A Superconducting Joint Technique for MgB$_2$ Round Wires

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/tasc.2009.2019063</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Mar 31 17:34:11 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/73046</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
A Superconducting Joint Technique for MgB$_2$ Round Wires
Weijun Yao, Juan Bascunán, Seungyong Hahn, and Yukikazu Iwasa

Abstract—This paper describes a technique to superconductively splice multifilament MgB$_2$ wires. To date the technique has achieved joints capable of carrying a superconducting current of 200 A at 10 K in self field. Joints details, as well as testing methods and results are presented here.

Index Terms—HTS/LTS magnet, MgB$_2$ superconductor, NMR magnet, persistent mode.

I. INTRODUCTION

Since the discovery of superconductivity in MgB$_2$ at a temperature of 39 K in 2001, conductor development has advanced to the stage where MgB$_2$ superconducting wire in kilometer-length is commercially available [1]. A variety of applications have been proposed in making use of the new conductor [2]. In an earlier paper, we reported our progress in the construction and test of an MgB$_2$ superconducting magnet [3]. One important technique that will proliferate adoption of MgB$_2$ conductor in the applications of NMR and MRI magnets is to splice MgB$_2$ wires superconductively. A typical superconducting magnet consists of several coils. In order to operate the magnet in persistent mode, the joints between the coils must be superconducting. The first successful splice, reported in 2005, involves splicing NbTi wire and MgB$_2$ tape for an MgB$_2$ coil operated at 4.2 K in persistent mode [4]. Another MgB$_2$ – MgB$_2$ joint result, based on a field-decay measurement of a MgB$_2$ loop carrying 30 to 40 A at 20 K in zero background field, was reported in 2006, having a joint resistance of $< 10^{-14}$ Ω [5]. In this paper we report our progress in developing a technique to make superconducting joints between round 18-filament MgB$_2$ wires.

II. JOINT FABRICATION

The MgB$_2$ used in this work was developed by Hypertech Research Inc [1]. It is designated as an “18 + 1 Nb/Cu/Monel” multifilament wire. Fig. 1 shows a photograph of the cross section of the wire. The wire is manufactured with the so-called Continuous Tube Filling and Forming (CTFF) process [1]. During this process, Mg + B powder mixed in stoichiometric ratio is wrapped inside niobium strip to form a tube. The tube is then inserted inside a seamless copper tube and drawn to form a monofilament strand. For the “18 + 1” multifilament wire, 18 monofilament strands and one center copper filament are restacked into seamless Monel tube and then drawn into the final size. For the conductor of 0.84 mm in diameter, the final size of each filament is around 76 μm. The conductor came in two forms, reacted and non-reacted. After cold drawing into wire, the reacted conductor undergoes a heat treatment at a temperature between 650 to 700 °C, so the mixture of Mg and B becomes MgB$_2$. In the non-reacted wire, the Mg and B mixture remains in its original form after wire drawing. We experimented with both kinds of conductors in our development of superconducting joints.

Fig. 2 illustrates a typical procedure in the fabrication of a joint between two pieces of wire. The following explains in detail each step in the procedure. Fig. 3 show the picture of a joint assembly.

- Etch the Cu and CuNi array surrounding the filaments with nitric acid to expose the 18 Nb wrapped filaments. The exposed filaments are 15 to 20 mm long. It usually takes 1–2 hours to remove the Cu and CuNi around filaments. Since Nb won’t react with HNO$_3$ in room temperature, the timing isn’t critical. The end of the wire is bent into a U-shape before submersing into acid. During the etching process, the Mg + B isn’t exposed to acid at all due to protection of the Nb sheath.
- The exposed filaments are brittle. A sharp bent with a pair of tweezers will easily break a filament. We usually trim the filaments to about 3 to 5 mm long to expose a fresh cross section of MgB$_2$. (or Mg + B mixture).
- As shown in Fig. 2, the cylindrical capsule is made of stainless steel rod of 10 mm in diameter. A hole of 6 mm in diameter and 20 mm in depth is drilled from one side and two small through holes of 0.9 mm are drilled from the other side.

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009 2261

Fig. 1. Photograph of the cross section of 0.84 mm diameter “18 + 1” multifilament MgB$_2$ wire, with key components identified [1].
Fig. 2. Fabricating procedure of the MgB$_2$ splice. The details are explained in the text.

• Insert the two wires to be joined into the small holes and let the exposed filament be inside the 6 mm space.

• Pinch on the wire end of the stainless steel rod with a swaging tool so that the 0.9 mm diameter holes shrink and are sealed by the inserted wire.

Fig. 3. Photograph of a splice assembly to join two multifilament MgB$_2$ wire inside Cu alloy matrix.

• Fill the space of 6 mm in diameter with pre-mixed Mg+B precursor, the same kind of powder used in wire fabrication. The typical size of both magnesium and boron particles are less then 10 μm.

• Insert a 6 mm diameter stainless steel rod into the open end of the capsule and press the rod to make the power compact.

• Place the wire splice assembly inside the stainless steel tube of a tube furnace and evacuate the tube to a pressure below 10$^{-6}$ mbar. Raise the temperature of the furnace to convert the Mg and B mixture into MgB$_2$.

• The sample is furnace cooled to room temperature.

III. TEST METHODS AND RESULTS

The temperature and duration are the two parameters being varied during the heat treatment. Table I lists the performance of the joint heat treated under the different conditions. The temperatures and time listed in the tables are the highest temperatures and the durations at such temperatures during the heat treatment. The temperature of the furnace is usually ramped up to the highest points in 2–4 hours. After the heat treatment, the samples are cooled inside the furnace. The performance of a joint does not seem to be sensitive to temperature ramping rate. It is worth mentioning that we also experimented with 6 filament reacted conductor, with each filament of about 150 μm in width, provided also by Hypertech Research Inc [1]. After heat treatment at 650 $^\circ$C for 1/2 hour, the short samples show no superconductivity at 4.2 K and 0.5 T field. It seems re-heat treatment may have damaged the MgB$_2$ filaments in the conductors. Such deterioration in the conductor itself did not occur in “18+1” filament wires which have finer filaments. The following discussion is based on “18+1” filament conductor shown in Fig. 1.

Two methods were used to evaluate splice resistance, 1) four wire measurement and 2) current decay measurement. Fig. 4 shows a typical I-V curve of a superconducting transition of a MgB$_2$ joint with four wire measurement. The resistance of a joint can be determined to a resolution of 10$^{-9}$ Ω when current is at 100 A level.

Fig. 5 explains the current decay measurement scheme [6]. The current loop consists of a small coil with an inductance of

<table>
<thead>
<tr>
<th>No.</th>
<th>Temperature/time</th>
<th>I_c at 4.2 K</th>
<th>I_c at 4.2 K and 0.45 T</th>
<th>I_c at 10 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>re-acted wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>900°C/15min</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>700°C/15min</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>675°C/30 min</td>
<td>~ 150 A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>640°C/30 min</td>
<td>~ 150 A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>630°C/1200 min</td>
<td>~ 0 A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>570°C/2400 min</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>non-reacted wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>630°C/1200 min</td>
<td>~ 25 A</td>
<td>~ 25 A</td>
<td>< 2 A</td>
</tr>
<tr>
<td>8.</td>
<td>570°C/2400 min</td>
<td>~ 250 A</td>
<td>Not measured</td>
<td>~ 200 A</td>
</tr>
</tbody>
</table>
I-V curve of a typical superconducting joint. The curve in this chart was obtained at 10.5 K in self field for sample 8 listed in Table I.

Fig. 4. I-V curve of a typical superconducting joint. The curve in this chart was obtained at 10.5 K in self field for sample 8 listed in Table I.

Fig. 5. The principle for current decay measurement in evaluating the splice resistance. From the measured decay time τ of the induced current and the inductance of the loop L, one can evaluate the resistance since $\tau = L/R$.

The two ends of the coil are joined with the technique described here. The coil, placed together with the splice inside the furnace, is heat treated under the same conditions previously described. After a small permanent magnet is inserted in the bore of the coil, the whole assembly is cooled down to 4.2 K in a bath of liquid helium. At 4.2 K, the permanent magnet is removed from the coil, inducing a current inside the loop. The current is monitored by a Hall sensor located next to the coil. By measuring the current decay with time, we can calculate the loop’s total circuit resistance, which we may attribute to the splice resistance. The method can readily evaluate joint resistance of as low as 10^{-14} Ω. By lifting the coil from liquid helium, we can vary the temperature of the circuit. This allows us to measure the performance of the joint at different temperatures. Fig. 6 is a typical decay curve of the magnetic field produced by the persistent current of a small coil. The I_c listed in Table I are measured with 4-wire method. Field decay is used to verify some of the results.

Fig. 6. The current decay measurement for a coil of 0.6 μH and at a current of 150 A and 4.2 K. The temperature and duration of heat treatment for this sample is the same as sample 4 in Table I.

Fig. 7. Paths for superconducting current from one wire to the other via the splice.

IV. ANALYSIS

Fig. 7 shows schematically the possible paths for the current to flow through the splice.

- Path A, the current flows from the Nb sheath of one wire through the bulk MgB_2 in the splice and goes into the Nb sheath of the second wire.
- Path B, the current flows from the MgB_2 filaments of one wire into the bulk MgB_2 via the Nb sheath, and then the current goes into the MgB_2 filaments of the other wire via Nb sheath.
- Path C, the current flows from MgB_2 filaments into bulk MgB_2 and then into the MgB_2 filaments of the other wire.

Pure Nb has a superconducting transition temperature around 9 K and H_c2 of 0.42 T (at 0 K). By either raising the temperature above 9 K or applying a sufficient high field, we can make Nb non-superconducting. In sufficiently high field, we can make Nb non-superconducting so that neither path A nor B will be superconducting. Furthermore, for either path A or B to be superconducting, the interface between MgB_2 and Nb should also be superconducting.

For the samples listed in Table I, samples 3 and 4 are superconducting at 4.2 K in zero field. Either at a raised field of 0.45 T or at a temperature of 10 K, the superconductivity vanishes. We conclude that for these two samples, the bulk MgB_2 and the interface between MgB_2 and Nb sheath in the splice are superconducting. The superconducting current path is represented by either A or B. The heat treatment did react the magnesium and
and also established “Demonstration” coil for MRI applica-
tions. For practical applications of MgB₂, is there loss of flux?
loss magnesium which may lead to non-superconducting
bulk as in sample 1 and 2. V. CONCLUSIONS

In this paper, we report a technique to superconductively
splice MgB₂ wires. To date we have achieved a supercon-
ducting splice capable of carrying 200 A at 10 K in self-field:
two un-reacted MgB₂ wires are terminated at a splice and then
the whole assembly is reacted at 570 °C for a period of 2400
minutes. With reacted MgB₂ wires, the technique has yet to
produce a superconducting joint that bypasses the Nb sheath.

ACKNOWLEDGMENT

The authors thank Dr. M. Takayasu (MIT) for loaning us a
tube furnace and Dr. M. Rindfleisch (Hypertech Research Inc.)
for very helpful discussion.

REFERENCES

[1] M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, and J. Phillips,
“Overview of MgB₂ superconductor applications,” Int. J. Appl.
X. X. Xi, “A round table discussion on MgB₂ toward a wide market or
solid nitrogen cooled MgB₂ “Demonstration” coil for MRI applica-
“Relaxation of trapped high magnetic field in 100 m-long class MgB₂
Zhu, D. E. Peterson, and F. M. Mueller, “Role of excess Mg and heat
treatments on microstructure and critical current of MgB₂ wires,” J.