Waveguiding at the Edge of a Three-Dimensional Photonic Crystal

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.108.243901</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Oct 20 18:49:40 EDT 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/72455</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Waveguiding at the Edge of a Three-Dimensional Photonic Crystal

Ling Lu, John D. Joannopoulos, and Marin Soljačić

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

We find that electromagnetic waves can be guided at the edge of a three-dimensional photonic crystal in air. When the waveguide is defined by the intersection of two surface planes, the edge modes are associated with the corresponding surface bands. A simple cell counting approach is presented to describe the periodic evolution of the system with interesting interplays among edge, surface, and bulk states.

DOI: 10.1103/PhysRevLett.108.243901 PACS numbers: 42.70.Qs, 42.82.Et, 73.20.+r, 78.68.+m

An electron can be bounded in the bulk (3D), surface (2D), edge (1D) [1], or corner (0D) of a three-dimensional (3D) electronic crystal in vacuum. But a photon does not see vacuum as a potential barrier as an electron does. At the vacuum or air interface, a photonic mode can be bounded (having infinite lifetime) if all its wave vectors are larger in amplitude than its vacuum wave vector (the total-internal-reflection requirement). This condition cannot be satisfied for zero-dimensional (0D) cavity-type modes whose mode extension is finite in all spatial directions. Exposed to air, 1D waveguide-type modes are thus the bound states of the lowest dimension in photonics. In the context of photonic crystals (PhCs) [2] in air, interfacial bound states have been found to exist at the edges of 2D PhCs [3] and at the surfaces [4,5] of 3D PhCs. These two types of bound states are both reductions by one dimension from their bulk states. Similarly, a plasmonic wedge mode [6,7] (that is intrinsically lossy) is also a reduction by one dimension from its 2D states, since there are no bulk electromagnetic modes in metals where the dielectric constant is negative. In contrast, we present in this Letter the 1D edge mode of 3D PhCs. It is a reduction by two dimensions from 3D bulk through 2D surfaces; this phenomenon has thus far not been explored. Tuning the surface terminations of a 3D PhC edge structure can uniquely lead to photonic states whose dimensionality evolves through all three dimensions: to and from bulk, surface, and edge modes. In addition, recent developments of nanofabrication [8–11] are bringing 3D PhC devices closer to realization. In any finite-sized device application, the existence of not only the known 2D surface states but also the 1D edge states should be taken into account during the design. Last but not least, the potential connection between the topologically protected edge states and the gapped surface or bulk [12–15] is another interesting aspect that motivates us for this study.

In this Letter, we present a systematic study of the 1D edge modes of a 3D PhC in air. These results can potentially stimulate additional design rules for 3D PhC devices, novel waveguiding schemes, and new “topological insulators” in photonics.

In order to confine an electromagnetic mode at a PhC edge in air, it should have a decay solution in bulk, surface, and air. This requires a simultaneous bulk and surface gap underneath the light line. First, we adopt the diamond lattice shown in Fig. 1(a), which has the largest band gap known so far [16,17]. Furthermore, most of the popular 3D PhC structures are diamondlike [18] and the properties of their surface states [2,4] have been studied. Second, we pick (110) [19] as the directions for waveguiding. It has the shortest periodicity (a/√2) and thus provides the longest Brillouin zone (BZ) length underneath the light line. The (110) waveguides can be defined by any two surfaces intersecting along those directions. We choose two of the {111} surfaces for the ease of the calculation. The calculations in this Letter are performed with a supercell method using the MIT Photonic-Bands package [20].

We first study the {111} surface modes following Ref. [4]. A termination parameter τ (0 ≤ τ < 1) is defined to describe the plane of termination on the surface. Shown in Fig. 1(a), the face-centered-cubic (fcc) primitive cell (red lines) are enclosed by six {111} surfaces. Let one end surface be the τ = 0 plane (yellow) and the opposite end be the equivalent τ = 1 plane (green). Note this convention is not the same as that in Ref. [4]. Figure 1(b) shows the band diagram of the {111} surfaces of the inverse diamond structure with a background dielectric constant of 13 and air sphere radius of 0.325a on every diamond lattice point. This structure has a bulk gap size of 29.6%. The confined surface dispersions under the light line and inside the band gap are plotted for different terminations within one cycle of the termination parameters. When τ increases from 0 to 1, exactly two [21] surface dispersions fall from the air band, across the band gap, to the dielectric band. By dielectric and air bands [2], we mean the bulk bands under and above the bulk gap; they correspond to valence and conduction bands in electronic band theory. One of the surface dispersions contains the TE-like states whose dominant electric field component is in the surface plane; the other contains the TM-like states whose dominant magnetic field component is in plane. The surface dispersions are cut off by either the light line or the bulk dielectric projected bands.

The [110] (a, b) edge can be defined by introducing another {111} surface. In this Letter, we study the edge of
an acute angle (70.53°) defined by surface (111) and (111) denoted by surface-1 and surface-2, respectively. The edge is determined by their termination parameters \(\tau_1 \) and \(\tau_2 \). From now on, we use the notation \((\tau_1, \tau_2)\) to describe a specific edge geometry. Figure 2(a) shows the dielectric structure of the (1,1) edge. The (1,1) edge is physically the same as the \((0,0),(0,1)\), and \((1,0)\) edges when the bulk and surfaces are infinitely extended in space. The band diagram of this edge waveguide is shown in Fig. 2(b). The dispersion of the edge mode is drawn in red. The surface band projections of the two identical surfaces are plotted in purple and filled with slanted lines to the left and right representing the two surfaces on the left and right. The portion of the surface bands in the gray shaded region (above the light line) are the guided surface modes projected from other directions. Since the surface modes are mostly isotropic in the surface BZ, the cutoffs of the surface bands in the waveguide diagram are close to a straight line above the light line.

All the possible edges in this setup can be exhausted by tuning \(\tau_1 \) and \(\tau_2 \) independently from 0 to 1. We illustrate this process in Fig. 3(a) and compile the dispersion results in Fig. 3(b). In Figs. 2(b) and 3(b), all the edge dispersion curves are tied to certain surface bands. This is in contrast to the relation between the surface dispersions and bulk bands in Fig. 1(b), where the surface dispersions are sweeping through the bulk gap independently of the bulk bands. The difference can be understood by considering the real space configurations in those two cases. While the surface cell can be terminated on top of the bulk cells, the edge cell (formed by cutting surfaces) is always moving along with the surface planes. This edge-surface association happens in both real and \(k \) spaces. The field distribution of an edge mode is mainly localized on the side of the surface it connects to in the band diagram. This is supported by the top two mode profiles in Fig. 4. The field of the mode in \((0.4,0.0)\) is mainly concentrated towards surface-1; the dispersion of this mode is connected to the surface-1 band in the band diagram. The \((0.0,0.4)\) mode is a mirror image of the \((0.4,0.0)\) mode; it is associated with surface-2. When the two surfaces are identical, the edge modes are shared by both surfaces.

The periodic evolution of the edge unit cell can be understood through the simple heuristic in Fig. 3(a). All the primitive cells are labeled by \(b \) (bulk), \(s \) (surface), and \(e \) (edge) according to their locations. The \((0,0)\) edge unit cell has \(N \) by \(N \) bulk cells, \(N \) surface-1 cells, \(N \) surface-2 cells, and one edge cell. From \((0,0)\) to \((1,0)\), \(N \) surface-1 cells

![Image](image_url)
evolve into bulk cells, the edge cell evolves into a surface-2 cell, and \(N + 1 \) new cells are created to replace them. In the reciprocal space, a total number of \(2(N + 1) \) modes per \(k \) point, drop in frequency to find their new homes. At the same time, the same number of modes drop from the air band to replace them. The end point \((1, 0)\) has the same spectrum as that of \((0, 0)\), except there are \(2N\) more bulk states in the bulk dielectric band and one more state in each surface-2 band. The calculation results of this transition are shown in band diagrams at the top row of Fig. 3(b). Due to the one-to-one transition between the old and new edge cells, two edge states appear during this transition. The two edge modes are associated with each surface-1 band of different polarizations. A similar transition happens from \((1, 0)\) to \((1, 1)\).

When both surfaces are evolving at the same time \((\tau_1 = \tau_2)\), the number of edge modes are doubled. The four edge modes are a result of the involvement of both the neighboring surface-1 and surface-2 cells during the edge formation. Recall for the transition from \((0, 0)\) to \((1, 0)\) or \((0, 1)\), only one surface cell is involved in edge formation. The existence of four edge modes are shown at the bottom row of the band diagrams in Fig. 3(b). In the \((0.1, 0.1)\) and \((0.4, 0.4)\) plots, there are two edge modes on each side of the TM-like surface bands. In the \((0.6, 0.6)\) and \((0.7, 0.7)\) plots, there are other two edge modes on top of the TE-like surface bands. The different frequency orderings of the two edge modes with respect to their associated surface bands are consistent with the concentration factors of the modes defined as \(\int d^3r |E(r)|^2 \). The mode frequency is lower if its electric field is more concentrated in the dielectric.

The middle row of the band diagrams in Fig. 3(b) connects two of the plots in the top and bottom rows by increasing \(\tau_2 \). These plots illustrate the interaction between the surface and edge bands. When \(\tau_1 \) is fixed at 0.4, the increase of \(\tau_2 \) from 0.0 to 0.4 pulls the TM-like surface-2 band towards the TM-like surface-1 band. One of the surface dispersions is pushed out of the surface-2 band and becomes an edge dispersion. When \(\tau_1 \) is fixed at 0.6, increasing \(\tau_2 \) from 0.0 to 0.6 pulls both surface-2 bands down. From \((0.6, 0.0)\) to \((0.6, 0.4)\), the TM-like surface-2 band “exchanged” its edge mode with the TM-like surface-1 band. When an edge mode changes its surface connection, its field localization also moves from one surface to the other. From \((0.6, 0.4)\) to \((0.6, 0.6)\), the two edge modes associated with the two TE-like surface bands.
move through the TE-like surface-2 band and end up at the top in the (0.6,0.6) diagram.

Three-dimensional vectorial field profiles of several edge modes, associated with the TM-like surface bands are shown in Fig. 4. The symmetry of the dielectric structure is helpful in classifying the modes. In the waveguide unit cell shown in Fig. 2(a), the (110) mirror plane at \(\hat{a}_1 \), but perpendicular to \(\hat{a}_1 \), is the only point group operation that keeps the dielectric structure invariant under all termination parameters. In the waveguide BZ, \(\Gamma \) and \(K' \) points are invariant under this mirror operation. So the mode profiles at \(K' \) can be classified by even and odd with respect to this central mirror plane. We call the four modes in Fig. 4 odd due to the zero field intensity at the symmetry plane. When \(\tau_1 = \tau_2 \), we have a second mirror plane of (1\(\bar{1} \)0) containing \(\hat{a}_1 \) and \(\hat{z} \) axes. The four edge modes in the last row of Fig. 3(b) can be classified as symmetric or antisymmetric with respect to the plane. It is evident in Fig. 4 that the lower frequency mode in (0.4, 0.4) is symmetric and the other is antisymmetric. Another interesting observation illustrated in Fig. 4 is the manifestation of the mode interaction in the their fields. The mode profiles in Fig. 4 show the field vectors of the two (0.4, 0.4) modes are the addition and subtraction of the field vectors of the modes in (0.4, 0.0) and (0.0, 0.4). The mode profiles of the two even edge modes associated with the TE-like surface bands in (0.6, 0.6) are presented in the Supplemental Material [22].

In order to evaluate the potential of the edge modes as waveguides, we present the effective mode areas (EMAs), group indices, and guiding bandwidths in Fig. 5 for the two edge dispersions of the (0.1,0.1) edge. The EMAs are calculated using \(\int_{\text{vol}} d^3r |\mathbf{E}(\mathbf{r})|^2 / ((\lambda/\sqrt{2}) \times \int_{\text{vol}} d^3r |\mathbf{E}(\mathbf{r})|^2) \) [23]. The integration volume (vol) is the unit cell of the waveguide, which is \(\lambda/\sqrt{2} \) long in the waveguiding direction. All these waveguide parameters are comparable to the 2D PhC air-clad membrane waveguides that have been well studied [24]. The magnitudes of the electric fields are plotted for three modes at the front surface [(110) plane at 1.5\(\hat{a}_1 \)] of the waveguide unit cell.

Finally, we would like to point out that the interplay among the edge, surface, and bulk states can be more complicated in different edge formations. For example,
the edge can be formed by two different lattice planes. The edge unit cell can contain more than one primitive cell along the waveguiding direction, and the edge can be further modified by adding or removing materials. We believe the approach and general arguments made in this Letter can be adopted to study those systems and to guide the design of devices made in 3D PhCs. In those devices, engineering of the edge mode dispersions is necessary to avoid finite size effects; one can also take advantage of them to guide light into, out of, or around the bulk. The fact that an edge can be formed by two different surfaces with very sharp angles may be interesting for sensing and probing purposes. Needless to say, topologically protected edge modes of 3D PhCs are also anticipated.

L. L. thanks Liang Fu and Steven G. Johnson for helpful discussions. This work was supported in part by the U.S.A.R.O. through the ISN under Contract No. W911NF-07-D-0004. L. L. was supported in part by the MRSEC Program of the NSF under Grant No. DMR-0819762.

[19] We use [] to identify a specific direction, () to identify a family of equivalent directions, () to identify a specific plane, and \{ \} to identify a family of equivalent planes.
[21] In general, the number of surface bands is related to the number of bulk bands below the gap in the BZ of the perfect crystal. There are two bands below the gap in the diamond bulk fcc primitive cell.
[22] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.108.243901 for the mode profiles of the two edge modes of the (0,6,0,6) edge.