A lower bound for distributed averaging algorithms on the line graph

http://dx.doi.org/10.1109/CDC.2010.5716968

Institute of Electrical and Electronics Engineers (IEEE)

Final published version

Thu Feb 14 01:09:10 EST 2019

http://hdl.handle.net/1721.1/73151

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
A lower bound for distributed averaging algorithms on the line graph

Alex Olshevsky, John N. Tsitsiklis

Abstract—We derive lower bounds on the convergence speed of a widely used class of distributed averaging algorithms. In particular, we prove that any distributed averaging algorithm whose state consists of a single real number and whose (possibly nonlinear) update function satisfies a natural smoothness condition has a worst case running time of at least on the order of n^2 on a line network of n nodes. Our results suggest that increased memory or expansion of the state space is crucial for improving the running times of distributed averaging algorithms.

I. INTRODUCTION

The goal of this paper is to analyze the fundamental limitations of a class of distributed averaging algorithms. These algorithms are message-passing rules for a collection of agents (which may be sensors, nodes of a communication network, or UAVs), each beginning with a real number, to estimate the average of these numbers using only nearest neighbor communications. Such algorithms are interesting because a number of sophisticated network coordination tasks can be reduced to averaging (see [13], [25], [1], [2], [6], [8], [9], [20], [23]), and also because they can be designed to be robust to frequent failures of communication links.

A variety of such algorithms are available (see [22], [10], [18], [24], [15], [16], [17], [12], [26], [21]). However, many of these algorithms tend to suffer from a common disadvantage: even when no link failures occur, their convergence times do not scale well in the number of agents. Our aim in this paper is to show that this is, in fact, unavoidable for a common class of such algorithms; namely, that any distributed averaging algorithm that uses a single scalar state variable at each agent and satisfies a natural “smoothness” condition will have this property, even when no link failures occur and the communication graph is always a simple “line graph.”

We thus identify a basic limitation on convergence speed for a common class of averaging algorithms. The major implication of our result is that algorithms which overcome this limitation must be somewhat different from the majority of averaging algorithms designed thus far: they must either use increased memory, a larger state space, or non-smooth updates.

A. Background and basic definitions.

Definition of local averaging algorithms: Agents 1, . . . , n begin with real numbers $x_1(0), . . . , x_n(0)$ stored in memory. At each round $t = 0, 1, 2, . . .,$ agent i broadcasts $x_i(t)$ to each of its neighbors in some undirected graph $G(t) = ([1, . . . , n], E(t))$, and then sets $x_i(t + 1)$ to be some function of $x_i(t)$ and of the values $x_i'(t), x_i''(t), . . .$, it has just received from its own neighbors:

$$x_i(t + 1) = f_{i,G(t)}(x_i(t), x_i'(t), x_i''(t), . . .,).$$ (1)

We require each $f_{i,G(t)}$ to be a differentiable function. Each agent uses the incoming messages $x_i'(t), x_i''(t), . . .$ as the arguments of $f_{i,G(t)}$ in some arbitrary order; we assume that this order does not change, i.e. if $G(t_1) = G(t_2)$, then the message coming from the same neighbor of agent i is mapped to the same argument of $f_{i,G(t)}$ for $t = t_1$ and $t = t_2$. It is desired that

$$\lim_{t \to \infty} x_i(t) = \frac{1}{n} \sum_{i=1}^{n} x_i(0),$$ (2)

for every i, for every sequence of graphs $G(t)$ having the property that

the graph $([1, . . . , n], \bigcup_{s \geq t} E(s))$ is connected for every t, (3)

and for every possible way for the agents to map incoming messages to arguments of $f_{i,G(t)}$.

In words, as the number of rounds t approaches infinity, iteration (1) must converge to the average of the numbers $x_1(0), . . . , x_n(0)$. Note that the agents have no control over the communication graph sequence $G(t)$, which is exogenously provided by “nature.” However, as we stated previously, every element of the sequence $G(t)$ must be undirected: this corresponds to bidirectional models of communication between agents. Moreover, the sequence $G(t)$ must satisfy the mild connectivity condition of Eq. (3), which says that the network cannot become disconnected after a finite period.

Local averaging algorithms are useful tools for information fusion due to their efficient utilization of resources (each agent stores only a single number in memory) as well as their robustness properties (the sequence of graphs $G(t)$ is time-varying, and it only needs to satisfy the relatively weak connectivity condition in Eq. (3) for the convergence in Eq. (2) to hold). As far as the authors are aware, no other class of schemes for averaging (e.g., flooding, fusion along a spanning tree) is known to produce similar results under the same assumptions.

Remark 1: As can be seen from the subscripts, the update function $f_{i,G(t)}$ is allowed to depend on the agent and on the graph. Some dependence on the graph is unavoidable since in different graphs an agent may have a different number of neighbors, in which case nodes will receive a different
number of messages, so that even the number of arguments of \(f_{i,G(t)} \) will depend on \(G(t) \). It is often practically desired that \(f_{i,G(t)} \) depend only weakly on the graph, as the entire graph may be unknown to agent \(i \). For example, we might require that \(f_{i,G(t)} \) be completely determined by the degree of \(i \) in \(G(t) \). However, since our focus is on what distributed algorithms cannot do, it does not hurt to assume the agents have unrealistically rich information; thus we will not assume any restrictions on how \(f_{i,G(t)} \) depends on \(G(t) \).

Remark 2: We require the functions \(f_{i,G(t)} \) to be smooth, for the following reason. First, we need to exclude unnatural algorithms that encode vector information in the infinitely many bits of a single real number. Second, although we make the convenient technical assumption that agents can transmit and store real numbers, we must be aware that in practice agents will transmit and store a quantized version of \(x_i(t) \). Thus, we are mostly interested in algorithms that are not disrupted much by quantization. For this reason, we must prohibit the agents from using discontinuous update functions \(f_{i,G(t)} \). For technical reasons, we actually go a little further, and prohibit the agents from using non-smooth update functions \(f_{i,G(t)} \).

B. Examples.

In order to provide some context, let us mention just a few of the distributed averaging schemes that have been proposed in the literature:

1) The max-degree method [18] involves picking \(\epsilon(t) \) with the property \(\epsilon(t) \leq 1/(d(t) + 1) \), where \(d(t) \) is the largest degree of any agent in \(G(t) \), and updating by

\[
x_i(t + 1) = x_i(t) + \epsilon(t) \sum_{j \in N_i(t)} (x_j(t) - x_i(t)).
\]

Here we use \(N_i(t) \) to denote the set of neighbors of agent \(i \) in \(G(t) \). In practice, a satisfactory \(\epsilon(t) \) may not be known to all of the agents, because this requires some global information. However, in some cases a satisfactory choice for \(\epsilon(t) \) may be available, for example when an a priori upper bound on \(d(G(t)) \) is known.

2) The Metropolis method [24] involves setting \(\epsilon_{ij}(t) \) to satisfy

\[
\epsilon_{ij}(t) \leq \min\left\{ 1/(d_i(t) + 1), 1/(d_j(t) + 1) \right\},
\]

where \(d_i(t), d_j(t) \) are the degrees of agents \(i \) and \(j \) in \(G(t) \), and updating by

\[
x_i(t + 1) = x_i(t) + \sum_{j \in N_i(t)} \epsilon_{ij}(t) (x_j(t) - x_i(t)).
\]

3) The load-balancing algorithm of [17] involves updating by

\[
x_i(t + 1) = x_i(t) + \sum_{j \in N_i(t)} a_{ij}(t) (x_j(t) - x_i(t)),
\]

where \(a_{ij}(t) \) is determined by the following rule: each agent selects exactly two neighbors, the neighbor with the largest value above its own and with the smallest value below its own. If \(i, j \) have both selected each other, then \(a_{ij}(t) = 1/3 \); else \(a_{ij}(t) = 0 \). The intuition comes from load-balancing: agents think of \(x_i(t) \) as load to be equalized among their neighbors; they try to offload on their lightest neighbor and take from their heaviest neighbor.

We remark that the above load-balancing algorithm is not a “local averaging algorithm” according to our definition because \(x_i(t + 1) \) does not depend only on \(x_i(t) \) and its neighbors; for example, agents \(i \) and \(j \) may not match up because \(j \) has a neighbor \(k \) with \(x_k(t) > x_j(t) \). By contrast, the max-degree and Metropolis algorithm are indeed “local averaging algorithms.”

For each of the above algorithms, it is known that Eq. (2) holds provided the connectivity condition in Eq. (3) holds. A proof of this fact for the load-balancing algorithm is implicit in [17], and for the others it follows from the results of [14], [3].

C. Our contribution.

Our goal is to study the worst-case convergence time over all graph sequences. This convergence time may be arbitrarily bad since one can insert arbitrarily many empty graphs into the sequence \(G(t) \) without violating Eq. (3). To avoid this trivial situation, we require that there exist some integer \(B \) such that the graphs

\[
(\{1, \ldots, n\}, \cup_{i=kB}^{(k+1)B} E(k))
\]

are connected for every integer \(k \).

Let \(x(t) \) be the vector in \(\mathbb{R}^n \) whose \(i \)th component is \(x_i(t) \). We define the convergence time \(\tau(n, \epsilon) \) of a local averaging algorithm as the time until “sample variance”

\[
V(x(t)) = \sum_{i=1}^{n} \left(x_i(t) - \frac{1}{n} \sum_{j=1}^{n} x_j(0) \right)^2
\]

permanently shrinks by a factor of \(\epsilon \), i.e., \(V(x(t)) \leq \epsilon V(x(0)) \) for all \(t \geq \tau(n, \epsilon) \), for all possible \(n \)-node graph sequences satisfying Eq. (4), and all initial vectors \(x(0) \) for which not all \(x_i(0) \) are equal; \(\tau(n, \epsilon) \) is defined to be the smallest number with this property. We are interested in how \(\tau(n, \epsilon) \) scales with \(n \) and \(\epsilon \).

Currently, the best available upper bound for the convergence time is obtained with the load-balancing algorithm; in [17] it was proven that

\[
\tau(n, \epsilon) \leq C n^2 B \log \frac{1}{\epsilon},
\]

for some absolute constant\(^1\) \(C \). We are primarily interested in whether its possible to improve the scaling with \(n \) to below \(n^2 \). Are there nonlinear update functions \(f_{i,G(t)} \) which speed up the convergence time?

\(^1\)By “absolute constant” we mean that \(C \) does not depend on the problem parameters \(n, B, \epsilon \).
Our main result is that the answer to this question is “no” within the class of local averaging algorithms. For such algorithms we prove a general lower bound of the form
\[\tau(n, \epsilon) \geq cn^2 B \log \frac{1}{\epsilon}, \]
for some absolute constant c. Moreover, this lower bound holds even if we assume that the graph sequence G(t) is the same for all t; in fact, we prove it for the case where G(t) is a fixed “line graph.”

II. FORMAL STATEMENT AND PROOF OF MAIN RESULT

We next state our main theorem. The theorem begins by specializing our definition of local averaging algorithm to the case of a fixed line graph, and states a lower bound on the convergence time in this setting.

We will use the notation 1 to denote the vector in \(\mathbb{R}^n \) whose entries are all ones, and 0 to denote the vector whose entries are all 0. The average of the entries of a vector y will be denoted by \(\bar{y} \).

Theorem 1: Let \(f_1, f_n \) be two differentiable functions from \(\mathbb{R}^2 \) to \(\mathbb{R} \), and let \(f_2, f_3, \ldots, f_{n-1} \) be differentiable functions from \(\mathbb{R}^3 \) to \(\mathbb{R} \). Consider the dynamical system
\[
\begin{align*}
x_1(t+1) & = f_1(x_1(t), x_2(t)), \\
x_i(t+1) & = f_i(x_i(t), x_{i-1}(t), x_{i+1}(t)), \quad i = 2, \ldots, n-1, \\
x_n(t+1) & = f_n(x_{n-1}(t), x_n(t)).
\end{align*}
\]
Suppose that there exists a function \(\tau(n, \epsilon) \) such that
\[
\frac{\|x(t) - \bar{x}(0)\|_2}{\|x(0) - \bar{x}(0)\|_2} < \epsilon,
\]
for all \(n \) and \(\epsilon \), all \(t \geq \tau(n, \epsilon) \), and all initial conditions \(x_1(0), \ldots, x_n(0) \) for which not all \(x_i(0) \) are equal. Then,
\[
\tau(n, \epsilon) \geq \frac{n^2}{60} \log \frac{1}{\epsilon},
\]
for all \(\epsilon > 0 \) and \(n \geq 3 \).

Remark 3: The dynamical system described in the theorem statement is simply what a local averaging algorithm looks like on a line graph. The functions \(f_1, f_n \) are the update functions at the left and right endpoints of the line (which have only a single neighbor), while the update functions \(f_2, f_3, \ldots, f_{n-1} \) are the ones used by the middle agents (which have two neighbors).

Remark 4: Theorem 1 provides a lower bound on the performance of local averaging algorithms on the line graph. Naturally, it also provides a lower bound on the performance of local averaging algorithms on any class of time-varying graph sequences that includes the sequence equal to the line graph at each step.

Remark 5: Our lower bound is tight in the following sense: it is well-known that the max-degree method and the Metropolis method both achieve \(O(n^2 \log n / \epsilon) \) convergence time on the line graph (see [17] for a proof). Thus, up to logarithmic factor, it is impossible to improve the conclusion of Theorem 1.

Remark 6: Fix some \(n \geq 3 \). A corollary of our theorem is that there are no “local averaging algorithms” which compute the average in finitely many steps and whose convergence time can be upper bounded in any ball around the origin. More precisely, there is no local averaging algorithm which, starting from initial conditions \(x(0) \) in some ball around the origin, always results in \(x(t) = \bar{x} \) for all times \(t \) larger than some \(T \) which is independent of the initial condition. We will sketch a proof of this after proving Theorem 1. By contrast, the existence of such algorithms in slightly different models of agent interactions was demonstrated in [7] and [19].

A. Proof of Theorem 1

We first briefly sketch the proof strategy. We will begin by pointing out that \(\mathbf{0} \) must be an equilibrium of Eq. (5); then, we will argue that an upper bound on the convergence time of Eq. (5) would imply a similar convergence time bound on the linearization of Eq. (5) around the equilibrium of \(\mathbf{0} \). This step will rely on the smoothness of the functions \(f_1, \ldots, f_n \) to establish the relationship between the convergence time of Eq. (5) and its linearization. We will then apply a previous \(\Omega(n^2) \) convergence time lower bound for linear schemes, proved by the authors in [21], to conclude the proof.

Proof: Suppose \(f(\mathbf{0}) \). Let \(f \) be differentiable function. Consider the dynamical system
\[
\begin{align*}
x_1(t+1) & = f_1(x_1(t), x_2(t)), \\
x_i(t+1) & = f_i(x_i(t), x_{i-1}(t), x_{i+1}(t)), \quad i = 2, \ldots, n-1, \\
x_n(t+1) & = f_n(x_{n-1}(t), x_n(t)).
\end{align*}
\]
Suppose that there exists a function \(\tau(n, \epsilon) \) such that
\[
\frac{\|x(t) - \bar{x}(0)\|_2}{\|x(0) - \bar{x}(0)\|_2} < \epsilon,
\]
for all \(n \) and \(\epsilon \), all \(t \geq \tau(n, \epsilon) \), and all initial conditions \(x_1(0), \ldots, x_n(0) \) for which not all \(x_i(0) \) are equal. Then,
\[
\tau(n, \epsilon) \geq \frac{n^2}{60} \log \frac{1}{\epsilon},
\]
for all \(\epsilon > 0 \) and \(n \geq 3 \).

We use the continuity of \(f \) to get
\[
\mathbf{a}_1 = f(\lim_{t \to \infty} x(t)) = f(\mathbf{a}_1).
\]
For \(i, j = 1, \ldots, n \), we define \(a_{ij} = \frac{\partial f_i(0)}{\partial x_j} \), and the matrix
\[
A = f'(0) = \begin{pmatrix}
a_{11} & a_{12} & 0 & 0 & \cdots & 0 \\
a_{21} & a_{22} & a_{23} & 0 & \cdots & 0 \\
0 & a_{32} & a_{33} & a_{34} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & a_{n,n-1} & a_{nn}
\end{pmatrix}.
\]
Lemma 2: For any integer \(k \geq 1 \),
\[
\lim_{x \to \mathbf{0}} \frac{\|f^k(x) - A^k x\|_2}{\|x\|_2} = 0,
\]
where \(f^k \) refers to the \(k \)-fold composition of \(f \) with itself.
Proof. The fact that \(f(\mathbf{0}) = \mathbf{0} \) implies by the chain rule that the derivative of \(f^k \) at \(x = \mathbf{0} \) is \(A^k \). The above equation is a restatement of this fact.

Lemma 3: Suppose that \(x^T \mathbf{1} = 0 \). Then,
\[
\lim_{m \to \infty} A^m x = \mathbf{0}.
\]
Proof: Let \(k = \tau(n, 1/2) \). By Lemma 2, there exists a ball \(B \) around the origin such that for all \(x \in B \), with \(x \neq 0 \), we have
\[
\frac{\|f(x) - A^k x\|_2}{\|x\|_2} \leq \frac{1}{4}.
\]
Since we can scale \(x \) without affecting the assumptions or conclusions of the lemma we are proving, we can assume that \(x \in B \). It follows that
\[
\frac{\|A^k x\|_2}{\|x\|_2} = \frac{\|A^k x - f(x) + f(x)\|_2}{\|x\|_2} \leq \frac{1}{4} + \frac{\|f(x)\|_2}{\|x\|_2} \leq \frac{1}{4} + \frac{\|x\|}{\|x\|} = \frac{3}{4}.
\]
Since this inequality implies that \(A^k x \in B \), we can apply the same argument recursively to get
\[
\lim_{m \to \infty} (A^k)^m x = 0,
\]
which implies the conclusion of the lemma. \(\blacksquare \)

Lemma 4: \(A1 = 1 \).

Proof: We have
\[
A1 = \lim_{h \to 0} \frac{f(0 + h1) - f(0)}{h} = \lim_{h \to 0} \frac{h1}{h} = 1,
\]
where we used Lemma 1. \(\blacksquare \)

Lemma 5: For every vector \(x \in \mathbb{R}^n \),
\[
\lim_{k \to \infty} A^k x = \bar{x}1,
\]
where \(\bar{x} = (\sum_{i=1}^n x_i)/n \).

Proof: Every vector \(x \) can be written as
\[
x = \bar{x}1 + y,
\]
where \(y^T1 = 0 \). Thus,
\[
\lim_{k \to \infty} A^k x = \lim_{k \to \infty} A^k (\bar{x}1 + y) = \bar{x}1 + \lim_{k \to \infty} A^k y = \bar{x}1,
\]
where we used Lemmas 3 and 4. \(\blacksquare \)

Lemma 6: The matrix \(A \) has the following properties:
1) \(a_{ij} = 0 \) whenever \(|i - j| > 1 \).
2) The graph \(G' = (\{1, \ldots, n\}, E') \), with \(E' = \{(i, j) \mid a_{ij} \neq 0\} \), is strongly connected.
3) \(A1 = 1 \) and \(1^T A = 1^T \).
4) An eigenvalue of \(A \) of largest modulus has modulus 1.
5) \(A \) has an eigenvector \(v \), with real eigenvalue \(\lambda \in (1 - \frac{6}{n^2}, 1) \), such that \(v^T1 = 0 \).

Proof:
1) True because of the definitions of \(f \) and \(A \).
2) Suppose not. Then, there is a nonempty set \(S \subset \{1, \ldots, n\} \) with the property that \(a_{ij} = 0 \) whenever \(i \in S \) and \(j \in S^c \). Consider the vector \(x \) with \(x_i = 0 \) for \(i \in S \), and \(x_j = 1 \) for \(j \in S^c \). Clearly,
\[
(1/n) \sum_i x_i > 0, \text{ but } (A^k x)_i = 0 \text{ for } i \in S. \text{ This contradicts Lemma 5.}
\]
Note that we cannot begin by assuming the graph the graph \(G' \) is undirected (although it is true as a consequence of this lemma, as we will remark below).
3) The first equality was already proven in Lemma 4. For the second, let \(b = 1^TA \). Consider the vector
\[
z = \lim_{k \to \infty} A^k e_i,
\]
where \(e_i \) is the \(i \)th unit vector. By Lemma 5,
\[
z = 1^T e_i 1 = \frac{1}{n}
\]
on the other hand,
\[
\lim_{k \to \infty} A^k e_i = \lim_{k \to \infty} A^k e_i = \lim_{k \to \infty} A^k (Ae_i).
\]
Applying Lemma 5 again, we get
\[
z = \frac{1^T(Ae_i)1}{n} = \frac{b_i}{n},
\]
where \(b_i \) is the \(i \)th component of \(b \). We conclude that \(b_i = 1 \); since no assumptions was made on \(i \), this implies that \(b = 1 \), which is what we needed to show.
4) We already know that \(A1 = 1 \), so that an eigenvalue with modulus 1 exists. Now suppose there is an eigenvalue with larger modulus, that is, there is some vector \(x \in \mathbb{C}^n \) such that \(Ax = \lambda x \) and \(|\lambda| > 1 \). Then \(\lim_{k \to \infty} \|A^k x\|_2 = \infty \). By writing \(x = x_{\text{real}} + ix_{\text{imaginary}} \), we immediately have that \(A^k x = A^k x_{\text{real}} + iA^k x_{\text{imaginary}} \). But by Lemma 5 both \(A^k x_{\text{real}} \) and \(A^k x_{\text{imaginary}} \) approach some finite multiple of \(1 \) as \(k \to \infty \), so \(\|A^k x\|_2 \) is bounded above. This is a contradiction.
5) The following fact is a combination of Theorems 4.1 and 6.1 in [21]: Consider an \(n \times n \) matrix \(A \) such that \(a_{ij} = 0 \) whenever \(|i - j| > 1 \), and such that the graph with edge set \(\{(i, j) \mid a_{ij} \neq 0\} \) is connected. Let \(\lambda_1, \lambda_2, \ldots \) be its eigenvalues in order of decreasing modulus. Suppose that \(\lambda_1 = 1 \), \(A1 = 1 \), and \(\pi^T A = \pi^T \), for some vector \(\pi \) satisfying \(\sum_i \pi_i = 1 \), and \(\pi_i \geq 1/(Cn) \) for some positive \(C \) and for all \(i \). Then, \(A \) has a real eigenvalue in \((1 - 6C/n^2, 1) \). Furthermore, the corresponding right eigenvector is orthogonal to \(1 \), since right-eigenvectors of a matrix are orthogonal to left-eigenvectors with different eigenvalues.
By parts 1-4, all the assumptions of the result from [21] are satisfied with \(\pi = 1/n \) and \(C = 1 \), thus completing the proof of the lemma. \(\blacksquare \)

Remark 7: An alternative proof of part 5 is possible. One can argue that parts 1 and 3 force \(A \) to be symmetric, and that Lemma 5 implies that the elements \(a_{ij} \) must be nonnegative.

The reference [21] proves that an eigenvalue lies in \((1 - c_1 C/n^2, 1) \) for some absolute constant \(c_1 \). By tracing through the proof, we find that we can take \(c_1 = 6 \).
Once these two facts are established, the results of [4] will then imply an eigenvalue has to lie in $(1 - c/n^2, 1)$, for a certain absolute constant c.

Proof of Theorem 1: Let v be an eigenvector of A with the properties in part 5 of Lemma 6. Fix a positive integer k. For any $\epsilon^*>0$, we can pick $x \neq 0$ to be a small enough multiple of v so that
\[
\frac{\|f^k(x) - A^kx\|_2}{\|x\|_2} \leq \epsilon^*.
\]
This is possible by Lemma 2. Then, we have
\[
\frac{\|f^k(x)\|_2}{\|x\|_2} - \epsilon^* \geq \left(1 - \frac{6}{n^2}\right)^k - \epsilon^*.
\]
Using the orthogonality property $x^T 1 = 0$, we have $\bar{x} = 0$, and
\[
\sup_{y \in \mathbb{R}^n} \frac{\|f^k(y) - \bar{y}1\|_2}{\|y - \bar{y}1\|_2} \geq \frac{\|f^k(x)\|_2}{\|x\|_2} \geq \left(1 - \frac{6}{n^2}\right)^k - \epsilon^*.
\]
Now at time $k = \tau(n, \epsilon)$, the left-hand side is at most $\sqrt{\epsilon}$ by definition, so that
\[
\sqrt{\epsilon} \geq \left(1 - \frac{6}{n^2}\right)^{\tau(n, \epsilon)} - \epsilon^*,
\]
and letting $\epsilon^* \to 0$, we obtain
\[
\sqrt{\epsilon} \geq \left(1 - \frac{6}{n^2}\right)^{\tau(n, \epsilon)}.
\]
Since $n \geq 3$, we have $1 - 6/n^2 \in (0, 1)$, and
\[
\tau(n, \epsilon) \geq \frac{1}{\log(1 - 6/n^2)} \log \sqrt{\epsilon}.
\]
Now using the bound $\log(1 - \alpha) \geq 5(\alpha - 1)$ for $\alpha \in [0, 2/3)$, we get
\[
\tau(n, \epsilon) \geq \frac{n^2}{60} \log \frac{1}{\epsilon}.
\]
\[\text{q.e.d.}\]

Remark 8: We now sketch the proof of the claim we made earlier that a local averaging algorithm cannot average in infinitely many steps and have a convergence time which is bounded in a small ball around the origin. Fix $n \geq 3$. Suppose that for any $x(0)$ in some ball B around the origin, a local averaging algorithm results in $x(t) = \bar{x}1$ for all $t \geq T$, where T is independent of $x(0)$.

The proof of Theorem 1 shows that given any $k; \epsilon > 0$, one can pick a vector $v(\epsilon)$ so that if $x(0) = v(\epsilon)$ then $V(x(k))/V(x(0)) \geq (1 - 6/n^2)^k - \epsilon^2$. Moreover, the vectors $v(\epsilon)$ can be chosen to be arbitrarily small. One simply picks $k = T$ and $\epsilon < (1 - 6/n^2)^k$ to get that $x(T)$ is not a multiple of 1; and furthermore, picking $v(\epsilon)$ small enough in norm to be in B results in a contradiction.

Remark 9: Theorem 1 gives a lower bound on how long we must wait for the squared 2-norm $\|x(t) - \bar{x}1\|_2^2$ to shrink by a factor of ϵ. What if we replace the 2-norm with other norms, for example with the ∞-norm? Since $B_\infty(0, r/\sqrt{n}) \subset B_2(0, r) \subset B_\infty(0, r)$, it follows that if the ∞-norm shrinks by a factor of ϵ, then the 2-norm must shrink by at least $\sqrt{n}\epsilon$. Since ϵ only enters the lower bound of Theorem 1 logarithmically, the answer only changes by a factor of $\log n$ in passing to the ∞-norm. Similarly, since for any $p > p' \geq 1$, $B_p(0, 1) \subset B_{p'}(0, r) \subset B_p(0, r')$, the same argument shows that, modulo some logarithmic factors, we can replace $p = 2$ with any other p-norm.

III. Conclusions

We have proved a lower bound on the convergence time of local averaging algorithms which scales quadratically in the number of agents. This lower bound holds even if all the communication graphs are equal to a fixed line graph. Our work points to a number of open questions.

1. Is it possible to loosen the definition of local averaging algorithms to encompass a wider class of algorithms? In particular, is it possible to weaken the requirement that each $f_i(t)$ be smooth, perhaps only to the requirement that it be piecewise-smooth or continuous, and still obtain an $\Omega(n^2)$ lower bound?

2. Does the worst-case convergence time change if we introduce some memory and allow $x_i(t+1)$ to depend on the last k sets of messages received by agent i? Alternatively, there is the broader question of how much is there to be gained if every agent is allowed to keep track of extra variables. Some positive results in this direction were obtained in [11].

3. What if each node maintains a small number of update functions, and is allowed to choose which of them to apply? Our lower bound does not apply to such schemes, so it is an open question whether its possible to design practical algorithms along these lines with worst-case convergence time scaling better than n^2.

References

resource allocation in real-time systems,” Proceedings of the 47th IEEE
Conference on Decision and Control, Cancun, Mexico, 2008.
autonomous agents using nearest neighbor rules,” IEEE Transactions
Proceedings of Infocom, Hong Kong, March 2004.
abs/cs.MA/0407021.
munication links,” IEEE Transactions on Automatic Control, 50(2):169-
182, 2005.
distributed averaging algorithms and quantization effects,” IEEE Trans-
of agents with switching topology and time-delays,” IEEE Trans. on
graphs with time-invariant topologies,” Proceedings of the American
coverage control,” Proceedings of International Conference on Robotics
[21] A. Olshervsky, J.N. Tsitsiklis, “Convergence speed in distributed con-
sensus and averaging,” SIAM Journal on Control and Optimization,
[22] J. N. Tsitsiklis, D. P. Bertsekas and M. Athans, “Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms,”
[23] F. Wuhid, R. Stadler, M. Dam, “Gossiping for threshold detection,
” Proceedings of the 11th IFIP/IEEE international conference on
fusion based on average consensus,” Proceedings of International
Conference on Information Processing in Sensor Networks, April 2005,
p63-70, Los Angeles, 2005.