Automated Formal Verification of the DHCP Failover Protocol Using Timeout Order Abstraction

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1109/ICECCS.2010.14">http://dx.doi.org/10.1109/ICECCS.2010.14</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Feb 08 00:05:40 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/72945">http://hdl.handle.net/1721.1/72945</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Automated Formal Verification of the DHCP Failover Protocol Using Timeout Order Abstraction

Shinya Umeno and Nancy Lynch
CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA
{umenonancy.lynch}@csail.mit.edu

Abstract—In this paper, we present automated formal verification of the DHCP Failover protocol. We conduct bounded model-checking for the protocol using Timeout Order Abstraction (TO-Abstraction), a technique to abstract a given timed model in a certain sub-class of loosely synchronized real-time distributed systems into an untimed model. A resulting untimed model from TO-abstraction is a finite state machine, and therefore one can verify the model using a conventional model-checker.

We have verified the protocol by bounded model-checking up to depth 20. We also experimented with “mutating” the original code to examine the efficiency of bug-finding using TO-Abstraction. We used two mutated pieces of the original code. The first one represents a model that uses a stronger failure assumption. The second one represents a model that the protocol implementer has forgot to add a certain check of a received message. We found one counterexample for each of two pieces of mutated code. In particular, the counterexample that was found for the second mutated code had a complex scenario, and we believe that it is considerably difficult to find the counterexample by human or simulations.

1. INTRODUCTION

In this paper, we present automated formal verification of the DHCP Failover protocol (DHCP-F, [2]). DHCP-F is an extension of the Dynamic Host Configuration Protocol (DHCP), which is widely deployed for communication devices to automatically obtain an IP address on the Internet. DHCP-F is in the class of loosely synchronized real-time distributed systems (LSRTDS’s). In this class of distributed systems, the processes or modules in the system are assumed to have loose synchronization, that is, there is an a priori known upper bound \( \varepsilon \) on the skew between local clocks in processes. Processes communicate time data (timing-related information such as time stamps) with each other, and set their timeouts using time data. These timeouts are used to constrain processes’ behavior in such a way that the processes execute a certain designated action before or after other processes execute another designated action. This type of control of timeout orders is used in DHCP-F to maintain interesting mutual-exclusion and fault-tolerance properties. Namely, the protocol supports no duplication of address assignments even under server failures and recoveries. This property is the one we verify by the presented case study.

We conduct bounded model-checking for DHCP-F using Timeout Order Abstraction (TO-Abstraction, [3]). TO-Abstraction is a technique to systematically abstract an LSRTDS into an untimed model. The subclass of LSRTDS’s that we can apply TO-abstraction is defined using a syntax template that represents a restriction to Tempo, the primary modeling language of TIOA [4]. The TIOA framework has been used to model and verify (with hand proofs) several real-time distributed systems and algorithms (for example, [5], [6], [7], [8], [2], [9]). TO-Abstraction enables the user to conduct time-parametric verification of a given TIOA model described by the template in the sense that the local clock skew bound \( \varepsilon \) and the special timing-related constant that we explain later are treated as parameters of the system, and therefore, are not instantiated into concrete values. The untimed model resulting from TO-Abstraction is a finite state machine, and thus one can automatically verify (untimed) temporal properties of the model using a conventional model-checker. The soundness guarantee that we can obtain is that any “untimed” safety property of the untimed model also holds for the original TIOA model. Informally, an untimed safety property is a safety property that refers to non-timing-related part of the protocol. For example, we can specify no two processes enter the critical region at the same time, or the value of a particular counter does not exceed ten in any protocol execution. Basically, any property that we typically use for the ordinary untimed protocol verification can be verified using the untimed model obtained from TO-Abstraction.

Contribution: There are two main contributions in the presented paper. First, as far as we know, this paper presents the first machine-automated formal verification of the DHCP Failover protocol. This protocol is in the class of LSRTDS’s, and because of its very general assumption of the local clock value evolutions (as long as the clock values are loosely synchronized with respect to the bound \( \varepsilon \), the evolution is described by an arbitrary increasing function), the protocol cannot be modeled using such frameworks as Alur-Dill Timed Automata [10] or Linear Hybrid Automata [11]. Therefore, the protocol cannot directly benefit from the existing verification techniques and tools (for example, UPPAAL [12] and HyTech [13]) developed for these frameworks. The protocol has been studied in [2] in the context of formal verification using manual (hand-written) proofs, but no study on automatic analysis of the protocol has been reported thus far. The authors of [2] proved the correctness of the protocol using elaborate hand-written proofs by induction over system executions. We consider the complexity of formally verifying this protocol is considerably high because of the fact that a complete proof is not included in [2] because a proof consists of proving several non-trivial lemmas needed to prove the
Because this is a bounded guarantee, (with respect to the execution depth and the number of processes), it cannot replace a complete formal proof. However, considering the complexity of lemmas and theorems and their proofs in \( [2] \), one cannot be absolutely sure about the correctness of the proofs (unless one conducts a mechanical theorem-proving). In this regard, we believe that our case study helps the community gain more confidence for the correctness of DHCP-F.

Second, we experiment with “mutating” the original code to examine the efficiency of bug-finding using TO-Abstraction. We used two mutated pieces of the original code. The first one represents a model that uses a stronger failure assumption. The second one represents a model that the protocol implementer forgot to add a certain check of a received message. We found one counterexample for each of two pieces of mutated code. In particular, the counterexample that was found for the second mutated code had a complex scenario, and we believe that it is considerably difficult to find the counterexample by human or simulations. This consequence suggests that TO-Abstraction can be used not only for verification, but also for experiments of specification/coding changes in the early-stage development of LSRTDS’s.

The rest of the paper is organized as follows. In Section \( 2 \), we describe the overview of TO-Abstraction that we use for DHCP-F verification. Section \( 3 \) is devoted to explaining how DHCP-F works, and representing the Tempo code that models DHCP-F. Section \( 4 \) reports how TO-Abstraction can be applied to DHCP-F and the verification results. We also report experiments for mutated code of the original protocol. In Section \( 5 \), we conclude by stating the summary of the paper.

2. OVERVIEW OF TIMEOUT ORDER ABSTRACTION

In this section, we describe the overview of TO-Abstraction that we use for DHCP-F verification. We first explain the background of this technique in Section \( 2.1 \), next explain the settings and the syntax template used for the technique, and then explain the technique in Section \( 2.3 \).

2.1. Background

We have developed Timeout Order Abstraction by analyzing the DHCP Failover protocol (DHCP-F), and trying to find common patterns that satisfy both of the following properties: 1. The set of patterns is general, and other existing real-time protocols may have used it already, or a protocol designer can use it for a future design; and 2. Every protocol described by the set of patterns can be systematically abstracted into an untimed model that can be verified by a conventional model-checker. We have found key building blocks of DHCP-F that other protocols can use under the loose-synchronization assumption. Processes in the protocol use the following two main ways of setting timeouts.

\[ \text{1) The first way of setting a timeout uses a \textit{time nonce}, a value arbitrarily picked by a process.} \]

\[ \text{2) The second way uses a \textit{time stamp}, plus a special fixed constant waiting time \( u \). A time stamp is a value copied from the current value of the local clock of a process. Timeout setting using a time stamp and \( u \) can be considered a special form of setting timeout using a time nonce. This special form is used for processes to perform the \textit{time-stamp-estimation} trick, which we explain later in this section.} \]

To provide the reader with the idea of how the above described two ways of setting timeouts can be used, we show the two relatively simple examples. DHCP-F uses similar strategies of the two examples in combination.

We consider the following common setting for the examples. Two processes \( P_1 \) and \( P_2 \) share a resource, and they must not access the resource at the same time. Their strategy is time-sharing the resource by communicating with each other by sending messages through channels. Two processes’ local clocks are loosely synchronized, and the skew between them is strictly less than \( \epsilon \). We assume that the values of their local clocks are monotonically increasing. We assume that for this time-sharing, \( P_1 \) first accesses the resource and then \( P_2 \) and \( P_1 \) alternately accesses the resource in turns. At first, we assume that the channel is stable and thus messages would not be lost and message contains would not become broken.

**Protocol 1**: \( P_1 \) picks the time until which it will use the resource, as a time nonce \( TN_1 \), and sends it to \( P_2 \). \( P_1 \) sets a timeout at \( TN_1 + \epsilon \). \( P_2 \) receives \( TN_1 \), it sets a timeout at \( TN_1 + \epsilon \). The skew bound \( \epsilon \) is used to most conservatively estimate when \( P_1 \) times out, on \( P_2 \)’s local clock. When \( P_2 \) times out, it is guaranteed that \( P_1 \) has already timed out. Therefore, \( P_2 \) can immediately use the resource. \( P_2 \) picks another time nonce \( TN_2 \), sets a timeout at \( TN_2 \), and sends \( TN_2 \) to \( P_1 \). Upon receipt of \( TN_2 \), \( P_1 \) sets its timeout to \( TN_2 + \epsilon \). \( P_1 \) and \( P_2 \) repeat the same routine forever.

**Protocol 2**: \( P_1 \) picks a time stamp \( TS_1 \), instead of an arbitrary time nonce, and sets its timeout to \( TS_1 + u \). Therefore,

\[ \begin{aligned}
\text{3A time nonce in an actual low-level implementation may be computed using, for example, a complex optimization and/or adaptive algorithm or a randomized algorithm. We just assume the most general (least restrictive) assumption: as long as its value is larger than the current clock of the process that picks the time nonce, it is a valid time nonce for our setting.}
\end{aligned} \]
\( P_1 \) uses the resource for \( u \) time units (measured on its local clock). \( P_1 \) sends \( TS_1 + u \) to \( P_2 \). If the above message sent to \( P_2 \) is not broken, \( P_2 \) sets its timeout to \( TS_1 + u + \varepsilon \) (the received time data plus \( \varepsilon \) as in Protocol 1). If the message is broken, \( P_2 \) sets its timeout to the special value \( clock_2 + u + 2\varepsilon \), where \( clock_2 \) is the current value of \( P_2 \)’s local clock. When \( P_2 \) times out, it immediately starts using the resource. It also picks a time stamp \( TS_2 \), sets its timeout to \( TS_2 + u \), and sends \( TS_2 + u \) to \( P_1 \). When receiving a message from \( P_2 \), \( P_1 \) sets timeout in a way similar to an equation.

**Time-Stamp-Estimation Trick:** The timeout setting using \( clock_2 + u + 2\varepsilon \) in Protocol 2 is the special timeout setting, the time-stamp-estimation trick that we have mentioned in the introduction. We explain in the following why this value can be used to estimate conservatively when \( P_1 \) times out. We can interpret the value \( clock_2 + u + 2\varepsilon \) as \( (clock_2 + \varepsilon) + u + \varepsilon \). If \( clock_2 + \varepsilon \) is equal to or greater than \( TS_1 \), then \( P_2 \) indeed succeeds in conservatively estimating \( P_1 \)’s timeout (if the message were not broken, \( P_2 \) would have set its timeout to \( TS_1 + u + \varepsilon \)). We consider in the following the moment that \( P_2 \)’s timeout is set to \( clock_2 + u + 2\varepsilon \). From the loose synchronization assumption, the value of \( clock_2 + \varepsilon \) is at least as large as the value of \( clock_1 \), the local clock of \( P_1 \). Because \( P_1 \)’s clock value is monotonically increasing, the current value of \( clock_1 \) is greater than the value of \( TS_1 \), which is copied from the past value of \( clock_1 \). Therefore, \( clock_2 + \varepsilon \geq TS_1 \), as needed. The key to the above argument was that because of the fact that \( P_2 \) received a (broken-content) message from \( P_1 \), \( P_2 \) was sure that \( P_1 \) had already picked time nonce \( TS_1 \).

The value of \( clock_2 + \varepsilon \) overestimates any time stamp that has been picked thus far in physical time, and a process can perform this estimation by looking at just its local clock.

This time-stamp-estimation trick is used in the DHCPP-F model of [2] without particularly mentioning its usefulness, intuition, or subtlety. The Internet-draft version of DHCPP-F does not consider this type of subtle argument about loosely synchronized clocks, and thus how long a leading server has to wait to conservatively estimate time stamps other servers have picked is not clearly stated. We contacted the first author of [2], and were informed that this subtle special usage, which we will call the time-stamp-estimation trick, was proposed by him, discussed by the authors of [2], and then adopted in the model of DHCPP-F used in [2]. TO-Abstraction can treat the time-stamp-estimation trick by using a special form of abstraction for it. We will explain more details in Section 2.3.

### 2.2. Setting and Template

TO-Abstraction assumes that the system is executed under the loose-synchronization assumption and each process in the system is described by a syntax template that describes the restrictions to more general Tempo guarded-command-style language (the primary modeling language for TIOA, [4]).

The basic idea of the template is to restrict use of time data and timeouts to a special form for which TO-Abstraction can be applied. There is no restriction imposed for “untimed” part of the language. In this section, we present more details on this assumption and the template.

**Loose-Synchronization Assumption:** We assume that processes are loosely synchronized: for any pair \((P_i, P_j)\) of processes, the deviation between the values of their local clocks, \( clock_i \) and \( clock_j \), respectively, are bounded by an a priori known amount \( \varepsilon \), as shown in the following inequality:

\[
|clock_i - clock_j| < \varepsilon. \]

We assume that the \( \varepsilon \) bound is known to every process as its parameter. We also assume that a constant positive real value \( u \) is known to every process as its parameter.

**Communication Interface:** The template needs the following forms for the signatures (interfaces) of actions for process \( P_i \). The system has output and input actions for message communication between processes, such as ‘send’ and ‘receive’. A ‘send’ action has the following signature:

\[
\text{send}_{i}(j; \text{ProcessID}, M; \text{UntimedMessage}, \chi; \text{NonNegReal}, \kappa; \text{InteractionLast}).
\]

This action represents that \( P_i \) sends real-valued “time data” \( \chi \) and “untimed data” \( M \) to process \( P_j \). We will explain later in this section the form of time data allowed in the template. Untimed data is an arbitrary value in a bounded domain. An interaction instance, \( \kappa \), is a special identifier of process interactions to distinguish different set of interactions. A ‘receive’ action has the same type of interface as a ‘send’, in order to match communications between processes. A ‘broadcast’ action, \( \text{cast}_i \), has a similar interface as \( \text{send}_i \), but instead of a process ID \( j \), it has a set of process IDs \( J \) that represents a subset of processes to which the broadcast is performed. A process also has internal actions which are performed without communicating outside of the world.

**Timeouts:** A timeout of \( P_i \) is modeled as an output action, \( \text{timeout}^i_k \), and has a very specific form for its precondition (the transition guard) so that the timeout happens at the time the local clock of \( P_i \) hits a specified timeout time.

**State Variables of Processes:** State variables in a TIOA that represents process \( P_i \) are split into the six groups shown in Table I. This explicit split of variables is the core of why we can apply TO-abstraction to the template.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Variables</th>
<th>Types of Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timed variables</td>
<td>( x^i )</td>
<td>\text{NonNegReal}</td>
</tr>
<tr>
<td>Timeout variables</td>
<td>( y^i )</td>
<td>\text{NonNegReal}</td>
</tr>
<tr>
<td>Timeout setting Booleans</td>
<td>( s^i )</td>
<td>\text{Boolean}</td>
</tr>
<tr>
<td>Interaction instance variables</td>
<td>( w^i )</td>
<td>\text{Integer}</td>
</tr>
<tr>
<td>Untimed variables</td>
<td>( u^i )</td>
<td>\text{BoundedDomain}</td>
</tr>
<tr>
<td>Local clock variable</td>
<td>( clock_i )</td>
<td>\text{NonNegReal}</td>
</tr>
</tbody>
</table>

**TABLE I**

**State variables of process \( P_i \)**

The first group consists of timed variables. These variables can store real-valued time data such as time nonces and time stamps (plus \( u \)), or the result of a ‘max’ operation of multiple pieces of time data. We will see the form of value assignments that can be used for timed variable later in this section. The second group consists of timeout variables. These variables are special variables to set a time when a timeout action must be performed. They can store time data, possibly plus \( \varepsilon \) (the assumed upper bound on the skew), and the result of the time-stamp-estimation trick.

The third group consists of timeout setting Booleans. These are Boolean variables that are used to indicate whether or not the timeout for \( \text{timeout}^i_k \) is set.
fourth group consists of interaction instance variables. These variables are used to store existing interaction instances received from process communications. The fifth group consists of untimed variables. These variables can store any bounded-size information other than time data. An untimed variable can be, for example, a Boolean, a (bounded-size) counter, or a finite set of process IDs to aggregate the information about which processes have responded to $P_i$’s message. The last group consists of just one variable, $\text{clock}_i$, which represents the local clock of process $P_i$. The value of this variable evolves over real time, and the evolution is an arbitrary increasing function that satisfies the loose-synchronization assumption.

**Timed Expression Template:** Due to space limitation, we only show the most important part of the template in this paper. The templates for $\text{TimeDataExpression}$ and $\text{TimeoutExpression}$ shown in TimedExpression are the most important templates in the entire template set. $\text{TimeDataExpression}$ is used to assign a timed variable $x^i_k$ by an assignment $x^i_k := \text{TimeDataExpression}$, and $\text{TimeoutExpression}$ is used to assign a timeout variable $t^i_k$ by an assignment $t^i_k := \text{TimeoutExpression}$. The templates for these two expressions include a time nonce picking (new$_{\text{time_nonce}}$), which computes a value greater than clock, representing a future time), computation of a time stamp plus the constant $u$ ($\text{clock}_i + u$), a ‘max’ operation to conservatively update the timeout estimate (we will see how ‘max’ is used in DHCP-F in Section 3), using time data $\chi$ received from another process, timeout setting using $\varepsilon$, and the time-stamp-estimation trick ($\text{clock}_i + u + 2\varepsilon$). These expressions are used in templates for processes’ transitions explained later in this section.

$$\text{TimeDataExpression} := \text{new\_time\_nonce()} \mid \text{clock}_i + u \mid x^i_k \mid \chi \mid \max(\text{TimeDataExpression}, \text{TimeDataExpression})$$

$$\text{TimeoutExpression} := \text{TimeDataExpression} \mid \text{TimeDataExpression} + \varepsilon \mid \text{clock}_i + u + 2\varepsilon \mid \max(\text{clock}_i, u + 2\varepsilon, \text{TimeDataExpression} + \varepsilon) \mid (\text{TimeoutExpression})$$

Because of the restricted use of time data described by the above templates, we can symbolically represent time nonces and time stamps using symbolic labels of them, as we will explain in Section 2.3.

### 2.3. Timeout Order Abstraction

In this section, we briefly describe how Timeout Order Abstraction (TO-Abstraction) works for the template explained in Section 2.2. We first explain the intuition behind TO-Abstraction, and then show more details of techniques used.

**Intuition behind TO-Abstraction:** Our goal for TO-abstraction is to obtain an untimed model that conservatively abstracts the original one. In order to obtain an untimed model, we remove the local clocks of processes, and maintain just the right amount of information that can retrieve correct timeout orders in the original timed model. The key idea is to not focus on real values of time nonces and time stamps, but instead use identifiers (IDs) of them (labels in other words). Identifiers are integers that distinguish different time nonces and stamps. We explain in more detail how IDs can be used using toy examples described earlier in this section.

In Protocol 1, time nonces are used to synchronize processes behavior. Processes control the ordering of timeouts using the relative difference of their timeout times measured on their local clocks: one process $P_i$ sets a timeout to a time nonce $TN_k$, and the other $P_j$ sets it to $TN_k + \varepsilon$. Information that is sufficient to retrieve the fact that $P_j$ times out after $P_i$ has done so in any possible scenario, is that both processes use the same time nonce $TN_k$, and $P_i$’s timeout is set by adding the “slack” $\varepsilon$ (the assumed upper bound on the skew) to the time nonce, but $P_j$’s timeout is set solely by the time nonce. To keep track of the above information, we can use the following abstraction: Picks of real-valued time nonces are replaced by picks of symbolic IDs of them. The $k$-th picked time nonce $TN_k$ in an execution of the original system is represented by ID (integer) $k$. The timeout time for $P_i$ set to $TN_k$ is symbolically represented by a pair $(k, false)$, and the timeout time for $P_j$ set to $TN_k + \varepsilon$ is symbolically represented by a pair $(k, true)$ – the Boolean values represent whether the slack $\varepsilon$ is added or not. Then, we remove the local clocks of both processes. After this abstraction, even though we cannot access to the information of local clock values (since they are removed), we can carefully choose which timeouts must not occur at the current state of the untimed model, by looking at the symbolic representations: If $P_i$’s timeout is set to $(k, false)$ and $P_j$’s timeout is set to $(k, true)$, $P_i$’s timeout must not be performed, considering timeout orders that can possibly appear in the original timed model. The above discussion is the basic idea of time data abstraction and timeout order constraining, two of the three techniques that we use in combination for TO-abstraction. We can apply the above idea of maintaining information that is sufficient to retrieve correct timeout orders to Protocol 2 as well. In this case, we use IDs of time stamps. Since processes always add $u$ to time stamps, we can just keep track of the ID of a time stamp when the value computed from a time stamp plus $u$ (in the form of $TS_k + u$) is communicated.

In some protocols including DHCP-F, processes use both time nonces and time stamps, and combine them using ‘max’ operations. For example, a process can combine two time nonces and three time stamps. In such cases, we can extend the same idea by using two sets of integers (IDs) to represent one time data: $\{\{1, 2\}, \{4\}\}$ represents $\max(TN_1, TN_2, TS_3 + u)$, and $\{\{3\}, \{2\}, true\}$ represents a timeout set at $\max(TN_3, TS_2 + u) + \varepsilon$.

The time-stamp-estimation trick using $\text{clock}_i + u + 2\varepsilon$ is abstracted as $\{\}, \text{picked\_ts\_id\_set}, true\}$, where $\text{picked\_ts\_id\_set}$ is the set of time stamp IDs that have been picked thus far in the current execution. $\{\}, \text{picked\_ts\_id\_set}, true\}$ represents $\max(\text{picked\_ts\_set}) + u + \varepsilon$ in the original model, where $\text{picked\_ts\_set}$ is the set of time stamps picked thus far. This reflects the discussion for the time-stamp-estimation trick earlier in this section that $\text{clock}_i + u + 2\varepsilon$ can be interpreted as $(\text{clock}_i + \varepsilon) + u + \varepsilon$, and $\text{clock}_i + \varepsilon$ over-approximates every time stamp that has been picked in physical time.
Three Techniques Used for TO-Abstraction: Now we explain techniques used for TO-Abstraction in more details. Due to space limitation, we explain only the part of the techniques that are relevant to the DHCP-F case study.

We use three sub-techniques in combination for timeout order abstraction of a TIOA model described by the syntax template for TO-Abstraction. The three techniques are: 1. Time data abstraction, 2. Timeout order constraining, and 3. Time data reuse and compression. The first two techniques are used to abstract the underlying real-time system into an untimed, but infinite-state model. The third technique is used to represent the infinite state space of the untimed abstraction using a finite one.

[Time Data Abstraction]: First, time data abstraction abstracts away local clocks from a given TIOA model, and abstracts real-valued time data in the system using symbolic representations, as discussed earlier in this section. The time-stamp-estimation trick using \( \text{clock}_i + u + 2\varepsilon \) is abstractly represented by \( \{ \{ \text{picked}, \text{ts}_{\text{id}} \text{set}, \text{true} \} \). In addition, all boolean conditions in the original model that require a local clock value to determine their truth-values are conservatively approximated. Processes may use an expiration check of the form \( \text{clock}_i < \chi \), by which it examines whether a received time data \( \chi \) is not “expired”, that is, \( \chi \) represents a future time. These expiration checks are approximated using a special list, called the expired time-data list, which stores time nonce and time stamp IDs picked thus far that are “globally expired” – expired on all local clocks. Whether a time nonce/stamp ID \( ID_k \) is strongly expired is deduced when a timeout is performed at \( TD + \varepsilon \), and symbolic time data \( TD \) contains \( ID_k \), and in such a case, \( ID_k \) is included in the expired time-data list. Using the expired list, we can infer the truth value of \( \text{clock}_i > x \) in the following case: if all IDs in \( x \) are strongly expired, then \( \text{clock}_i > x \) must be true. If we cannot infer the truth value of the expiration check, then the abstraction uses a non-deterministic choice. Time Data Abstraction is formally defined in [3] as a function from Tempo code described using the template to another Tempo code that does not use any timing information.

[Timeout Order Constraining]: The untimed model after time data abstraction looses the control over timeout orders in the original timed model because the abstraction removes local clocks of processes. Therefore, we need to put the correct timeout orders back into the untimed model by constraining timeout orders using the information from symbolically represented timeout time, as we briefly describe earlier in this section. Considering the loose synchronization assumption, if a timeout action \( \text{timeout}^i_k \) is set to a time larger than the time for another timeout \( \text{timeout}^j_l \) by more than \( \varepsilon \), then \( \text{timeout}^i_k \) occurs after \( \text{timeout}^j_l \) has done so. By rephrasing the above statement in symbolic representations, we obtain the following. Timeout action \( \text{timeout}^i_k \) of a process \( i \) is disabled when the following condition holds: \( \exists t'_j \in \text{Timeout variables}_j : (j \neq i) \land (\text{tn}_{\text{set}}(t'_j) \subseteq \text{tn}_{\text{set}}(t^i_k)) \land (\text{ts}_{\text{set}}(t'_j) \subseteq \text{ts}_{\text{set}}(t^i_k)) \land \lnot \text{slack}_{\text{added}}(t'_j) \land \text{slack}_{\text{added}}(t^i_k) \), where \( \text{tn}_{\text{set}}(t'_j) \) and \( \text{ts}_{\text{set}}(t'_j) \) represents the time nonce ID set and time stamp ID set, respectively, that symbolically represents the combined time nonces and stamps using ‘max’, and \( \text{slack}_{\text{added}}(t^i_k) \) represents whether or not the Boolean flag that represents the slack \( \varepsilon \) is added to the underlying timeout, is set to true.

[Time Data Reuse and Compression]: An execution of the untimed model may require an infinite number of new time nonce and/or time stamp IDs because the length of a model execution is typically infinite. Our basic strategy is to reuse a time stamp or a time nonce that is once taken by some process but is no longer used anywhere in the model. We use a more elaborate Time Data Compression technique for DHCP-F. Time Data Compression is used to express multiple ‘max’ed time nonces (or stamps) by one symbolic ID. For example, when processes in the system use either \( \max(TN_1, TN_2) \) or \( TN_3 \) in the current state of the system, we can consider \( \max(TN_1, TN_2) \) as one cluster of time nonces, and therefore represent it by one ID. More details of how we can find such “compress-able” time nonce or stamp IDs and how a compression is actually performed is described in [3]. The above described reuse and compression techniques are not technically needed to conduct a bounded model-checking (not a full model-checking), since processes can use only a finite number of IDs in a bounded depth. However the techniques can contribute to reduce the ID space needed for a “valid” bounded model-checking – for model-checking, we first bound the size of the ID space, and conduct a model-checking. If we find that the ID space is actually too small and therefore a fresh ID is not available in some execution (within a certain depth for a bounded model-checking), then we increase the size of the ID space, and run the model-checker again. We used this “bound-and-supersize” strategy for the presented case study, in order to find the most compact sufficiently large ID space.

A soundness guarantee that we can obtain for TO-Abstraction is that for any execution of the resulting untimed model, there is a corresponding execution of the original automaton such that the values of all untimed variables are the same in any pair of two states that respectively appear after the same number of discrete actions in the two executions. This soundness guarantee is proved in [3] using a simulation relation proof technique.

3. DHCP Failover Protocol

The DHCP Failover protocol (DHCP-F) is an extension of the Dynamic Host Configuration Protocol (DHCP), which is widely deployed for communication devices to automatically obtain an IP address on the Internet. Upon a request from a client, the DHCP server automatically assigns an IP address to the client. The server gives an assignment in the form of a “lease”: an IP address assignment from the server is associated with its expiration time until which a client is allowed to use the address.

DHCP-F supplements the ordinary DHCP with stronger fault tolerance using multiple backup servers – when the main server encounters a failure and becomes down, one of the backup servers takes over the main server’s job. The main difficulty of using such backup servers is to maintain the consistent view of the lease periods of IP addresses across the main server and all backup servers. Most standard database consistency techniques cannot be used for DHCP-F because they are too slow for this application. For this reason, DHCP-F uses the combination of the two stage assignment scheme.
The first assignment is a short assignment that uses a time stamp plus the constant waiting time $u$. This assignment is fast, requiring no acknowledgment communication, but limits how long the address can be used by one client. The second assignment is slower, and used by clients to renew its lease. It requires explicit acknowledgment from all backup servers, but a client can use one address indefinitely by renewing the lease.

DHCP-F is described in an Internet Draft that is over 130 pages long. This length is primarily due to the need to deal with many types of concurrent server failures.

In [2], Fan et al. analyzed DHCP-F using the TIOA framework and hand-written proofs of correctness. They decomposed the DHCP-F protocol into two sub-protocols: the leader elector and the address assigner. The leader elector elects one of the backup servers as the next main server when the current main server encounters a failure. The address assigner assigns an IP address to a client upon the request from it. We will explain how this assignment process works in Section 3.1.

The leader elector uses a failure detector. When the main server encounters a failure, the failure detector notifies the leader electors (implemented in a distributed fashion in each backup server) of this information. The safety property of the leader elector (only one server is elected as the main server at any time) is guaranteed by waiting long enough time since the elector recovers from a failure. The leader elector sub-protocol and its analysis of the correctness is relatively simple compared to the address assigner, which conducts the main task of the DHCP-F protocol. Therefore, in this case study, we will focus mainly on the address assigner protocol of DHCP-F, and we model the leader elector as a simple helper module that notifies one backup server of the fact that the server is elected as the new main server.

The main safety property of DHCP-F that we verify in this paper is the no-duplicated-address-assignment property – one specific address is assigned to at most one process. In [2], the authors also verified interesting timeliness properties of the protocol as well as the no-duplicated-address-assignment property. Verification of timeliness properties using a machine-automated method is a challenging future study.

Because we have to use a model-checker to verify the untimed abstraction, we need to fix the configuration of the system. We look at the minimum interesting configuration, which consists of one main server, one backup server, and two clients (for the possibility of duplicated assignments).

An actual implementation of the DHCP-F server handles multiple IP addresses concurrently. In this case study, the model handles just one IP address. This is because this concurrent treatment of the IP addresses in one server can be viewed as running multiple threads (or processes) each of which treats exactly one IP address, and these threads do not affect each other. Therefore, to verify the no-duplicated-address-assignment property of DHCP-F, it is sufficient to focus on one thread that handles one IP address.

### 3.1 TIOA code of DHCP-F

Due to space limitation, we only present the transition definition of the server automaton (Fig. 1) and the client automaton (Fig. 2). The complete code appears in [3]. The fail input comes in from the environment at any time. The “leader-elector” helper module outputs the lead action to the alive server with the minimum ID when the module observes a failure in the current execution. In the code in Fig. 1, we assume that when a server encounters a failure, all variables except for potlease are reset.

In this code, lease_expired, is the only timeout action in the server and the client. acklease, potlease, and bcast_value are the tree timed variables $x_1^i$, $x_2^i$, and $x_3^i$. timeout represents the only timeout variable $t_i$.

The protocol works as follows in the nominal operation. First, a client broadcasts a request with some time nonce $\tau$, representing the time until which a client wants an IP address. It picks a new interaction instance $\kappa$ for this session, and sends $\tau$ with a message type ‘Request’ and $\kappa$. When the main server receives the request, it sends back an acknowledgment with the lease offer for a short lease, using $\text{clock}_i + u$. It also updates its current interaction instance to $\kappa$. Then the server broadcasts the most conservative potential lease time (a ‘max’ of $\tau$ and $\text{clock}_i + u$) with $\kappa$ to all backup servers. When a client receives a lease offer, and if the lease time has not expired yet, it accepts the offer and uses the IP address until the specified lease time. When a backup server receives a potential lease time from the main server, it updates its own estimate of the most conservative potential lease time stored in potlease, and sends back an acknowledgment to the main server with $\kappa$. The main server collects acknowledgments by accepting only acknowledgments for the current session (judged by the interaction instance of the acknowledgments). When the main server has collected acknowledgments from all backup servers, it updates the value of acklease, the variable used to respond a lease-renew request from a client. This implies that the time nonce $\tau$ first sent by a client to the main server is used only after the main server collects acknowledgments from the backup servers. When the main server receives a renew request with another time nonce $\tau_2$ from the current client after the above described “collection” period, it offers the lease until $\text{max}(\tau, T_{S_1} + u, \text{clock}_i + u)$, where $T_{S_1}$ is the time stamp taken when the main server first responds to the current client. Then the main server enters the “collection” period for the new time nonce $\tau_2$ (‘max’ed with previously accumulated time data in potlease). Similarly, for each following renew message, the client is offered the time nonce for the one-session-previous renew (or request) message, maxed with a new $\text{clock}_i + u$ of the main server and accumulated other time data in acklease.

When the main server encounters a failure, the leader-elector detects it, and assigns a new main server. Recall that a lease time (a time nonce) requested by the client is always used only after collecting acknowledgments from backup servers. When a backup server inputs lead, it sets its timeout to ‘max’ of the potential lease time and ‘$\text{clock}_i + u + 2\varepsilon$’ (the time-stamp-estimation trick), so that it times out after all time nonces stored in the potential lease time, potlease, and all existing time stamps that a client could be using has expired. This intricate use of the time-stamp-estimation trick enables the main server to offer a short lease of $\text{clock}_i + u$, without collecting acknowledgments from backup servers.

As described above, usage of maximum operations and the time-stamp-estimation trick used in DHCP-F is very subtle,
input receive,(i, 'Request', \( \tau, \kappa \))
eff if leading ∧ current_user = \perp
\land pc = waiting then
\begin{align*}
\text{current_user} &= i; \\
\text{current_interaction_inst} &= \kappa; \\
acklease &= \text{clock}_j + u; \\
bcast_value &= \text{acklease}; \\
\text{timeout_time} &= \text{potlease} + \varepsilon; \\
\text{timeout_is_set} &= \text{true}; \\
potlease &= \text{ack}_user; \\
\text{eff potlease} &= \text{acklease}; \\
\text{pre timeout} &= \text{clock}_j; \\
\text{pre timeout_time} &= \text{potlease}; \\
\text{pre timeout_is_set} &= \text{false}; \\
\text{pre potlease} &= \text{ack}_user; \\
\text{output lease_expired} &= \text{acklease}; \\
\text{output lease} &= \text{null}; \\
\text{output lease} &= \text{null}; \\
\text{output lease} &= \text{null}; \\
\end{align*}

output bcast,(AllServers, 'Request', \( \tau, \kappa \))
pre \( \tau = \text{new_time_nonce}() \land \kappa = \text{new_interaction_inst}() \land \text{pc} = \text{requesting} \)
input receive,(j, 'Ack', \( \chi, \kappa \))
eff if \( \chi > \text{clock} \land \kappa = \text{current_interaction_inst} \land \text{pc} = \text{leasing} \)
\begin{align*}
\text{output lease_expired} &= \text{null}; \\
\text{output lease} &= \text{null}; \\
\text{output lease} &= \text{null}; \\
\text{output lease} &= \text{null}; \\
\end{align*}

Fig. 2. Transitions of the client automaton of DHCP-F yellow-colored parts of the code are the parts changed by the abstraction.

We use the following functions in the untimed version:

1) symb_max: used to represent a symbolic version of 'max' operations. This is implemented by element-wise union to the pair of time-nonce and time stamp ID sets.
2) set_timeout: used to represent the symbolic timeout value using symbolic time data and the boolean for slack-added or not.
3) ts_set: used to represent the time stamp ID set in the symbolic time data. tn_set is similarly defined.
4) expired: used to represent the expiration implication from the expired time-data list that we described in Section 2.3.

As we described in 2, all timed and timeout variables now use symbolic representations with time stamp and time nonce IDs. The time-stamp-estimation trick is approximated using picked_ts_ID_set, the time stamp IDs picked thus far in the current protocol execution. The expired time-data list consists of two subsets, expired_ts_ID_list and expired_ts_ID_list, and updated when timeout with a slack \( \varepsilon \) is performed. Boolean variable rcvd_time_expired is used to determine the truth-value of the expiration check of the form of \( \text{clock} \leq \chi \), using the expired-time data list.

4.2. Verification Results

We used the SAL model-checker [14] developed by SRI International to conduct verification of the untimed abstraction of DHCP-F. For this case study, we manually abstracted the timed model into the untimed model described in the SAL model. We tried to define every data structure in SAL as general as we can, so that the structure can be reused for other case studies. The actual code can be found in [1]. We are currently implementing an automatic abstraction (code-conversion) tool for TO-abstraction.

The full model-checking using BDD was not feasible for this case study arguably due to the complexity of the protocol. (We encountered the out-of-memory error when SAL was computing the transition function, that is, even before verification.) The number of time stamps and time nonces were increased when the time-stamp/time-nonce unavailability error has occurred. All experiments are conducted using a Linux machine with an Intel Core™ 2 Quad at 2.66 GHz and 4GB memory.

We used the minimum interesting configuration, which consists of one main server, one backup server, and two clients
Fig. 4. Transitions of the client automaton of DHCP-F, untimed version

Fig. 3. Transitions of the server automaton of DHCP-F, untimed version

TABLE II

<table>
<thead>
<tr>
<th>Depth</th>
<th>Individual time (hours)</th>
<th>Accumulated time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2.70</td>
<td>5.54</td>
</tr>
<tr>
<td>16</td>
<td>3.00</td>
<td>10.54</td>
</tr>
<tr>
<td>17</td>
<td>6.45</td>
<td>16.99</td>
</tr>
<tr>
<td>18</td>
<td>14.72</td>
<td>31.71</td>
</tr>
<tr>
<td>19</td>
<td>23.84</td>
<td>55.55</td>
</tr>
<tr>
<td>20</td>
<td>41.88</td>
<td>97.43</td>
</tr>
</tbody>
</table>

**BOUNDED MODEL-CHECKING TIMES**

First Mutation (Different Failure Assumption): Next, we experiment with another failure assumption that when a server encounters a failure, all variables are reset. Under this assumption, we have found a counterexample at depth 17.4

4This counterexample is found with the configuration that the number of server is one, and the number of clients are two. We are currently running experiment for the case of two servers and two users. We are expecting to find a similar counterexample at depth 20. The illustrated counterexample is for two servers.
This counterexample is illustrated in Fig. 5.\(^5\) This scenario is actually realizable in the original timed system as well, as described in the following:

1. Client-1 sends a lease request that contains a large time nonce \(\tau\).
2. Server 1 sends a Write message to Server 2, and Server 2 sends back a Write-Ack message; and thus Server-1’s acklease is updated (now the maximum contains \(\tau\)).
3. Client-1 sends a Renew message, and Server 1 receives it. acklease is updated to \(\max(\text{acklease}, ts + u)\), which is no smaller than \(\tau\). And then, potlease is updated to \(\max(\text{potlease}, \text{acklease})\).
4. A lease offer until \(\max(\text{acklease}, ts + u)\) is sent to Client 1. Client 1 receives it, and updates its lease timeout to \(\max(\text{acklease}, ts + u)\).
5. Server 1 encounters a failure, and all variables (especially potlease) are reset. When Server 1 recovers and gets a lead input, it sets the lease timeout to \(\max(\text{clock}_i + u + 2\varepsilon, \text{potlease} + \varepsilon)\), where the value of potlease is 0. Therefore, if \(\tau\) is larger than the value of \(\text{clock}_i + u + 2\varepsilon\) at this moment, Server-1 expires before Client-1 expires.
6. Since Server-1 expires, it accepts a request from another client, Client 2, and hence ends up with a duplicated lease.

This counterexample is expected to appear under the assumption of using volatile memory for potlease. This is because potlease stores information of the accumulated information of the potential lease time for the current client. If this information is reset, there is no way the server can retrieve what time nonces the client is now using for its lease time.

Second Mutation (Removing Interaction Instance Check): To examine the effectiveness of bug-finding using TO-abstraction, we experimented with verification of DHCP-F with a slight change. We removed one condition for checking the interaction instance of the received acknowledgement from a backup server to ensure that the received acknowledgement is for the current session. The only change is in the effects of the action receive \((j, \text{“WriteAck”}, \omega, \kappa)\) of the server automaton. We removed the condition “\(\kappa = \text{current\_interact\_inst}\)” from the if statement. The main server now accepts any “PotleaseWriteAck” acknowledgment as an acknowledgment to the latest “PotleaseWrite” message.

\(^5\)We obtained from the counterexample more information than just communication sequence of processes. For example, how potlease and acklease are changed (using symbolic IDs). From these information, we constructed the realizable scenario in the original real-time model by considering what kind of assumption for the actual values of time nonces are needed to realize the counterexample execution found in the symbolic world.

After this mutation, we found a counterexample at depth 17 under the configuration of two servers and two users (the run time was 52851.28 seconds \(\sim 14.7\) hours). This counterexample has a complex scenario, and we believe that it is considerably hard to find by human, or simulations with fixed values of \(\varepsilon\) and \(u\), and random assignments of time nonces.

The counterexample is depicted in Figure 6. A red line in a client’s time line expresses that the client is using a lease.
to a renew request from the current client. This update is conducted by calculating the maximum of the current value of acklease and the received timed value \( \omega \), which contains the large \( \tau \).

7) Client-1 receives the renewing-lease offer from Server-1, and set its lease timeout to the maximum that contains \( \tau \).

8) Since \( \tau \) is very large, the timeout set to Server-1 at time \( \max(\tau + u, \tau_u + u) + \varepsilon \) times out before Client-1’s lease expires.

9) Client-2 sends a request to Server-1, and Server-1 offers a lease since it has already timed out.

10) Client-2 receives the lease offer and starts using the IP address.

The above described scenario shows that the usage of the maximum operations used in the original DHCP-F protocol are very intricate: the maximum operations used for potlease, acklease, and bcast_value in the main and backup servers control the timing-related behavior of the servers and clients (by offering a lease time), and how they control this timing-related behavior in a correct fashion is very non-trivial. The atomicity assumption for the send and receive actions also affects the correctness of the protocol: The above scenario would not occur if the main server can receive a renew message and send an acknowledgment for it in an atomic fashion. The atomicity assumption depends on how DHCP-F is implemented. For example, the atomicity granularity we are using in our model is actually realized when broadcasting task and receiving task are operated by two different threads without using lock/unlock. The above discussed facts about this counterexample found for the mutated protocol strongly suggests that we need to use an automated exhaustive analysis technique such as TO-abstraction for this kind of real-time protocols.

5. Conclusion

In this paper, we present a case study on automated formal verification of the DHCP Failover protocol using Timeout Order Abstraction (TO-Abstraction). We successfully verified the protocol using bounded model-checking up to depth 20. We also experiment with two ‘mutated’ versions of the original code. We found a counterexamples for each of the mutated versions, and one of them had a complex scenario of process interleaving that we believe could have not been able to find by human or simulations with fixed system parameters and random assignments of time nonces. This fact infers that TO-Abstraction is helpful not only for verification, but also bug-finding of the protocols. This bug-finding feature is particularly useful when the underlying protocol is still in the development stage, and the designer wants to try slightly different specifications and implementations and the correctness holds for them.

We could not conduct a full model-checking for DHCP-F (even though TO-Abstraction has a potential to conduct it). Therefore we conducted a bounded model-checking for resulting untimed finite state model. This was due to the complexity of DHCP-F. If one aims for only a bounded model-checking from the first point, he/she might be able to directly model the protocol without untiming abstraction, and use satisfiability-modulo-theory (SMT) solver to conduct a bounded model-checking. The approach closest to the above described strategy can refer to is Calendar Automata approach ([15], [16], [17]). It is a interesting future study to examine whether the approach can be applied to DHCP-F, and if so, examine the efficiency compared to the presented case study.

REFERENCES


