost identical pK$_a$s.

pK$_a$s of [NO$_2$Y]-α2s with a second mutation adjacent to NO$_2$Y in the PCET pathway

The crystal structure of GDP/TTP bound *E. coli* α2 indicates that the distance between the oxygens of the phenol of Y$_{731}$ and Y$_{730}$-α2 is 3.3 Å and the distance between the oxygen of Y$_{730}$-α2 and the sulfur of C$_{439}$-α2 is 3.4 Å.5 The distances indicate the possibility of pH bonding interactions between these species, which likely plays an important role in PCET. 56-59 The structure also suggests an unusual π-π stacking interaction of Y$_{731}$- and Y$_{730}$-α2, which may also be of interest mechanistically, although the degree of stacking varies in recent structures of α from other sources.60-61 Removal of a H bonding interaction or the π stacking might perturb the pK$_a$ of the phenolic hydroxyl group. A variety of double mutants (Y to Phe/Ala and Cys to Ser/Ala) were successfully expressed and isolated. Their purity was similar to the corresponding parent single mutant (Table S4).

The λ_{max} and ε of the phenolate, and the K$_d$ for subunit interactions for each double mutant were determined (Tables 1 and 2) and are similar to the parent single mutant. Conservative substitutions minimally perturbed the K$_d$, while the non-conservative substitution of Ala for C$_{439}$ or Y$_{731}$ in [NO$_2$Y$_{730}$]α2 resulted in large K$_d$ perturbations (Table 2). As noted above, all double mutants showed specific activities of 1-3% of wt-α2, similar to the single mutants and presumably associated with endogenous wt-α2.

The pK$_a$ of each double mutant was determined (Table 4A and 4B, Fig. S7). With [NO$_2$Y$_{730}$]α2, Y$_{731}$ was replaced with Phe and C$_{439}$ with Ala, mutations that disrupt the putative H bonding. C$_{439}$ was also replaced with Ser that could enhance H bonding. With the C$_{439}$A double mutant, the pK$_a$ was increased from 7.9 to 8.3/8.4 in the presence of E (ATP or dGTP) or E/β2 and addition of S (CDP or ADP) again perturbed the pK$_a$ by 0.2 to 0.3 units. With Y$_{731}$F, the addition of S also elevated the pK$_a$ to 8.2. Only in the case of C$_{439}$S
did addition of substate aear to have no effect. However, as will be seen from the structures described in the following section, [NO$_2$Y$_{730}$]-α2/ C$_{439}$S is the only mutant in which 439 is H bonded to the active site E$_{441}$(Fig 7d). Thus, we propose that S binding would disrupt this H bonding interaction and reset the pK$_a$ to 7.9 while S binding would then perturb the pK$_a$ to 8.3 as observed with the other mutants. These studies reveal that S binding generally elevates the pK$_a$ of residue 730 and that this increase is independent of pH bonding ability of the residues at 439 and 731.

Studies with [NO$_2$Y$_{730}$]-α2 and Y$_{731}$ replaced with an Ala were also examined to address the putative importance of π–π stacking interactions. The perturbations in pK$_a$ for this mutant were the largest observed in any of the titrations, decreasing from 7.8/7.9 (single mutant) to 6.5 (double mutant) in the presence of E. The observed pK$_a$s are 0.6 units lower than the N-acetyl-3-nitrotyrosine amide. However, even in this case, the pK$_a$ was substantially increased, from 6.5 to 6.8/7.0, on addition of S. This double mutant also exhibited the largest perturbation in K$_d$ (Table 2) suggesting that the structure of the complex is perturbed by this non-conservative substitution.

Titration studies were also carried out with [NO$_2$Y$_{731}$]-α2 and Y$_{356}$F-β2 and with the double mutant where Y$_{730}$ was replaced with F. In the former case, the pK$_a$ was unaffected by S addition. However, the pK$_a$ of the Y$_{730}$F double mutant decreased 0.5 units relative to the single mutant with E and E/wt-β2 and increased back toward that of the single mutant pK$_a$ on addition of S. The studies in sum suggest that S perturbs the pK$_a$ at 730 with minimal effect at 731 and that the altered pK$_a$s do not appear to be the result of increased H bonding by residues adjacent to the substitution.

Crystal structures of NO$_2$Y-α2s

Understanding the experimental data obtained with the unnatural amino acid probes in α and β requires structural information and computational efforts. As a first step toward structural characterization, crystals of wt and seven NO$_2$Y-α2 mutants were obtained in the presence of a 20mer peptide, identical to the C-terminal 20 amino acids of β, using crystallization conditions similar to those previously reported for wt-α2.4 The structure of wt-α2, isolated by methods similar to the NO$_2$Y-α2s, was solved by molecular replacement using Y$_{730}$F-α2 (DB ID, 1R1R).5 This new wt-α2 structure (2.3 Å resolution) was then used as the starting point to solve the NO$_2$Y-α2 structures, which were obtained and refined to 2.1 – 3.1 Å resolution. In all mutants, there are three α subunits in the asymmetric unit with two of the three subunits forming a dimer. The data collection methods and refinement statistics are summarized in Table S3. In general, the structures revealed minimal overall perturbation relative to the wt structure and the phenyl rings and OH groups of NO$_2$Ys superimposed well with the corresponding residues in the wt structure (Fig. 7). In all of the structures the distances between the oxygens of the two phenols (at 731 and 730) and of the phenol and the thiol (at 730 and 439) are very similar to the distances found in wt-α and are within H bonding distance in the former case and slightly longer than H bonding distance in the latter case.

The NO$_2$ group in all of the structures lies on the sterically less crowded side, the left side looking toward C$_{439}$ from Y$_{731}$(Fig. 7a and 7b). At 730, the NO$_2$ group in all single and double mutants lies in the plane of the phenyl ring. No additional electron density is apparent in the vicinity of [NO$_2$Y$_{730}$]-α2 that can be associated with water. On the other hand, the NO$_2$ group at 731 has different orientations in each of the three αs in the asymmetric unit. In two of the αs, the NO$_2$ group is perpendicular to the plane of the phenyl ring, while in the remaining α, it is almost parallel to the ring. The oxygens of the NO$_2$ group have pH bonding interactions with H$_2$O(s), which are distinct within each α. The
double mutant (Y$_{730}$F) also has its NO$_2$ group perpendicular to the phenyl ring, but no waters are identifiable.

Finally a superposition of all the [NO$_2$Y$_{730}$]-α structures (Fig. 7D) shows that residue 439 adopts a different conformation in the serine mutant, in which the OH of serine appears to H bond to E$_{441}$, a key residue in the active site involved in catalysis. The SH of Cys in the wt-α2, on the other hand, points toward residue 730. Thus, the structures in general suggest H bonding interactions are important in the PCET with C$_{439}$ showing the greatest flexibility. The detailed analysis of the structures is ongoing and will be published subsequently. Ultimately, structures with S, E and β2 bound will be critical to understanding the role of H bonding interactions in the radical propagation process.

Discussion

Understanding of the radical propagation process in RNR requires an understanding of factors that control the different mechanisms of PCET in well-defined model systems where the rate constants for oxidation can be measured and the parameters that influence these rate constants such as H bonding, electronic effects, and the proton acceptor can be manipulated. Different types of models will be required to probe PCET within β and within α of RNR (Fig. 1). H bonded phenols, for example, have been designed to understand the oxidation of the Y$_Z$ in photosystem II in which a histidine functions as the proton acceptor from Y$_Z$ during its oxidation. Different phenols with amine and imidazole bases and carboxylates appended ortho to the phenol have been synthesized and structurally and spectroscopically characterized. The rate constants for oxidation and the deuterium kinetic isotope effects on oxidation have been measured as a function of temperature. The Hammarström model seems particularly appropriate for Y$_{356}$ oxidation in RNR where E$_{350}$ is proposed to be the initial proton acceptor (Fig. 1). However, appropriate models for the putative H bond network between Y$_731$/Y$_730$/C$_{439}$, with no obvious base proximal to either Y, are not yet available.

As a starting point to understanding the PCET in RNR, we have chosen NO$_2$Y and NH$_2$Y as reporters on the H bonding interactions of each Y in the ground states and the transient Y· intermediate states in the radical propagation process, respectively. In the former case, we proposed that the phenol pK$_{a}$ might be altered by the protein environment on binding of the second subunit and/or S/E. In the latter case, 1H and 2H ENDOR spectroscopy might allow direct observation of H bond interactions to the radical intermediates. The focus of this paper is NO$_2$Y.

To carry out these studies, the evolved tRNA/RS method pioneered by the Schultz lab was optimized to site-specifically incorporate high levels of NO$_2$Y in place of Y$_{122}$, Y$_{731}$ and Y$_{730}$. Our efforts to insert NO$_2$Y in place of Y$_{356}$ have thus far been unsuccessful due to reduction during the expression process. The inactivity of these mutants has allowed us to determine the pK$_{a}$ of each NO$_2$Y in the α2β2 complex in the presence of substrate (S) and effector (E), presumably in the “active” conformation required for PCET. Together with our previous pK$_{a}$ data for [NO$_2$Y$_{356}$]-β2, the results presented show the power of site-specific incorporation of unnatural amino acids to measure individual pK$_{a}$s in a protein with 1135 amino acids. These measurements for four different NO$_2$Ys, provide an important step in understanding radical initiation in RNR.

Mechanistic insights

Our pH titration data has established that each Y in the pathway (Fig. 1) has distinct properties. The greatest pK$_{a}$ perturbations are observed with NO$_2$Y$_{122}$-β2: elevations of 2.7 and >2.5 units in apo and met form, respectively. This Y is unique in that its oxidation
results in a stable Y· (t1/2 of 4 days at 4°C) and it is generated by the metal cluster. An explanation for its unusual stability is clear from a Comparison of X-ray crystal structures of met-β26 (β2 with Y· reduced-diferric cluster), apo-β272, and Mn2-β273 and results from single crystal high field EPR spectroscopy of the active diferric-Y·-β2.7 In the crystal structure of the class Ia Mn2-β273 the Y122-OH is within H bonding distance to D84, a carboxylate ligand to Mn1 (corresponds to Fe1 in Fig. 1b) of the cluster, that in turn may H bond with a H2O (x = 1, 2) bound to the same Mn (Fig 1b). If similar interactions exist in the diferric cluster during radical propagation in the presence of α/S/E, then the close interaction of the phenol with the D84 carboxylate, would preclude its ionization, to prevent electrostatic repulsion with D84. The pKₐ of 9.8 for NO₂Y in apo-[NO₂Y122]-β2 suggests that its environment, even in the apo form, is very hydrophobic (Q80, I231, I234, F208, L77, F212; Fig. S8). On the other hand, high field EPR spectroscopy of active β2 (Y·) reveals that this Y122 is no longer H bonded.7 Our current model is that only subsequent to S/E binding in α is PCET initiated and the Y· reoriented toward D84 so that it can pick u a proton from the H2O bound to Fe1 concomitant with its reduction by W48,12,14,15 Thus, the environment of the Y· is such that it is stable, unless a proton is also available. The elevated pKₐ of NO₂Y observed in our titrations is consistent with concerted PCET mechanism for Y· oxidation in which the proton donor is distinct from the reductant (W48).

The pKₐ of NO₂Y at 356 in β2 and 730 and 731 in α2 are perturbed to a much smaller extent than at 122 with perturbations increasing as the distance of the Y increases from Y122 (7.5,74 7.9, 8.3 for NO₂Y 356, 731 and 730, respectively). The perturbation ranges from 0.4 to 1.2 units relative to NO₂Y within the 20mer-C-terminal peptide. These measurements demonstrate that Nature has pEVOLved a different ty of environment for transient radical formation and a different mechanism for their oxidation. pKₐ at each transient Y· site is discussed.

Studies in a variety of enzymes containing redox cofactors have established that binding of substrate provides a mechanism to perturb the reduction potential of the cofactor, and to facilitate the chemistry.75-76 We thus investigated whether the addition of the correct S/E air to RNR could alter the pKₐ of each Y and provide insight about its oxidation mechanism. The pKₐ of NO₂Y730 is uniquely increased by 0.4 units on addition of either a purine or pyrimidine substrate to the [NO₂Y730]-α2/β2/E. The basis for this perturbation and the potential importance of the H bond network was investigated by titration studies with double mutants that have altered H bonding capabilities in residues adjacent to NO₂Y730-α2. The parallel NO₂ group orientation relative to the plane of the phenyl group with all mutants suggests that relative pKₐ is informative. In all cases excet C439S, addition of substrate elevates the pKₐ regardless of the H bonding interactions, consistent with an increased hydrophobic environment. No waters are identifiable in the region surrounding 730. The observations with the Ser mutant can also be rationalized as described in the Results. At present, we do not know if this small perturbation is mechanistically important or why the pKₐ is increased. Finally, it is also likely that if H bonding is key to the mechanism of the thyl radical generation, it may be manifested predominantly in the transition states of the reaction and may not be readily apparent from this type of groupnd-state analysis.15,65

The two remaining Ys (Fig 1) are located at the subunit interface and unfortunately no structural information is available for the active α2β2 complex. Our studies, however, with 3,5-F₂Y at Y356 revealed that nucleotide reduction can occur through the phenolate form of this residue, consistent with non-obligate coupling of the electron and proton transfer and with the proton transfer occuring orthogonal to the ET pathway.21 The minimal perturbation of the NO₂Y pKₐ at this position suggests it may be more solvent exposed in the complex than Y730, which is also consistent with our recent studies using an environmentally sensitive fluorophore attached at 356.54 Our current hyothesis for PCET at this position is
that orthogonal PCET occurs with transfer of a proton to E_{350} within the C-terminal tail of β. The importance of this residue in nucleotide reduction was demonstrated by previous studies of Climent et al.16 with a E_{350}A mutant and our recent studies with E_{350}Q mutant (unpublished results). As noted above, the model studies of Hammarström may thus provide a model of PCET at this center.56,66

The pK_a of NO_2Y_{731} and its minimal perturbation in double mutants with Y_{356}F and Y_{730}F, suggests that a H bonding is again not observable at this position and that this residue may be solvent exposed. The structure of the single mutant shows that the NO_2 group is more flexible at this position with conformations both parallel and perpendicular to the plane of the phenyl ring and that it H bonds with specific water molecules that are distinct in each α. Sequence analysis of conserved residues of RNR with the constraint that they reside within the subunit interface based on the docking model,4 reveal only E_{350} and R_{236} in β and no interesting conserved residues in α. Studies on R_{265} mutants in mouse β, corresponding to the R_{236} mutant in E. coli β, have been interpreted to support a role for this residue in the proton coupling in the propagation pathway.77 However, since R_{265}E mutant exhibited 40% the activity of the wt enzyme, it is unlikely to function as a proton acceptor. Unfortunately, interactions that are proposed to be important in our models for radical propagation in RNR (Fig. 1)14-15 are not apparent from the pK_a measurements. Our studies suggest that the pK_a of the Ys that undergo transient oxidations during radical propagation in RNR do not aear to be significantly perturbed. Comutational efforts are underway to use the structural information to understand the pK_a perturbations.

Summary

Despite the prevalence of PCET in biological systems, pK_a information of individual redox active residues in proteins is scarce. A general method for directly measuring the pK_a of a single residue within a protein would be mechanistically useful.78 In this paper NO_2Y has been used as a probe to measure the pK_a perturbations of the all redox-active Ys, 122- and 35674-β2, 731- and 730-α2, in the radical propagation pathway in E.coli RNR. The crystal structures of the NO_2Y-α2 mutants have shown minimal structural perturbations. The pH titrations have shown position dependent pK_a perturbations at these redox active Y sites with the largest and distinct perturbation at the stable tyrosyl radical site, Y_{122}-β2. The study reveals distinct environments for the stable and transient Y-. The pK_a information reported is essential to understand the mechanism of long range PCET in RNR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Ellen C. Minnihan for helpful discussions. This work was supported by the NIH grant GM29595 to J. S.

This work was supported by the NIH grant GM29595 (to JS).

References

(51). The presence of 6 M guanidine HCl perturbed λ_{max} as well as the extinction coefficient of N-acetyl-3-nitrotyrosine.

(74). \(pK_a \) of \(\text{NO}_2\text{Y}_{356}^{356-\beta} \) was determined using the mutant prepared by EPL, which requires two additional mutations, V\(_{353}G\) and S\(_{354}C\), that reduce the activity to 25% of the wt activity.

Figure 1.
Tyrosines responsible for the PCET in *E. coli* class I RNR. (a) Proposed PCET pathway. Red and blue arrows indicate orthogonal transfer of the electron and proton, respectively. The purple arrow indicates co-linear movement of the electron and proton. (b) Structure of the tyrosine-diferric-cluster. Distances in parentheses are those of the Mn2-β2.
Figure 2.
SDS-PAGE of [NO₂Y₇₃₀]-α and [NO₂Y₁₂₂]-β. (a) SDS-PAGE of purified [NO₂Y₇₃₀]-α and whole cell lysate of *E. coli* expressing [NO₂Y₇₃₀]-α using pSUP-3NT/8 (left) and pEVOL-NO₂Y (right). Cells were grown in the presence or absence of NO₂Y as indicated. The position of protein bands for full-length α (85.6 kDa) and truncated α (82.2 kDa) are denoted by arrows. (b) SDS-PAGE of purified [NO₂Y₁₂₂]-β (45.0 kDa) and a whole cell lysate of *E. coli* TOP10/pEVOL-NO₂Y/pBAD-nrdB-NS5-Y₁₂₂Z grown in the absence and presence of NO₂Y as indicated. The truncated protein is 15.9 kDa and thus not observable in this gel (10% acrylamide).
Figure 3.
Absorption spectra of nitrophenolate feature of [NO2Y]-α2s and nitrophenol feature of [NO2Y122]-β2. (a) [NO2Y730]-α2 (blue), [NO2Y731]-α2 (green) and N-acetyl-3-nitrotyrosine amide (yellow) in 50 mM TAPS (pH 9.0), 1 mM EDTA, 15 mM MgSO4. Spectral intensities were normalized to NO2Y concentration (15 μM) according to the purity of [NO2Y730]-α2 (92%), [NO2Y731]-α2 (79%) determined from A435nm in 6 M guanidine. (b) Red trace, absorption spectra of [NO2Y122]-β2 (2.9 Fe/β2, 15 μM) in HEPES (pH 7.6); blue trace, absorption spectrum after subtraction of the met-β2 spectrum (3.2 Fe/β2, 13.5 μM, the concentration of β2 was normalized for the iron content); black trace, absorption spectrum of N-acetyl-3-nitrotyrosine amide in 50 mM MES (pH 5.0) buffer.
Figure 4.
UV-vis absorption spectra of (a) [NO$_2$Y$_{730}$]-α2 (7.5 μM) and (b) [NO$_2$Y$_{731}$]-α2 (7.5 μM) at pH 6.0 (the pink trace), 7.4, 8.0, 8.6 and 9.2 (the blue trace) in the presence of 1 mM ATP. Loss of the phenol feature (360 nm) occurs concomitant with the formation of the phenolate feature (442 and 437 nm for [NO$_2$Y$_{730}$]-α2 and [NO$_2$Y$_{731}$]-α2, respectively) with increasing pH (pink to blue).
Figure 5.
Titration curves of (a) \([\text{NO}_2\text{Y}_{730}]\)-\(\alpha_2\) and (b) \([\text{NO}_2\text{Y}_{731}]\)-\(\alpha_2\) in the presence of 1 mM ATP (yellow diamonds), 1 mM ATP and 7.5 \(\mu\text{M}\) \(\beta_2\) (blue squares) and 1 mM ATP, 7.5 \(\mu\text{M}\) \(\beta_2\) and 1 mM CDP (red circles). Absorption at 442 nm and 437 nm were monitored for \([\text{NO}_2\text{Y}_{730}]\)-\(\alpha_2\) and \([\text{NO}_2\text{Y}_{731}]\)-\(\alpha_2\), respectively. Each data point represents an average of three replicates. Lines are from fits to eq. 2.
Figure 6.
UV-vis absorption spectra of (a) met-[NO$_2$Y$_{122}$]-β2 at pH 7.1 (red), 7.6 (orange), 8.2 (yellow), 8.6 (dark green), 9.0 (light green), 9.2 (light blue), 9.5 (blue) and 10.0 (dark blue), and (b) apo-[NO$_2$Y$_{122}$]-β2 at pH 7.6 (the pink trace), 8.4, 9.0, 9.6, 10.0, 10.3 and 10.6 (the blue trace).
Figure 7.
Crystal structures of the radical propagation pathway in NO₂Y-α2 mutants. The crystals were grown at pH 6.0-6.5. Oxygens are colored in red, nitrogens in blue, and sulfurs in gold. Pathway residues 731, 730 and 439 are shown with sticks. The structure of (a) [NO₂Y₇₃₀]-α2 and (b) [NO₂Y₇₃₁]-α2; the dotted lines indicate the distances between the phenolic oxygens, and the phenolic oxygen of the 730 residue and the sulfur of C₄₃₉ with distance variations associated with the three subunits in the asymmetric unit. The surrounding residues are shown as spheres. (c) An overlay of the structures of wt-α2 (green), [NO₂Y₇₃₀]-α2 (orange), and [NO₂Y₇₃₁]-α2 (yellow), generated using PyMOL 1.1 (DeLano Scientific LLC) software. Other residues shown are P₆₂₁, E₄₄₁, L₄₃₈, Y₄₁₃ and R₄₁₁. (d) An overlay of the structures of [NO₂Y₇₃₀]-α2 and the double mutants C₄₃₉S, C₄₃₉A, Y₇₃₁A and Y₇₃₁F. Residues shown are (from the left) 441, 439, 730 and 731.
Table 1

Extinction coefficients of NO₂Y phenol and phenolate in RNR

<table>
<thead>
<tr>
<th>Phenol</th>
<th>λ<sub>max</sub> (nm)</th>
<th>ε (M⁻¹·cm⁻¹)<sup>a</sup></th>
<th>Phenolate</th>
<th>λ<sub>max</sub> (nm)</th>
<th>ε (M⁻¹·cm⁻¹)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>N'-Ac-NO₂Y-NH₂</td>
<td>360</td>
<td>2960</td>
<td>424</td>
<td>4610</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>730</sub>]-a2</td>
<td>360</td>
<td>3800 ± 170</td>
<td>442</td>
<td>6400 ± 250</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>731</sub>]-a2</td>
<td>360</td>
<td>4200 ± 300</td>
<td>437</td>
<td>5200 ± 300</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>730</sub>]-a2(Y<sub>731</sub>F)</td>
<td>360</td>
<td>3400 ± 160</td>
<td>445</td>
<td>6200 ± 210</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>730</sub>]-a2(Y<sub>731</sub>A)</td>
<td>360</td>
<td>4100 ± 200</td>
<td>435</td>
<td>7000 ± 200</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>730</sub>]-a2(C<sub>439</sub>S)</td>
<td>360</td>
<td>3700 ± 220</td>
<td>442</td>
<td>6800 ± 240</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>730</sub>]-a2(C<sub>439</sub>A)</td>
<td>360</td>
<td>3400 ± 230</td>
<td>442</td>
<td>6000 ± 220</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>731</sub>]-a2(Y<sub>730</sub>F)</td>
<td>360</td>
<td>4000 ± 230</td>
<td>437</td>
<td>5900 ± 150</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>122</sub>]-β2 (met form)</td>
<td>363</td>
<td>3400 ± 240<sup>‡</sup></td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>[NO₂Y<sub>122</sub>]-β2 (apo form)</td>
<td>363</td>
<td>3400 ± 240</td>
<td>425</td>
<td>4200 ± 220</td>
<td></td>
</tr>
</tbody>
</table>

^a Extinction coefficients of phenolates were determined from pH titration curve fitting to eq.2. The titration curves were generated by plotting absorbance at indicated phenolate λ_{max} as a function of pH. Titration curves used are shown in Fig. 5 and Fig. S7.

^b Extinction coefficients of phenol were calculated from the UV-vis spectrum at pH 6.0.

[‡] The extinction coefficients of [NO₂Y₁₂₂]-β2 (met form) was determined from the absorption spectrum at pH 7.6 after subtracting a spectrum of wt met-β2 normalized by the iron content.
Table 2

K_d of [NO$_2$Y]-α2s with wt-β2 or [NO$_2$Y$_{122}$]-β2 with wt-α2

<table>
<thead>
<tr>
<th></th>
<th>K_d (μM) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NO2Y${730}$]-α2</td>
<td>1.32 ± 0.10</td>
</tr>
<tr>
<td>[NO2Y${731}$]-α2</td>
<td>0.51 ± 0.07</td>
</tr>
<tr>
<td>[NO2Y${730}$]-α2(Y$_{731}$F)</td>
<td>1.45 ± 0.14</td>
</tr>
<tr>
<td>[NO2Y${730}$]-α2(Y$_{731}$A)</td>
<td>2.71 ± 0.13</td>
</tr>
<tr>
<td>[NO2Y${730}$]-α2(C$_{439}$S)</td>
<td>1.28 ± 0.07</td>
</tr>
<tr>
<td>[NO2Y${730}$]-α2(C$_{439}$A)</td>
<td>2.07 ± 0.07</td>
</tr>
<tr>
<td>[NO2Y${731}$]-α2(Y$_{730}$F)</td>
<td>0.50 ± 0.04</td>
</tr>
<tr>
<td>[NO2Y${122}$]-β2</td>
<td>0.40 ± 0.06</td>
</tr>
</tbody>
</table>

a K_d was determined at pH 7.6 by using [NO$_2$Y]-α2s or [NO$_2$Y$_{122}$]-β2 as competitive inhibitors of CDP reduction by α2, β2, TR, TRR and NADPH.49
Table 3

RNR activities of [NO₂Y]-α2s and [NO₂Y₁22]-β2

<table>
<thead>
<tr>
<th></th>
<th>Radioactive RNR assay (% wt)ᵃ</th>
<th>Spectrophotometric RNR assay (% wt)ᵃ</th>
<th>Yield (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[NO₂Y₇₃₀]-α2</td>
<td>1.1</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>His-[NO₂Y₇₃₀]-α2ᵇ,c</td>
<td>0.5</td>
<td>0.5</td>
<td>5.8</td>
</tr>
<tr>
<td>[NO₂Y₇₃₁]-α2</td>
<td>2.9</td>
<td>3.1</td>
<td>1</td>
</tr>
<tr>
<td>[NO₂Y₇₃₃]-α2ᵇ</td>
<td>0.6</td>
<td>0.4</td>
<td>2.4</td>
</tr>
<tr>
<td>[NO₂Y₇₃₀]-α2(Y₇₃₁F)</td>
<td>2.5</td>
<td>2.7</td>
<td>0.8</td>
</tr>
<tr>
<td>[NO₂Y₇₃₀]-α2(Y₇₃₁A)</td>
<td>1.8</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>[NO₂Y₇₃₀]-α2(C₄₉₉S)</td>
<td>2.4</td>
<td>2.6</td>
<td>1.1</td>
</tr>
<tr>
<td>[NO₂Y₇₃₀]-α2(C₄₉₉A)</td>
<td>2.7</td>
<td>2.8</td>
<td>0.8</td>
</tr>
<tr>
<td>[NO₂Y₇₃₁]-α2(Y₇₃₈F)</td>
<td>1.7</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>[NO₂Y₁₂₂]-β2ᵇ,d</td>
<td>0.39</td>
<td>0.29</td>
<td>7</td>
</tr>
<tr>
<td>[NO₂Y₁₂₂]-β2ᵇ,c</td>
<td>> 0.01</td>
<td>> 0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

ᵃ Activities are reported as % activity of wt α2 (2500 nmol/min/mg) or wt β2 (6500 nmol/min/mg).
ᵇ Expressed using pEVOL-NO₂Y.
ᶜ His-tagged NrdA purified with Ni-NTA column chromatography. See Experimental section for detail.
ᵈ Purified using DEAE and Q-sepharose.
ᵉ Purified using strep-Tactin sepharose.
Table 4A

pKₐ of [NO₂Y₇₃₀]-α₂ and related double mutants

<table>
<thead>
<tr>
<th></th>
<th>[NO₂Y₇₃₀]-α₂</th>
<th>[NO₂Y₇₃₀]-α₂ (Y₇₃₁F)</th>
<th>[NO₂Y₇₃₀]-α₂ (C₄₃₉S)</th>
<th>[NO₂Y₇₃₀]-α₂ (C₄₃₉A)</th>
<th>[NO₂Y₇₃₀]-α₂ (Y₇₃₁A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>7.9</td>
<td>7.9</td>
<td>8.3</td>
<td>8.3</td>
<td>6.5</td>
</tr>
<tr>
<td>ATP/β2</td>
<td>7.9</td>
<td>7.9</td>
<td>8.4</td>
<td>8.3</td>
<td>6.6</td>
</tr>
<tr>
<td>ATP/β2/CDP</td>
<td>8.3</td>
<td>8.2</td>
<td>8.3</td>
<td>8.5</td>
<td>7.0</td>
</tr>
<tr>
<td>dGTP</td>
<td>7.8</td>
<td>7.9</td>
<td>8.4</td>
<td>8.3</td>
<td>6.5</td>
</tr>
<tr>
<td>dGTP/β2</td>
<td>7.8</td>
<td>7.9</td>
<td>8.5</td>
<td>8.4</td>
<td>6.5</td>
</tr>
<tr>
<td>dGTP/β2/ADP</td>
<td>8.2</td>
<td>8.2</td>
<td>8.4</td>
<td>8.6</td>
<td>6.8</td>
</tr>
</tbody>
</table>

pKₐ's were determined by fitting eq.2 to the pH titration curve generated by plotting phenolate absorption intensities as a function of pH. Measurements were carried out in the presence of E, E/β2 and E/β2/S and performed in triplicate. Errors were ± 0.05 pH units.
Table 4B

\(pK_a \) of \([\text{NO}_2\text{Y}_{731}]\)-\(\alpha 2 \) and \([\text{NO}_2\text{Y}_{731}]\)-\(\alpha 2(Y_{730}\text{F}) \)

<table>
<thead>
<tr>
<th></th>
<th>(\alpha 2)</th>
<th>([\text{NO}2\text{Y}{731}])-(\alpha 2(Y_{730}\text{F}))</th>
<th>([\text{NO}2\text{Y}{731}])-(\alpha 2(Y_{350}\text{F}))</th>
<th>(\beta 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>7.9</td>
<td>7.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>ATP/(\beta 2)</td>
<td>8.0</td>
<td>7.4</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>ATP/(\beta 2/\text{CDP})</td>
<td>8.0</td>
<td>7.7</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>dGTP</td>
<td>7.9</td>
<td>7.4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>dGTP/(\beta 2)</td>
<td>8.0</td>
<td>7.5</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>dGTP/(\beta 2/\text{ADP})</td>
<td>7.9</td>
<td>7.7</td>
<td>7.9</td>
<td></td>
</tr>
</tbody>
</table>

\(pK_a \)s were determined as described in the footnote of Table 4A. Titrations were carried out in the presence of \(E, E/\beta 2 \) and \(E/\beta 2/S \) and performed in triplicate. Errors were ± 0.05 pH units.
Table 4C

<table>
<thead>
<tr>
<th>[NO₂Y₃₅₆]-β₂</th>
<th>pKₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>7.1<sup>a</sup></td>
</tr>
<tr>
<td>α, α₂<sup>b</sup></td>
<td>7.2<sup>a</sup></td>
</tr>
<tr>
<td>ATP/α₂</td>
<td>7.4</td>
</tr>
<tr>
<td>ATP/α₂/CDP</td>
<td>7.5</td>
</tr>
<tr>
<td>dGTP/α₂/ADP</td>
<td>7.3<sup>a</sup></td>
</tr>
</tbody>
</table>

^a[NO₂Y₃₅₆]-β₂ was prepared by EPL and its pKₐ's were determined as described previously.²⁹ Titrations were carried out in the presence of E/α₂ and E/α₂/S and performed in triplicate. Errors were ± 0.05 pH units.

^bValues reported previously.²⁹

^aα is in equilibrium between monomer and dimer without nucleotides.⁴⁰