Oversampling transmit and receive antenna arrays

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/ICASSP.2010.5496305</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Mar 28 18:04:24 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/73551</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
OVERSAMPLING TRANSMIT AND RECEIVE ANTENNA ARRAYS

Chen-Pang Yeang
IHPST, Univ. Toronto, ON, Canada
chenpang.yeang@utoronto.ca

ABSTRACT
A dense antenna array architecture is developed to ease the circuit requirements of the radio frequency (RF) front-end in beamforming applications. In the architecture, antennas are spaced more closely than would otherwise be required to exploit the available degrees of freedom. Such an array structure is analogous to temporally oversampled data conversion systems, which have reduced quantizer resolution requirements. For a linear, uniformly-spaced array, we develop a spatial-domain version of \(\Delta \Sigma \) quantization, and show that with binary quantization for the in-phase and quadrature components of antenna weights, even relatively modest amounts of oversampling can reproduce beamforming patterns of interest to practically useful levels of accuracy.

Index Terms—Phased-arrays antennas, \(\Delta \Sigma \) quantization, array processing, RF circuits, millimeter-wave imaging, wireless communication

1. INTRODUCTION
Recent progress in millimeter-wave and microwave integrated circuit (IC) manufacturing technology has created new opportunities for the development of novel, low-cost antenna array architectures. Indeed, the ability to integrate miniature microstrip antennas has expanded the realm of applications for antenna arrays to a variety of embedded communication and sensing systems. In such systems, the associated specifications on RF components such as phase-shifters, oscillators, and amplifiers, can be challenging to meet in a cost-effective manner. In this paper, we develop a dense antenna array to ease such RF circuit requirements without sacrificing performance, and demonstrate its effectiveness for transmit and receive beamforming in phased-array applications.

2. THE TRADITIONAL ARRAY ARCHITECTURE
In a traditional uniform linear array, an aperture of length \(L \) is formed from a collection of antenna elements, adjacent pairs of which are spaced \(d \) apart. The nominal spacing between elements is \(d = \lambda / 2 \). Provided that elements are at least as close as this nominal spacing, the maximum number of available degrees of freedom offered by the aperture can be realized, and, in phased-array applications in particular, grating lobes in beamforming patterns can be avoided. Thus, since \(L = (N-1)d \), the minimum number of antenna elements required is typically \(N_o = 1 + 2L/\lambda \).

With the associated antenna array architecture, depicted in Fig. 1, a beam pattern can be formed by choosing antenna element weights \(w_n = a_n e^{i\theta_n} \). This is implemented via \(N \) amplitude attenuators and \(N \) phase shifters. At the transmitter, the RF signal passes through such a beamformer, whose \(N \) outputs are directed to \(N \) power amplifiers and then \(N \) antennas. At the receiver, the \(N \) antenna signals that result from the incoming wave pass through \(N \) low-noise amplifiers, are phase-shifted, amplitude-adjusted, and superimposed via the beamformer to form the output signal. The associated transmitter and receiver array radiation patterns are, respectively,

\[
B^T(\psi) = \sum_{n=1}^{N} w_n e^{-jkn d \cos \psi}, \quad B^R(\psi) = \sum_{n=1}^{N} w_n e^{jkn d \cos \psi},
\]

where \(k = 2\pi/\lambda \) is the wave number and \(\psi \) is the target angle of radiation. Note that the narrowest beam that can be formed by such processing has main lobe width proportional to \(\lambda / L \) when \(N > N_o \), where the constant of proportionality does not depend on \(N \). Additional antenna elements do not further improve the array’s resolution, regardless of how the \(w_n \) are chosen [1].

The classical array architecture poses challenges to circuit design and device technology. Accuracy of the array radiation patterns in (1) depends on the accuracy with which \(\{\theta_n\} \) and \(\{a_n\} \) are implemented. This implies that the phase shifters in the beamformers must be implemented with high resolution. Moreover, the power amplifiers at the transmitter must have high linearity. (Linearity is less a problem for low-noise amplifiers at the receiver as they are less likely to get saturated by the weak input.) Although a variety of approaches have been proposed to improve the precision of these components, most remain expensive and complicated; see, e.g., [2–7]. For example, phase shifting might be accurately performed at the baseband with all-digital circuitry. But in such a scheme, all the array signals have to be up-converted to RF band after phase-shifting (at the transmitter) or undergo down-conversion from RF before phase shifting (at the receiver). This means the phase relations between the array signals must be preserved through up-conversion or down-conversion, which imposes challenging phase noise requirements on the associated mixers.

3. AN OVERSAMPLING ARRAY ARCHITECTURE
In contrast with the traditional architecture, we consider packing more antennas \(N \) in the given aperture than would otherwise be required, i.e., \(N > N_o \), for both transmit and receive array configurations. This density is then exploited in a manner analogous to the way temporal oversampling is exploited in data converter design. In particular, just as sampling at a rate exceeding that dictated by the Nyquist criterion reduces quantization resolution requirements, the dense array uses \(N \) lower-quality RF components instead of \(N_o \) higher quality ones.
3.1. Spatial $\Delta \Sigma$ Quantization

To reduce our RF component specifications, we constrain our system to use coarsely quantized versions of the weights w_n, and exploit the oversampling to minimize the effect of such quantization. In particular, we exploit the principle of $\Delta \Sigma$ quantization [8] by directly translating it to the spatial domain. (For other rather different multidimensional extensions of $\Delta \Sigma$ quantization motivated by image processing and space-time coding, see, e.g., [9–11].)

The spatial $\Delta \Sigma$ architecture is depicted in Fig. 2, and involves creating a sequence of quantized weights v_n that “act” in a manner asymptotically indistinguishable from the desired weights w_n. The associated processing proceeds as follows. At the nth antenna, we obtain the difference between the desired weight w_n, and its counterpart v_n at the output of the corresponding quantizer, corresponding to the Δ part of the structure. We then add that difference to the input of the nth quantizer, corresponding to the Σ part of the structure. The result is then quantized using 4-PSQ (phase-shift quantization, where the input is quantized to a constant amplitude and one of four phases: 0°, 90°, 180°, 270°), which corresponds to quantizing each of the in-phase and quadrature components to a single bit. As such only crude 4-angle phase shifters and (nonlinear) bilevel power amplifiers are required in the RF front-end.

![Fig. 2](image_url). The spatial $\Delta \Sigma$ architecture at the transmitter. The corresponding receiver architecture is obtained by reversing the beamformer to have multiple inputs and a single output, i.e., the nth antenna input from the low-noise amplifier is mixed with v_n, then all such terms are summed.

4. RESULTS

In this section, we sketch some of the associated analysis of the dense-antenna architecture, present some simulation results, and discuss some implementation issues.

4.1. Analysis

Spatial $\Delta \Sigma$ oversampling can be understood in a manner analogous to the way traditional temporal $\Delta \Sigma$ oversampling is understood. In the latter, a time series $\{w_n\}$ is quantized into another time series $\{v_n\}$, from which one can recover $\{w_n\}$ by low-pass filtering. That recovery is possible follows from the fact that the feedback structure of $\Delta \Sigma$ forces the average value of the quantized output to track the average input, which has the advantage of suppressing the quantization error spectrum at low frequencies. Similar behavior takes place in the case of our spatial $\Delta \Sigma$ scheme. To see how the associated spatial low-pass filtering arises, note that the transmit and receive array patterns $B^T(\psi)$ and $B^R(\psi)$ in (1) are effectively the Fourier transforms of the weights $\{w_n\}$ or $\{v_n\}$ at the spatial frequency $\omega = k \omega_0 \cos \psi = k \omega_0 \cos \psi / (N - 1)$. Hence, $\omega \to 0$ as $N \to \infty$, i.e., the beamforming operation itself provides the required spatial low-pass filtering.

Ignoring mutual coupling between antennas for the moment, one can show formally that (for transmit arrays)

\[\hat{B}^T(\psi) - B^T(\psi) = O \left(\frac{1}{\sqrt{N}} \right), \tag{2} \]

where

\[\hat{B}^T(\psi) = \sum_{n=1}^{N} v_n e^{-j n k d \cos \psi}. \tag{3} \]

The corresponding receive array expressions $\hat{B}^R(\psi) - B^R(\psi)$ are obtained by replacing j with $-j$.

![Fig. 1](image_url). The classical antenna array architecture.
A rough sketch of the derivation of (2) is as follows, and mirrors
the familiar $\Delta \Sigma$ analysis. The transmitter architecture illustrated in
Fig. 2 leads to

$$v_n = w_n + \tilde{e}_n - \tilde{e}_{n-1},$$

where \tilde{e}_n is the quantization error. Substituting the above v_n into
(3), we obtain

\[
\begin{align*}
\tilde{B}^T(\psi) &= \left. \sum_{n=1}^{N} e^{-jnkd \cos \psi} w_n \right|_{w_n = \overline{\tilde{e}}_n - \overline{\tilde{e}}_{n-1}} \\
&+ (1 - e^{-jnkd \cos \psi}) \sum_{n=1}^{N} e^{-jnkd \cos \psi} \tilde{e}_n \\
&+ e^{-j(N+1)kd \cos \psi} \tilde{e}_N
\end{align*}
\]

(4)

The first term in (4) has magnitude equal to $B^T(\psi)$. For large N, the
contribution from the third term in (4) is negligible, and thus to verify
that $B^T(\psi)$ approaches $B^T(\psi)$ in the limit of large N, it suffices to
argue that the second-term in (4) also vanishes asymptotically. To
this end, we have

\[
\begin{align*}
N \left(1 - e^{-jnkd \cos \psi} \right)^2 \sum_{n,m=1}^{N} e^{-jnkd \cos \psi} \tilde{e}_n \tilde{e}_m^* \\
&= N \left(1 - e^{-jnkd \cos \psi} \right)^2 \sum_{n,m=1}^{N} e^{-jnkd \cos \psi} \tilde{e}_n \tilde{e}_m^* \\
&= (1 - e^{-jnkd \cos \psi}) (1 - e^{-jnkd \cos \psi}) N^2 \sigma_e^2 \\
&\rightarrow k^2 \cos^2 \theta \lambda^2 \sigma_e^2 \quad \text{as} \quad N \rightarrow \infty,
\end{align*}
\]

(5)

where we have used that the quantization errors are uncorrelated, i.e.,
$\langle \tilde{e}_n \tilde{e}_m^* \rangle = \sigma_e^2 \delta_{n,m}$ and $d = \lambda/(N - 1)$. A very similar argument
yields the associated receive array result.

The above analysis does not consider the effect of mutual coupling
between antennas in the array. In additional analysis, we incorpo-
rate mutual coupling effects on the array radiation patterns by
deriving from the S-parameter formulation modifications of (1) in-
volving the array’s impedance matrix. And we compute all entries of
the impedance matrix via the induced EMF method [12, 13].

4.2. Simulation

Figs. 3 and 4 show the simulated array pattern error $\|\tilde{B} - B\|$ as a
function of the oversampling ratio N/N_c without and with mutual
coupling, respectively, in the case of a phased array. The (normal-
ized) array pattern errors are averaged over the radiation angle ψ and
array weights $w_n = e^{jn \theta_0}$ with various θ_0. The wavelength is $\lambda = 3$
cm and the overall array aperture is $L = 5\lambda = 15 \mathrm{cm}$. In the com-
putation of mutual coupling, the antennas are modeled as cylindrical
radiators with radius $1 \mathrm{~mm}$ and length $1 \mathrm{~cm}$. As Fig. 3 reflects, the
quantization error of array patterns generally decays with the num-
ber of antennas, ultimately approaching the $1/\sqrt{N}$ asymptote.

Note that the curve is not smooth. This is likely due to the fact
that we do not take samples of antenna weights $\{w_n\}$ over many
values. We only restrict the possibilities to the phased-array cases
$w_n = e^{jn \theta_0}$, which are the most relevant to beamforming. More-
over, we only average over N_c distinct values of θ_0. Thus when
N is small, the total number of data points (over distinct n and θ_0)
are really too few to warrant the law of large numbers and accord-
ingly to smooth the quantization errors. Increasing the number of

θ_0 within the range of $[0, \pi]$ does not significantly smooth the curve,
either, for the beam patterns become highly overlapped and hence
correlated with one another as the number of samples of θ_0 exceeds
N_c.

Fig. 4 shows that antenna mutual coupling does incur some
penalty in convergence rate of the beam pattern quantization error.
While a detailed analysis is ongoing, we have found that the mutual
coupling effect on pattern errors can be reduced to a multiplicative
factor for large N, owing to the antenna impedance matrix’s Toeplitz
structure, i.e., $B^{\text{coupled}}(\psi) \approx C(\psi)B^{\text{uncoupled}}(\psi)$. Our calculations
indicate that $C(\psi)$ slowly converges to a fairly flat pattern as N be-
comes large. In any case, the benefits of oversampling are apparent in
this analysis as well.

Fig. 5 compares the actual radiation patterns of ideal phased ar-
rays and $\Delta \Sigma$ quantized phased arrays with mutual coupling. Two
particular values of oversampling ratio are chosen: (a) $N/N_c = 1.5$, and
(b) $N/N_c = 11.6$. Each plot shows seven distinct ideal phased-
array patterns with roughly non-overlapping mainlobes and the cor-
responding quantized, mutually coupled patterns. As is apparent,
the quantized patterns closely approximate the target patterns even
for modest amounts of spatial oversampling.
D. H. Staelin, *receivers, antennas, and signals* (course notes), No. 20, “Basic radar ambiguity,” MIT OpenCourseWare.

