
Real-time collaborative coding in a web IDE

Citation Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-time
collaborative coding in a web IDE. In Proceedings of the 24th
annual ACM symposium on User interface software and
technology (UIST '11). ACM, New York, NY, USA, 155-164.
DOI=10.1145/2047196.2047215
http://doi.acm.org/10.1145/2047196.2047215

As Published http://dx.doi.org/	10.1145/2047196.2047215

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Accessed Fri Dec 14 19:27:12 EST 2018

Citable Link http://hdl.handle.net/1721.1/72493

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

http://dx.doi.org/	10.1145/2047196.2047215
http://hdl.handle.net/1721.1/72493
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://libraries.mit.edu/forms/dspace-oa-articles.html

Real-Time Collaborative Coding in a Web IDE

Max Goldman, Greg Little, and Robert C. Miller
MIT CSAIL
32 Vassar St.

Cambridge, MA 02139
{maxg, glittle, rcm}@mit.edu

ABSTRACT
This paper describes Collabode, a web-based Java integrated
development environment designed to support close, syn-
chronous collaboration between programmers. We examine
the problem of collaborative coding in the face of program
compilation errors introduced by other users which make col-
laboration more difficult, and describe an algorithm for error-
mediated integration of program code. Concurrent editors
see the text of changes made by collaborators, but the errors
reported in their view are based only on their own changes.
Editors may run the program at any time, using only error-
free edits supplied so far, and ignoring incomplete or other-
wise error-generating changes. We evaluate this algorithm
and interface on recorded data from previous pilot experi-
ments with Collabode, and via a user study with student and
professional programmers. We conclude that it offers appre-
ciable benefits over naive continuous synchronization with-
out regard to errors and over manual version control.

ACM Classification: D.2.6 [Software Engineering]: Pro-
gramming Environments

General terms: Human Factors

Keywords: Collaboration, collaborative editing, pair pro-
gramming

INTRODUCTION
In the current state of the art, software developers collabo-
rate almost exclusively using one of two strategies: working
together on a single copy of the code, using a single inte-
grated development environment (IDE); or working in paral-
lel on separate copies, integrating their efforts using a source
code version control system. Neither approach, however, is
ideal for close synchronous collaboration where both pro-
grammers actively contribute to the same piece of code. Us-
ing a single IDE (e.g. pair programming) means only the pro-
grammer who controls the keyboard and mouse can navigate,
search, and write code. And using version control requires
programmers to manually push and pull changes, while striv-
ing to avoid conflicts that require further manual resolution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

Figure 1: The Collabode web-based IDE allows multi-
ple simultaneous editors to work together.

We have built a collaborative web-based IDE for Java, called
Collabode (Figure 1), to study how a programming environ-
ment built to support close collaboration can improve the
quality both of the collaboration and of the software pro-
duced [10]. In Collabode, changes by multiple programmers
can be shared immediately, without the overhead of version
control. This allows for more than one active contributor to
the same module of code. Moreover, each programmer can
use a different interface that supports their role in the collab-
orative effort, unlike the use of a single IDE where collabo-
rators must share a single view.

Pilot studies with two to ten programmers working together
simultaneously suggest that real-time shared editing can be
effective and fun, and that it offers novel opportunities for
collaborative software development [9]. However, a persis-
tent problem has repeatedly bothered the collaborators: when
one programmer introduces a bug, everyone has to live with
that bug until someone fixes it. In particular, a compilation
error created by one programmer’s work-in-progress might
prevent others from seeing less catastrophic compiler errors
of their own, or might prevent them from running the pro-
gram to test their code.

For example, suppose Alice and Bob are working together on
the same Java class. Both are adding new methods, and Al-
ice, working nearer the top of the file, begins (as any good
programmer) by adding a comment to document her new
method: she types /**, and suddenly Bob, working on his
own method right below, is surprised to see his error markers

and syntax highlighting disappear. To the compiler, his code
has temporarily become part of Alice’s comment, until she
resolves the incomplete syntax with */. Such interference
will be a constant drag on their collaboration.

In this paper, we examine an algorithm and user interface
for addressing this issue of breaking the collaborative build,
without introducing the latency and manual overhead of ver-
sion control, and without unduly restricting the ability of
both programmers to actively contribute. While program-
mers continuously and immediately see the text of one other’s
edits, the algorithm maintains separate working copies for
each collaborator, compiling those copies separately to gen-
erate and display to each editor only their own errors. Once
any subset of a programmer’s edits can be applied to the on-
disk version of the code without generating errors, those edits
are applied and propagated to others’ working copies.

In a study of how the algorithm behaves on recordings of col-
laborative programming sessions conducted without it, we
found that it was able to integrate contributions that were
originally copied manually into a master integration project.
In another study where 14 student and professional program-
mers used Collabode with this synchronization algorithm to
work in pairs on a realistic programming task, we found that
developers were generally positive about the experience of
collaborative coding and about the automatic error-mediated
integration. Participants in the study were able to work with-
out interference from their partner’s unfinished code, and
code was shared between participants approximately twice
as often as it would have if participants had manually shared
their code every single time it was error-free.

The contributions of this paper are (1) the Collabode web-
based IDE for collaborative software development, (2) an al-
gorithm for automatic error-aware integration that allows col-
laborating programmers to work in parallel, and (3) an eval-
uation of that algorithm as implemented in Collabode that
demonstrates its efficacy for pairs of programmers working
together in one source file.

After reviewing related work, we describe Collabode and the
variety of collaborative programming scenarios it was de-
signed to study; we discuss the algorithm, its implementa-
tion, and user interface; we describe and report the results of
our evaluations; and then we conclude after some discussion.

RELATED WORK
Programming Methodologies
In pair programming, two developers work together on the
same code in a single development environment, with the
goals of improved communication and team knowledge shar-
ing, increased productivity, and better software quality [2].
Side-by-side programming is a more flexible variant in which
programmers sit together at separate machines [6]. This
same style of interaction has also been studied with remote
collaborators [7], and could be supported using a tool such
as Collabode.

Collaborative Editing
Operational transform (reviewed in [25]) is the technique
for maintaining a consistent view of the shared document

that underlies most real-time collaborative editing systems,
including Collabode.

Previous work in collaborative editing systems has examined
the problem of maintaining semantic consistency, for exam-
ple in graphic design [4] and hierarchical documents [15].

In the context of software development, change impact anal-
ysis computes the set of unit tests impacted by a collection
of code changes [19] and was implemented in Chianti [18];
and safe-commit analysis determines code changes that can
safely be committed to version control without breaking tests
[29]. Most closely-related is the use of data dependencies
and program slicing to perform semantic interference detec-
tion between changes made in parallel [24].

Development Tools
There exist a variety of commercial and open source sys-
tems for web-based collaborative programming. EtherPad
enables real-time text editing collaboration and is used by
Studio SketchPad (sketchpad.cc) for collaborative graphics
programming. Ace (ace.ajax.org, formerly Skywriter, for-
merly Bespin), CodeMirror (codemirror.net), and Ymacs
(ymacs.org) are web-based text editing components designed
to be embedded in an IDE or other application. Kodingen
(kodingen.com) is one such IDE for web programming, as
are jsFiddle (jsfiddle.net) and CodeRun Studio (coderun.
com). All three offer collaboration mediated by copying or
version control – multiple programmers cannot edit the same
files simultaneously. The Palm Ares environment (ares.
palm.com) demonstrates an online graphical application de-
velopment environment. Current research projects include
Adinda [27], a web-based editor backed by Eclipse.

Flesce was one early implementation of a shared IDE to sup-
port authoring, testing, and debugging code [8]. The Jazz
project [5] brought collaboration tools to Eclipse to support
both awareness (e.g. via annotated avatar and project item
icons) and joint work (e.g. with instant messaging and screen
sharing). Different features of Jazz provide developer sup-
port throughout the software development process [26].

The CollabVS tool for ad-hoc collaboration shares similar
awareness and collaboration goals [12], and the Sangam
system was developed to support distributed pair program-
ming [13]. Many other systems have focused on awareness
features to keep loosely-collaborating software developers
aware of others’ work, e.g.: Palantír [22], Syde [11], Saros
[21], CASI [23], and YooHoo [14].

COLLABODE: COLLABORATIVE CODING
Collabode is our web-based collaborative integrated devel-
opment environment designed for experimenting with how
programmers can write code in close collaboration with one
another. Since the editor is a web application, programmers
use a standard web browser to connect to a Collabode server
that hosts their projects. The user interface is implemented
in standard HTML and JavaScript and runs entirely in the
browser.

New programmers can join a project and immediately start
working together simply by visiting the same URL. There
is no need to check out code or set up a local development

http://sketchpad.cc
http://ace.ajax.org
http://codemirror.net
http://ymacs.org
http://kodingen.com
http://jsfiddle.net
http://coderun.com
http://coderun.com
http://ares.palm.com
http://ares.palm.com

environment. This feature enables some of the new collab-
orative models discussed in the next section, and motivates
the implementation of Collabode as a web application.

Collabode uses EtherPad (etherpad.org) to support collab-
oration between multiple simultaneous editors. Any number
of programmers can open the same file simultaneously, and
their concurrent changes are shared in near real-time to en-
able smooth collaboration whether they are working together
remotely or at the same desk.

On the server side, Collabode uses Eclipse (eclipse.org) to
manage projects and power standard IDE services: syntax
highlighting, continuous compilation, compiler errors and
warnings, code formatting and refactoring, and execution.
The system also supports continuous test execution [20].
Collabode currently supports Java editing, and any Eclipse
Java project can be compiled and modified using the sys-
tem (including Collabode itself), with an interface familiar
to anyone who has used Eclipse (Figure 1). Project code is
executed on the server and clients can view console output,
so Collabode is not currently suited for developing programs
with desktop graphical user interfaces. As with source code,
all collaborators can observe program output or open the con-
sole to view it after the fact, to support collaborative debug-
ging.

The development of Collabode is ongoing work, and we are
currently working on improvements to the user interface (es-
pecially project navigation and awareness of other editors)
and expanding language support (console input, and support-
ing languages other than Java).

MODELS FOR CLOSE SYNCHRONOUS COLLABORATION
An immediate and obvious application of the Collabode ed-
itor is pair programming, whether remote or co-located, as
well as the similar practice of side-by-side programming. In-
deed, we believe that the pair or side-by-side programming
experience in a collaborative system such as Collabode is
substantially different from the experience of using a single
editor, or two editors linked only via version control, and will
offer some evidence of this in later sections.

A primary goal of this project, however, is to examine mod-
els of collaboration that go beyond pair and side-by-side pro-
gramming. These models might take advantage of specific
user interface support built into the collaborative develop-
ment environment, and can allow programmers to take on
distinct roles in the collaboration. We have previously pro-
posed three interesting models to explore in this space: test-
driven pair programming [10], micro-outsourcing [9], and
mobile instructor.

In order to motivate our work on Collabode, we describe
these models briefly below. In all of them, however, as
well as in the straightforward pair or side-by-side program-
ming model, and in the many other collaboration models one
might imagine, experience piloting collaborative program-
ming with both students and professional programmers leads
us to anticipate a common problem: naive continuous syn-
chronization of unfinished code makes it difficult for indi-
vidual collaborators to make progress. Errors introduced by

one programmer make it hard for others to understand the
status of their own work, or to run or debug the project. Mo-
tivated by the exciting possibilities of the models below, the
remainder of this paper will focus on that issue.

Test-Driven Pair Programming
This model combines the practices of pair programming with
test-driven development. In test-driven development, devel-
opers follow two rules: “write new code only if an automated
test has failed,” and “eliminate duplication” [3], with short,
rapid development cycles as a result.

In our test-driven pair programming model, the process of
test-driven development is parallelized, with one member of
the pair working primarily on tests, while the other works
primarily on implementation. To begin work on a particu-
lar feature or module, the tester might write a black-box test,
which the implementer will then satisfy. The tester can then
investigate the implementation and write glass-box tests to
weed out errors. These further tests will be addressed by
the implementer, and the testing and implementing contin-
ues. Rapid collaboration in this model will rely on interface
support for visualizing passing and failing test cases and who
in the collaboration is responsible for taking the next step to
address any failures, and for navigating between test cases
and code.

Micro-Outsourcing
In this model, one programmer draws on the distributed ex-
pertise of a crowd of other programmers who make small
contributions to the project. Micro-outsourcing allows the
original programmer to remain “in the flow” at one level of
abstraction or in one critical part of the code, while a crowd
of assistants fill in the details or “glue” code elsewhere in the
module or project.

In contrast to traditional outsourcing, which typically oper-
ates at the granularity of a whole module or project, micro-
outsourcing requires a highly collaborative development en-
vironment and specific user interface support to make the col-
laboration effective. For workers, the interface must strike a
balance between focusing on their limited task and allowing
them to navigate and understand necessary dependencies or
useful contributions from others. And for the original pro-
grammer, the system must make visible and understandable
the small contributions of many others, allowing the pro-
grammer to easily integrate work or redirect the efforts of
the contributors.

Mobile Instructor
Finally, we envision a Collabode-based system for students
and instructors in a computer lab setting. Instructors and stu-
dents work together to achieve educational goals, but their
roles are highly asymmetric: the expert instructor structures
the learning process, and the novice student participates in
it. This asymmetry should be mirrored by a programming
system designed for computer science education that goes
beyond screen sharing tools such as iTALC (italc.sf.net).

While students continue to use the familiar IDE user inter-
face, teachers utilize a mobile device interface that leaves
them free to move around the classroom and work one-on-

http://etherpad.org
http://eclipse.org
http://italc.sf.net

one with students. This mobile view will summarize student
progress and offer remote control of students’ environments.
Such a use case highlights the flexibility of a web-based IDE.
Since the Collabode server has centralized up-to-the-second
knowledge of every student’s code, it can provide powerful
tools to analyze or summarize student progress without inter-
rupting their work or requiring student action.

COLLABORATIVE EDITING WITH SEMANTICS
Collaborative editing of source code files presents the partic-
ular problem that program errors introduced by one collabo-
rator may disrupt the progress of their colleagues. Source
files must conform to a particular programming language
syntax and semantics, but it is impossible to expect users
to maintain semantic validity throughout the coding process:
almost any partially written expression, statement, block,
method, class, or program is likely to contain errors accord-
ing to the parser or compiler. Structured editors [17] address
this problem only at the significant cost of requiring convo-
luted steps to make certain simple changes [28], and most
programmers do not use them.

To see how errors introduced by one user can make it more
difficult for another user to continue, consider the following
simple program:

class Hello {
int x;
void a() { x = true; }

}

This contains an error, since the integer field x cannot be as-
signed a boolean value. However, suppose another user be-
gins defining a new method:

class Hello {
void b() {
int x;
void a() { x = true; }

}

At this point the Eclipse compiler will report instead that “x
cannot be resolved to a variable,” masking the true error be-
cause x now appears to be a local variable of method b. The
particular set of failure cases and their likelihood and sever-
ity will depend on the compiler. Eclipse attempts to prevent
common problems such as unbalanced braces from generat-
ing opaque errors elsewhere, but it cannot always succeed.

The problem is much worse in the case of running the pro-
gram: although Eclipse will allow the programmer to launch
an error-containing program, any attempt to execute an error-
containing line will result in failure. This has the potential to
prevent collaborating programmers from writing and testing
their code incrementally, and we have observed this problem
during pilot studies with both Python and Java programmers.
Rather than constrain collaborating programmers to agree on
and reach points at which the program is sufficiently error-
free for them to run it and test code in progress, we instead
account for the semantic content automatically in our syn-
chronizing behavior.

(a)

public class Hello {
String a() { return "Alic

}

(b)

public class Hello {

String b() { return "Bo
}

(c)

public class Hello {

}

(d)
Figure 2: Alice and Bob are working concurrently to de-
fine methods a and b. (a) The union of their changes
is displayed in the editor, shown here from Bob’s per-
spective: his un-integrated change is in yellow, with
an outgoing arrow; Alice’s is in gray, with an incoming
arrow. (b) Alice’s working copy and (c) Bob’s work-
ing copy contain only their own changes. (d) The disk
does not reflect their work-in-progress, since both of
their changes still contain errors.

Overview
Collabode addresses this issue by first giving each program-
mer a separate, persistent working copy of the program, and
then maintaining two versions that integrate programmers’
changes from their working copies: a disk version and a
union version. The union version is the text that users see
and manipulate, and it contains all edits applied by all users,
with highlighting and icons to indicate provenance. So if Al-
ice has begun defining method a and Bob is writing method
b, the union version contains both in-progress methods, and
both methods appear in the user interface (Figure 2a). As
long as their methods contain compilation errors, the work-
ing copies of Alice and Bob will each contain only their own
method (2b-c) and the disk will contain neither (2d). Once
their methods compile, their edits will be shared both with
their collaborator’s working copy, and with the disk version,
which corresponds to the content on disk. It is this disk ver-
sion that is run when either programmer elects to run the pro-
gram. This version is always free of compilation errors.

Algorithm
We define an edit as the replacement of a single contigu-
ous span of text with a new content string. Conventional
additions and deletions are both special cases: an addition
replaces a zero-length span with content, and a deletion re-
places a span with zero-length content.

Given n users, the algorithm operates on several initially-
identical (or empty) error-free documents union, disk, and
wc1, ..., wcn. It also maintains the set E of edits that have
not yet been applied to disk. This set is initially empty.

• Each new incoming edit ei from editor i is applied both to
union, for displaying the content of the edit to all editors,

and to wci, for computing the compilation errors to display
to editor i.

• ei is then merged with E. If ei overlaps, adjoins, contains,
or is contained by edits in E, the relevant (parts of those)
edits will be removed.

• We then find a largest subset S of E such that when S are
applied to disk, the resulting document is error-free. This
set may be empty, and need not be a contiguous sequence.

• If S is nonempty, we apply each s ∈ S to disk and to
all working copies where s was not already applied, and
remove them from E.

• Finally, if it was changed, we write disk to disk.

The result is that after each edit, we attempt to find a largest
set of outstanding un-integrated edits that can be applied
cleanly to the shared version on disk, and apply those edits if
any. Since edits will frequently occur in rapid sequence, we
need only merge them into E as they occur, and could delay
subsequent searching for subset S until users are quiescent.
We did not find it necessary to implement such a delay.

Implementation
The EtherPad component of Collabode implements simul-
taneous editing (using operational transform) so that other
components, including the error-mediated integration, see
only a sequence of edits as defined above. We have imple-
mented the algorithm by further reducing incoming edits to
contiguous regions of text that either exist only in disk, be-
cause they were deleted from union but that deletion can-
not yet be integrated without error; or exist only in union,
because they were inserted but also cannot yet be integrated.
The system maintains similar sets of regions correlating each
working copy with union.

One limitation of this particular implementation is that the
un-integrated edits in E from different authors must be non-
overlapping; that is, if one author has inserted error-inducing
text, no other editor can delete or modify that text. This lim-
itation would become increasingly untenable as the number
of authors in close proximity increases, but made it possible
to implement and evaluate the idea more rapidly. It is not a
limitation of the algorithm, only our current implementation.

More inherent to the approach is the limitation that, since
deletions by one author are seen by all authors, they can no
longer modify the text that was deleted, even if their working
copy still contains that text because the deletion induces an
error and is waiting in E. If we assume, however, that the au-
thors have coordinated at some level regarding the deletion,
in many cases there should be little need to modify code that
they have already decided to remove.

A crucial assumption required by this algorithm is that the
set E of edits not yet applied to disk is small, since we ex-
amine a number of possible combinations of those edits that
grows exponentially. We evaluate this assumption below, but
believe it is justified by two assumptions about programmer
behavior:

• We assume that a programmer’s own edits tend to be con-
secutive or overlapping. In this case, the edits can be
merged and E remains small. Refactorings, which may
require a large number of widely distributed small edits,

(a)

(b)

(c)

Figure 3: Bob’s view of a collaboration with Alice: (a)
Hello.java as both he and Alice begin adding to the
main method; (b) after he improves the initial println,
and his change is immediately integrated; (c) and after
Alice completes her contribution, which is also auto-
matically integrated.

break this assumption and would be better handled as sin-
gle multi-location edits to be integrated whole.

• We assume that programmers tend to fulfill error-eliminating
obligations actively rather than allowing large blocks of
code to accrue with simple errors. Examples include bal-
ancing braces before working on their contents, and fix-
ing minor syntax errors as they write rather than in a later
proofreading step.

Evidence for both patterns of editing exists in the case of Java
programmers performing software maintenance [16]. The
second assumption will be especially impacted by the details
of compiler feedback. A tool such as DuctileJ [1], which al-
lows programmers to temporarily relax static typing require-
ments and still run the program to see feedback, may reduce
the scope of this assumption by giving the programmer flex-
ibility to ignore what would otherwise be an error.

Interface
The result of applying this algorithm is shown in Figure 3.
First Alice and then Bob begin making changes that do not
compile (3a). Each of them sees only their own errors, and
in-progress code is highlighted according to its origin. The
figure shows Bob’s view of their collaboration, so his un-
integrated edits are highlighted in yellow, while Alice’s are
shown in gray. Arrows in the margin indicate Bob’s ‘outgo-
ing’ changes by pointing out of the text, while Alice’s ‘in-
coming’ work is marked with inward-pointing arrows.

Figure 4: The output from running the program after
Alice and Bob’s collaboration: changes on lines 3 and
4 are integrated, but the unfinished line 5 exists only in
Bob’s working copy.

Once each of them completes edits that can be introduced
to the project error-free (3b-c), those edits are applied to the
version on disk. Then, even though one of Bob’s changes
still has errors, this does not affect either programmer’s abil-
ity to run the project and debug their code (Figure 4). In
this case, even though Bob began working first on line 5 and
abandoned that work in progress to make a critical change
on line 3, that completed change is not held back by his in-
complete earlier work, and he needs to take no extra steps to
share only the working contribution.

That the interface displays the work of both contributors is a
crucial feature of the system. Each programmer has specific
awareness about what other users are working on, and can
shift attention to their code at any time. Both the clear bene-
fits as well as some drawbacks to the interface were identified
by participants in the user study discussed below.

EVALUATION: WILL IT BLEND?
In order to evaluate whether error-aware integration would
be useful in practice, we first examined how the algorithm
would perform in comparison to manual integration per-
formed by programmers. We reviewed edit logs from pilot
experiments conducted in Collabode without automatic in-
tegration and replayed them against a version of the system
with the algorithm. In the original experiments, participants
were research lab members engaged in micro-outsourcing
as described previously. The original programmer (OP) di-
rected co-located workers to complete various tasks (e.g. per-
form research, implement a method, design a representation),
and then was required to manually copy the output of those
workers into the original program.

Across three pilot sessions, we identified 18 instances where
the OP copied worker code into the original project. In 14 of
these instances (78%), the error-aware integration algorithm
also would have automatically integrated the identical block
of code into the project.

All four cases where the algorithm did not match manual
integration were instances where the OP chose to integrate
error-containing code. In two of those cases, the worker’s
contribution could reasonably be judged to satisfy the OP’s
specification: the OP requested that workers create a number
of methods with correct signatures but empty bodies, yield-
ing compilation errors in a number of places. In the other
two cases, workers failed to meet the OP’s specific instruc-

tion to “get rid of compile errors” in the initially broken code
he provided them. It is therefore unclear whether the failure
of the algorithm to integrate these contributions would have
violated the OP’s expectations.

The 78% of manually-integrated contributions that were also
automatically integrated is a measure of the recall of this
approach: what fraction of contributions judged “good” by
humans are also selected algorithmically. We cannot use
the same data to estimate the precision (that is, what frac-
tion of algorithmically-selected contributions are “good”) be-
cause in all of the pilot experiment sessions, there were large
amounts of working code that OPs failed to integrate due to
insufficient time or attention, not because the code was unac-
ceptable.

This result gives us confidence that the algorithm can operate
in a collaborative programming scenario without requiring
programmers to change their behavior to meet its require-
ments. In fact, there were several instances where the OP in-
correctly copied too little or too much code from the worker’s
project and had to correct the mistake. This effort would have
been eliminated by the automatic approach.

EVALUATION: SIDE-BY-SIDE PROGRAMMING
To more fully evaluate the error-aware integration and the en-
tire Collabode collaborative programming system, we con-
ducted a user study in which pairs of programmers worked
for approximately 30 to 40 minutes to complete a coding
task, working together in a single source code file.

Four student participants were recruited from the authors’
institution, and ten professional participants were recruited
from local offices of two large technology companies. The
average self-reported age of participants was 36, two of the
14 participants were female, and five were studying for or
held a bachelor’s degree while the other nine were studying
for or held a master’s degree. Participants were asked to rate
their proficiency in Java on a 7-point Likert scale (min = 2,
max = 7, mode = 6) and their experience with pair program-
ming (min = 1, max = 5, mode = 1).

Pairs were not randomly assigned, and pair familiarity ranged
from students who had never met prior to the study to co-
workers who are also good friends. For this reason, and be-
cause of the wide variance in behavior and ability between
programmers, we make no attempt here to compare the per-
formance of different pairs; results are broken down by ses-
sion only to illuminate this variance. This is also the rea-
son we did not undertake a controlled experiment to com-
pare Collabode to other collaborative editing approaches at
this stage of the system’s development.

In each one-hour session, participants:

• gave informed consent to participate and completed a de-
mographic questionnaire;

• received a brief tour of the Collabode interface and the op-
eration of the automatic integration algorithm, with the op-
portunity to ask questions;

• worked together on a programming task;
• completed a post-task questionnaire to give written feed-

back regarding their experience;

• and discussed the experience with the experimenter and
their partner based on questions from the experimenter.

Tour
This experiment was not designed to test the learnability of
Collabode, since it is by its nature a system for expert users
who invest time to learn the complex tools of their trade. Par-
ticipants were shown how to edit and run the project, and the
experimenter demonstrated how multiple editors would see
each other’s changes. Participants took part in the demon-
stration but could not make edits, in order to keep idle exper-
imentation to a minimum in the limited time.

Task
Participant pairs were first explicitly instructed that they could
use “any web resources” in order to complete the task and
that they could organize their work any way they liked. All
pairs used Google to conduct searches and referenced the
Java API documentation at some point. Pairs were initially
seated at a 90◦ angle at the corner of a rectangular table or
at a small circular table, and the majority moved to sit side-
by-side during the session. This move enabled easier sharing
of documentation or other web pages, and also allowed those
pairs to see one another’s focus or cursor location (not cur-
rently a feature of Collabode). Pairs were also informed that
they could only edit a single shared source code file; this re-
striction was designed to maximize opportunities to exercise
the synchronization algorithm and UI.

The task was:

Using the nytimes.com RSS feeds, display a list of re-
cent headlines from the New York Times “Science” cat-
egory. Use regular expressions or other string process-
ing, not an RSS or XML processing library. Don’t worry
about converting XML entities or other encoding issues.

Participants were also given several hints in the initially-
provided source code: pointers to the Times’ directory of
RSS feeds; to a class and a method relevant to retrieving
the contents of a URL; and to the reference for Java regu-
lar expressions. While interesting, the research and API un-
derstanding stages were not the focus of this study, so we
attempted to equip participants as well as possible to get to
work quickly. Nevertheless, understanding the minutia of,
variously, URL retrieval in Java, regular expressions in Java,
and RSS consumed significant participant time.

Does the Set of Un-Integrated Regions Remain Small?
The efficiency of the automatic integration depends strongly
on the assumption that there are few outstanding un-integrated
regions. Considering all 4,543 edits performed in the course
of the study, the average number of un-integrated regions for
the algorithm to consider has a mean of 2.2 and a median
of 2. The mode is 1, and since an edit has just occurred,
the number is zero only when that edit precisely eliminates
the only current region (this occurs 23 times). As shown in
Table 1, pairs 6 and 7 tended to have about twice as many
un-integrated regions, on average, as pairs 1 through 4 (up to
the observed maximum of 15). Both of the these pairs ex-
perienced bugs in Collabode that prevented the shared code
file from updating correctly, leading to invisible unresolved

errors participants could not correct until they reverted to an
earlier version.

These results validate our assumption that the set of such re-
gions remains small, at least in the case of two programmers.
Since we might expect this number to grow in proportion to
the number of concurrent contributors, the efficiency of this
algorithm beyond pair programming remains to be seen.

Is the Algorithm an Improvement Over Integrating Only
Error-Free Code?
For each edit recorded during the study, we can ask whether
that edit resulted (a) in an error-free source file and (b) in an
automatic integration. Since sequences of edits where par-
ticipants wrote inside comments or string literals result in
rapid sequences of commits to the project that are not useful
to count as separate instances, we collapse consecutive ed-
its into blocks for which the answers to (a) and (b) remain
constant.

In Table 1 we see a mean number of commit blocks per
minute of 1.8, compared to a mean number of error-free
blocks per minute of 0.7. This gives an average increase in
the rate of commits by 2.8 times over a scheme that commits
only when error-free (the result is an equivalent 2.6 times if
we consider all edits without blocking). If we asked devel-
opers to integrate code manually using version control, this
frequency of error-free states is likely an upper bound on the
frequency with which they could reasonably go through the
overhead of committing it.

A different way to view this result is to observe that 63%
of commit blocks occurred with other error-containing re-
gions still outstanding; that is, only some of the available
edits were integrated into the project (this number falls to
58% when we examine edits individually, due to the effect of
e.g. comments and strings noted above). We conclude that
this algorithm is significantly different from integrating only
error-free versions. More frequent integration means less op-
portunity for programmers’ code to diverge and reduced lag
between authorship by one programmer and use by another.

Can Developers Work Concurrently?
Table 1 also shows the proportion of edits attributed to the
member of each pair who contributed the least. We see that in
the most unequal case, that person still contributed more than
one quarter of the edits (this is not necessarily a measure of
how much code that participant wrote if, e.g., they copied an
example from the web, or they tended to add but then delete).
And on average, over one third of the edits occur in a state
where both participants have an error, from which we might
infer that they are actively working on or thinking about some
part of the task. Based on experimenter observation, in every
session, the two programmers were at some point actively
working on incomplete code at the same time.

We argued earlier that, in addition to allowing participants to
write independently and see appropriate IDE feedback, error-
aware integration also allows programmers to run the pro-
gram more often without worrying about their collaborators’
errors. As shown in the last column of Table 1, the results
from this study do not support such a hypothesis. Pairs ran

http://nytimes.com

1

2

3

4

5

6

7

1.6 per edit 3.0 per minute 1.3 per minute 2.3 per error-free block 59 % 41 % 14 % 0 %

1.7 2.3 1.0 2.3 58 38 20 20

1.6 0.9 0.7 1.4 52 43 41 0

1.4 1.1 0.8 1.4 49 38 19 0

2.4 2.3 0.5 5.1 80 48 65 0

3.2 1.5 0.4 3.6 72 31 43 100

3.2 1.3 0.4 3.3 72 26 50 25

Mean 2.2 per edit 1.8 per minute 0.7 per minute 2.8 per error-free block 63 % 38 % 36 % 21 %

Ses
si

on

C
om

m
it

blo
ck

 ra
te

Err
or-

fre
e

blo
ck

 ra
te

C
om

m
it

blo
ck

 ra
tio

C
om

m
it

blo
ck

s
w

ith

Edits
 b

y

U
nin

te
gra

te
d re

gio
ns

Pro
gra

m
 ru

ns

Edits
 w

her
e

both

unin
te

gra
te

d re
gio

ns

ed
ito

rs
 h

av
e

er
ro

rs

w
ith

 e
rr
ors

lo
w

er
 c

ontr
ib

uto
r

Table 1: Per-session and mean statistics from the side-by-side programming user study.

the project only 5.7 times on average (4.7 times excluding
consecutive runs with no intervening edits), and did so al-
most exclusively when the project had no outstanding error-
causing code (with the exception of session 6). This is in
contrast to statements made by participants during the post-
task interview, which we discuss below.

Overall, participants made many edits where the errors re-
ported were computed without regard to error-containing
code concurrently introduced by their partner, and this of-
fers strong support for our claim that developers are able to
make concurrent progress using the system.

Feedback: Collaborative Coding
Study participants were largely positive about the experience
of working together collaboratively, making statements such
as “I found it really useful,” “I thought it was a lot of fun,”
and “that was pretty cool.”

In many instances, developers began to brainstorm different
use cases for the system:
• “You could essentially be real-time debugging each other’s

code”
• “If you laid out an entire class with methods that needed

to be implemented, [...] it would be pretty cool to see how
that would work, if you were implementing one method, I
was implementing another method” (cp. micro-outsourcing)

• From an operations engineer, “we have a lot of time-critical
stuff, I could see this being occasionally useful” for “crisis
programming”

Participants also suggested that the system could improve
communication between collaborators, who can easily ref-
erence one another’s code, and would be useful for learning.
One participant said during the discussion, “I [...] gained an
insight into how you [my partner] think, how you problem
solve.”

While pair programming works well for many developers,
several participants reported that Collabode would work bet-
ter for them than the traditional approach. One summarized
the sentiments of many:

“It always seemed that if you had one or two people
looking over your shoulder, you became a puppet, and

you just are doing what they’re telling you to do. But
when we each had a keyboard, it didn’t feel that way.
I was thinking one step ahead, and whether it was just
going to the Java API documentation to see what’s the
next little thing that we can do to push this forward, [or
working in parallel,] it was both of us trying to actually
program this thing, instead of just one person.”

Some participants were more ambivalent:

• “I think it boils down to, if you buy into pair programming,
then this is a very good way to do it”

• “Once your task is well-defined, the module is well-defined,
I wanted to go into a separate page”

One participant stated flatly, “overall, I wasn’t a huge fan
of it,” and continued: “no, I don’t like other people touch-
ing my stuff.” While this is certainly a disappointing attitude
from the perspective of collaborative software development,
it is only one point along a spectrum of reasonable concern
developers must have for their ability to think and code inde-
pendently.

Feedback: Automatic Integration
Asked whether they thought the automatic error-aware in-
tegration was “useful” or perhaps “confusing,” developers
were generally positive:

• “I found it really useful, I liked the fact that you can see
what they’re doing, but that it doesn’t interfere with the
functionality”

• “I think that it’s hugely useful”
• Without it, “I would have been totally hung up on, ‘oh,

what the heck is my stupid syntax error there,’ and [...]
that would have just stopped me in my tracks;” this partic-
ipant’s partner replied: “right, and we have an alternative,
which was, you try your way, and I’ll try my way,” which
they did during the session

• “I can picture myself spending ten minutes writing a method,
[...] and if it doesn’t compile, then [...] I don’t want you to
wait [on me], or me to wait on you”

• “I think you definitely don’t want it to commit with errors,
because then you can’t test things as you’re [...] making
small changes that you want to be able to just test immedi-
ately”

• “I really like the idea that essentially whatever’s in the sys-
tem, whatever that is, will always run”

No developer reported being confused by the system as de-
signed, although several reported being confused when bugs
in Collabode were exposed. Nevertheless, some comments
made by participants lead us to suspect that some participants
had incorrect or incomplete mental models of the system, in
particular with respect to what version of the program would
run in the console.

Developers who thought error-mediated synchronization was
less important tended to focus on running the program. One
developer suggested that holding back changes with errors
was unnecessary for a task of this size, although this partic-
ipant’s partner responded that they should have tried to run
the code sooner, and that “we should have tested running the
program with just my changes [and] when there was a com-
pilation error with his changes, I should have tested running
it.” Another participant’s statement that “I don’t mind about
the compilation errors because, when we cooperate, I think,
‘I do not mind, if it’s not ready, I just do not run”’ also seems
more closely aligned with the data presented above. We hy-
pothesize that two factors combined to limit participants’ use
of this feature:

• First, the notion of a console that runs only the working
parts of the code is novel, and participants may have pre-
ferred to synchronize rather than consider what would be
run.

• Second, because the console output was shared, partici-
pants may have thought of running the program as a shared
activity best done together when both were ready.

Feedback: Missing Pieces
Hitting on two of the limitations of the current system, sev-
eral participants wanted to be able to see their partner’s errors
and to be able to edit their partner’s un-integrated changes.
One participant described how the incoming and outgoing
change icons in the margin could provide an affordance for
taking ownership of a change, which might help clarify for
the change’s originator why their code was now being edited.
Several participants articulated how the ability to see col-
laborators’ errors (perhaps with indicators to differentiate
them from their own) was crucial for collaborative debug-
ging. Some developers also mentioned wanting a changelog,
and rightly pointed out that the current user interface be-
comes confusing with more than two collaborators because
the specific owners of changes other than one’s own are not
displayed.

Several participants also made the case for when manual in-
tegration might be preferable in place of or in combination
with automatic integration:

• “I like this as a default, but I think, it would be nice if you
could hit a button that says, ‘stop committing what I’m
going to write,’ [...] if I know I’m going to be working on
a large chunk of code”

• “One place I see [manual] coming in really useful is, if
you’re working with someone, and you’re pounding through
the problem really quickly, and you solve it really ineffi-
ciently... and, say [...] I decided to go back and try to make

some early part more efficient, I don’t want to just delete
the inefficient part, because then she can’t test any more”
if the intermediate state ever compiles

This is a particularly insightful observation from only half
an hour of experience with the system: while error-aware in-
tegration is helpful, it might be straightforward to produce
error-free programs that nevertheless impede the progress
of collaborators. Improving the automatic integration al-
gorithm and adding both language-specific and language-
agnostic heuristics to detect “good” and “bad” changes is on-
going work.

DISCUSSION AND FUTURE WORK
Overall, we were pleased to hear from several participants
statements such as “I want it” and questions about when the
system would be production-ready for their own program-
ming. Despite their enthusiasm, bugs in the concurrent inter-
action between the EtherPad shared editor and the automatic
integration algorithm driving compilation in Eclipse caused
Collabode to fail periodically, which frustrated programmers
during the user study and often led them to treat the system
warily rather than push its boundaries.

That participants in the study did not often run the program
while it had errors means we can only speculate on whether
having the program as it appears on disk be different than
how it appears in the editor is a problem. Although they did
not say so, users may have avoided running the program until
it was error-free for precisely this reason. This question will
require further evaluation.

Finally, it may be that resolving the issue of compiler errors
impeding programmers’ collaborative work will allow a dif-
ferent problem to dominate – changes that compile but pro-
duce runtime errors for other programmers. One approach
we can apply to this problem is test-mediated integration, as
in tools such as JUnitMX [30]. New collaboration structures
and user interfaces may mitigate this problem without requir-
ing test suites.

CONCLUSION
In this paper we have demonstrated the efficacy and usability
of an algorithm and user interface for addressing the issue
of errors in collaboratively-edited source code. We integrate
only contributions that can be applied error-free, without in-
troducing the latency and manual overhead of version con-
trol, and without restricting the ability of both programmers
to actively contribute. This algorithm is implemented in Col-
labode, our browser-based collaborative programming sys-
tem, which we are using to investigate how different models
and user interfaces for close collaboration between program-
mers can yield novel and effective strategies for collabora-
tion.

Why build a web-based IDE? Is this not merely a return to the
days of terminals and mainframes, with VT100 replaced by
shiny new HTML5 – now with animation! We believe other-
wise. The collaborative opportunities offered by a browser-
based IDE are too exciting to pass up: instant participation by
anyone with a URL, collaboration with zero setup cost, and a
development server that can serve appropriate user interfaces
for collaborators using a variety of interfaces and devices.

ACKNOWLEDGEMENTS
We thank all the user study participants; Jay Goldman for
helping to organize the study; and all the User Interface De-
sign Group members who have contributed to this work, es-
pecially Patrick Yamane and Angela Chang. This work is
supported in part by National Science Foundation award IIS-
0447800 and by Quanta Computer as part of the T-Party
project. Opinions, findings, conclusions, or recommenda-
tions expressed herein are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES
1. M. Bayne, R. Cook, and M. D. Ernst. Always-

available static and dynamic feedback. In ICSE, page
521, 2011.

2. K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

3. K. Beck. Test-Driven Development: By Example.
Addison-Wesley, 2003.

4. J. Bo, B. Jiajun, C. Chun, and W. Bo. Semantic con-
sistency maintenance in collaborative graphics design
systems. In Proc. Computer Supported Cooperative
Work in Design, pages 35–40. IEEE, Apr. 2008.

5. L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson.
Jazzing up Eclipse with collaborative tools. In OOP-
SLA workshop on eclipse technology eXchange, 2003.

6. A. Cockburn. Crystal Clear: A Human-Powered
Methodology for Small Teams. Addison-Wesley, 2004.

7. P. Dewan, P. Agarwal, G. Shroff, and R. Hegde. Dis-
tributed side-by-side programming. In CHASE,
page 7, 2009.

8. P. Dewan and J. Riedl. Toward Computer-Supported
Concurrent Software Engineering. IEEE Computer,
26:17–27, 1993.

9. M. Goldman, G. Little, and R. C. Miller. Collabode:
Collaborative Coding in the Browser. In CHASE,
page 65, May 2011.

10. M. Goldman and R. C. Miller. Test-Driven Roles for
Pair Programmming. In CHASE, pages 515–516,
2010.

11. L. Hattori and M. Lanza. Syde: a tool for collaborative
software development. In ICSE, pages 235–238, 2010.

12. R. Hegde and P. Dewan. Connecting Programming
Environments to Support Ad-Hoc Collaboration. In
ASE, pages 178–187. IEEE, Sept. 2008.

13. C.-W. Ho, S. Raha, E. Gehringer, and L. Williams.
Sangam: a distributed pair programming plug-in for
Eclipse. In OOPSLA workshop on Eclipse Technology
eXchange, page 73, 2004.

14. R. Holmes and R. J. Walker. Customized awareness:
recommending relevant external change events. In
ICSE, pages 465–474, 2010.

15. C.-L. Ignat and M. C. Norrie. Handling Conflicts
through Multi-level Editing in Peer-to-peer Environ-
ments. In Proc. CSCW Workshop on Collaborative
Editing Systems, 2006.

16. A. J. Ko, H. H. Aung, and B. A. Myers. Design re-
quirements for more flexible structured editors from a
study of programmers’ text editing. In CHI Extended
Abstracts, CHI EA ’05, page 1557, 2005.

17. S. Minor. Interacting with structure-oriented edi-
tors. International Journal of Man-Machine Studies,
37(4):399–418, Oct. 1992.

18. X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: a tool for change impact analysis of java pro-
grams. In Proc. OOPSLA, volume 39, 2004.

19. B. G. Ryder and F. Tip. Change impact analysis for
object-oriented programs. In Workshop on Program
Analysis for Software Tools and Engineering, 2001.

20. D. Saff and M. D. Ernst. Reducing wasted develop-
ment time via continuous testing. In International
Symposium on Software Reliability Engineering, pages
281–292. IEEE, 2003.

21. S. Salinger, C. Oezbek, K. Beecher, and J. Schenk.
Saros: an Eclipse plug-in for distributed party pro-
gramming. In CHASE, pages 48–55, 2010.

22. A. Sarma, Z. Noroozi, and A. van Der Hoek. Palantír:
raising awareness among configuration management
workspaces. In ICSE, pages 444–454, 2003.

23. F. Servant, J. A. Jones, and A. V. D. Hoek. CASI: pre-
venting indirect conflicts through a live visualization.
In CHASE, pages 39–46, 2010.

24. D. Shao, S. Khurshid, and D. E. Perry. Evaluation of
Semantic Interference Detection in Parallel Changes:
an Exploratory Experiment. In International Confer-
ence on Software Maintenance, pages 74–83. IEEE,
Oct. 2007.

25. C. Sun and C. Ellis. Operational transformation in
real-time group editors. In Proc. Computer Supported
Cooperative Work, pages 59–68, 1998.

26. C. Treude and M.-A. Storey. Awareness 2.0: staying
aware of projects, developers and tasks using dash-
boards and feeds. In ICSE, pages 365–374, 2010.

27. A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaid-
man, M. Pinzger, and A. Guzzi. Adinda: a knowledge-
able, browser-based IDE. In ICSE, pages 203–206,
2010.

28. R. C. Waters. Program editors should not abandon
text oriented commands. ACM SIGPLAN Notices,
17(7):39, July 1982.

29. J. Wloka, B. Ryder, F. Tip, and X. Ren. Safe-commit
analysis to facilitate team software development. In
International Conference on Software Engineering,
pages 507–517, 2009.

30. J. Wloka, B. G. Ryder, and F. Tip. JUnitMX - A
change-aware unit testing tool. In International Con-
ference on Software Engineering, pages 567–570,
2009.

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	Programming Methodologies
	Collaborative Editing
	Development Tools

	COLLABODE: COLLABORATIVE CODING
	MODELS FOR CLOSE SYNCHRONOUS COLLABORATION
	Test-Driven Pair Programming
	Micro-Outsourcing
	Mobile Instructor

	COLLABORATIVE EDITING WITH SEMANTICS
	Overview
	Algorithm
	Implementation
	Interface

	EVALUATION: WILL IT BLEND?
	EVALUATION: SIDE-BY-SIDE PROGRAMMING
	Tour
	Task
	Does the Set of Un-Integrated Regions Remain Small?
	Is the Algorithm an Improvement Over Integrating Only Error-Free Code?
	Can Developers Work Concurrently?
	Feedback: Collaborative Coding
	Feedback: Automatic Integration
	Feedback: Missing Pieces

	DISCUSSION AND FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

