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Abstract—For Gaussian graphical models with cycles, loopy
belief propagation often performs reasonably well, but its con-
vergence is not guaranteed and the computation of variances is
generally incorrect. In this paper, we identify a set of special
vertices called a feedback vertex set whose removal results in a
cycle-free graph. We propose a feedback message passing algo-
rithm in which non-feedback nodes send out one set of messages
while the feedback nodes use a different message update scheme.
Exact inference results can be obtained in O(k2n), where k is the
number of feedback nodes and n is the total number of nodes. For
graphs with large feedback vertex sets, we describe a tractable
approximate feedback message passing algorithm. Experimental
results show that this procedure converges more often, faster,
and provides better results than loopy belief propagation.

Index Terms—Gaussian graphical models, belief propagation,
loopy graphs, feedback vertex set

I. INTRODUCTION

In graphical models each node represents a random variable

and the edge structure specifies the conditional independence

or Markov properties of the underlying distribution [1]. Such

models are widely used in many fields such as computer

vision, gene regulatory networks, oceanography, and medical

diagnostics. Although inference in Gaussian graphical models

can be solved by direct matrix inversion, it is intractable for

very large problems involving millions of random variables

[2]. Therefore, it is of great importance to develop efficient

inference algorithms.

Belief propagation (BP) is an efficient message passing

algorithm that gives exact inference results in linear time

for tree-structured graphs. However, trees possess limited

modeling capabilities, and many real world processes cannot

be modeled using graphs without cycles.

For inference in loopy graphs, loopy belief propagation

(LBP) can be used as a direct extension of BP by follow-

ing the same local message passing rules. It turns out that

LBP performs reasonably well for certain loopy graphs [3].

However, the convergence and correctness of LBP are not

guaranteed in general, and many studies have been conducted

on the performance of LBP [4]–[7]. For Gaussian graphical

models if LBP converges, the means converge to the correct

values while the variances are generally incorrect [5]. In [7] an
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0076, by AFOSR under Grant FA9550-08-1-1080 and MURI Grant FA9550-
06-1-0324.

analysis framework based on walk-sums is proposed to analyze

the performance of LBP in Gaussian graphical models.

A desirable property of LBP is that it is completely dis-

tributed. However, LBP has its limitations: only local infor-

mation is used in updating messages and all nodes are treated

equally. Global information of the cyclic structure of the graph

is not captured and thus errors and convergence problems may

occur. One can ask some natural questions: can we use some

more memory to keep track of the messages or use some

header information to denote the sources of the messages?

Are there some nodes that are more important in terms of

inference? Can we design an algorithm accordingly without

losing too much decentralization?

We consider a particular set of “important” nodes called

the feedback vertex set. A feedback vertex set is a subset

of vertices that breaks all the cycles in the graph. Based on

this concept, we propose an algorithm for Gaussian graphical

models. The algorithm includes several message passing steps.

The whole procedure takes linear time to obtain the exact

means and variances for all nodes if the number of feedback

nodes is bounded by a constant. When this number is large,

we use an approximate feedback message passing algorithm to

obtain approximate inference results, which trades off between

efficiency and accuracy.

II. BACKGROUND

A. Gaussian Graphical Models

A Gaussian distribution is given by p(x) ∝ exp{− 1
2x

T Jx+
hT x}, where J is called the information, precision or con-
centration matrix and h is called the potential vector. The

relationship with the mean μ = E{x} and the covariance

matrix P = E{(x−μ)(x−μ)T } is given by μ = J−1h and

P = J−1. For a valid probability distribution, J is symmetric

and positive definite.

In a Gaussian graphical model, a graph G = (V, E) is used

to represent the underlying structure, where V indexes the

variables and E specifies the conditional independence [1].

If there is no edge between two nodes, the corresponding

variables are independent conditioned on all other variables.

The information matrix J is sparse with respect to the graph G:

∀(i, j) /∈ E , Jij = 0, which means the conditional properties

can be read immediately from the matrix J . Inference in

Gaussian graphical models is the problem of calculating the

variance Pii and the mean μi for every node i given J and h.
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B. Belief Propagation on Trees and Loopy Graphs

BP is a distributed message passing algorithm that passes

messages between neighboring nodes [8]. Each message is

updated according to the messages received from other neigh-

bors. After the messages converge, each node calculates its

own variance and mean based on the incoming messages.

BP on tree-structured models is guaranteed to converge in

a finite number of steps and gives the exact inference results

in linear time. For Gaussian graphical models, the messages

can be represented in terms of information parameters. Here

is a summary:

Step 1: Message Passing

Each node i sends messages ΔJi→j and Δhi→j to every

j ∈ N (i), where N (i) denotes the set of i’s neighbors:

ΔJi→j = −JjiĴ
−1
i\j Jij , Δhi→j = −JjiĴ

−1
i\j ĥi\j ,

where

Ĵi\j = Jii +
∑

k∈N (i)\j

ΔJk→i, ĥi\j = hi +
∑

k∈N (i)\j

Δhk→i.

Step 2: Marginal Computation

After the messages converge, every node calculates

Ĵi = Jii +
∑

k∈N (i)

ΔJk→i, ĥi = hi +
∑

k∈N (i)

Δhk→i,

which can be converted to the mean and variance by μi =
Ĵ−1

i ĥi and Pii = Ĵ−1
i .

Loopy belief propagation is a direct extension of BP for

loopy graphs. It uses the same message update rule locally as

BP and neglects the existence of cycles. LBP is not guaranteed

to converge in general; if it does converge, it gives the exact

means but inaccurate variances.

C. Feedback Vertex Set

A feedback vertex set (FVS), sometimes also called a loop

cutset, is defined as a set of vertices whose removal results in

an acyclic graph [9]. For instance, node 1 in Fig 1(a) forms

an FVS by itself.

For a general graph, finding the FVS of the minimum
size (the minimum FVS) is proved to be NP-complete [10].

However, for many special graph structures, optimal or near

optimal solutions can be found efficiently or even in linear

time [11]–[13]. In addition, for general graphs there exists an

efficient approximate algorithm to find an FVS with size at

most twice the minimum size [14].

In this paper we use F to denote an FVS and call the nodes

in F the feedback nodes. We use T = V\F to denote the non-

feedback nodes. The subgraph induced by T can either be a

tree or a forest.

III. FEEDBACK MESSAGE PASSING

The high level idea of the feedback message passing algo-

rithm is to obtain inference results for the feedback nodes first

and make corrections for the non-feedback nodes later. First

we start with the case in which a single feedback node breaks

all the cycles. Then we describe the general algorithm when

multiple feedback nodes are used.

A. The Single Feedback Node Case

Consider the loopy graph shown in Fig. 1(a). Let J and

h be the information matrix and potential vector respectively.

In this graph every cycle passes through node 1, which is

thus a feedback node for the graph. Let N (1) denote the set

of neighboring nodes of node 1 and T denote the subgraph

excluding node 1. The feedback message passing algorithm

has the following steps:

Step 1: Initialization

A new potential vector h1 on T is constructed, where h1
i =

J1i, ∀i ∈ N (1) and h1
i = 0, ∀i /∈ N (1), i �= 1. This new

potential vector captures some of node 1’s effects on T so

that nodes in T can process this information. See Fig. 1(b)

for illustration.

Step 2: First round of BP

BP is performed on T with JT and hT , where JT and hT
are the corresponding submatrix and subvector of J and h
respectively. After convergence each node i obtains its “partial

variance” P T
ii and its “partial mean” μT

i . Note that these

results are not accurate since they only capture local structures

within T without considering the effects of node 1.

The information of node 1 is calculated by performing BP

on T with the information matrix JT and the new potential

vector h1. Each node i on T will obtain a feedback gain g1
i ,

where g1
i = (J−1

T h1)i given by BP.

In practice we run BP only once with one information

matrix JT and two potential vectors hT and h1. We also put

the header information “1” into the messages related to h1 to

denote the source of the messages. Therefore, each node on

T knows the messages for the “partial variance” and “partial

mean”, as well as the messages for the feedback gain.

Step 3: Inference for the feedback node

The feedback node 1 collects the feedback gains from its

neighbors as shown in Fig. 1(d). Node 1 then calculates the

variance and mean for itself:

P11 = (J11 −
∑

j∈N (1)

J1jg
1
j )−1,

μ1 = P11(h1 −
∑

j∈N (1)

J1jμ
T
j ).

These two results are the exact variance and exact mean

for node 1. The exactness results from the fact that node 1
breaks all the cycles in the graph, and can be proved by matrix

manipulation.

Step 4: Revising the potential vector

After the feedback node 1 obtains its own variance and

mean, it passes the results to other nodes in order to correct

their inaccurate “partial variances” P T
ii and “partial means”

μT
i as computed in Step 2 (see Fig. 1(e)). The neighbors of

node 1 revise their node potentials as follows:

h̃j =
{

hj − J1jμ1, ∀j ∈ N (1)
hj , ∀j /∈ N (1)
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(a) A loopy graph (b) Message initializa-
tion

(c) First BP

(d) Forward messages (e) Feedback messages (f) Final BP

Fig. 1. A feedback message passing example

The revised potential vector h̃T will be used in another round

of BP.

Step 5: Final round of BP

BP is performed on T with JT and the revised potential

vector h̃T (see Fig. 1(f)). The means we obtain are the exact
means. The exact variances can be computed by

Pii = P T
ii + P11(g1

i )2, ∀i ∈ T ,

where P T
ii is the inaccurate “partial variance” computed in

Step 2 and g1
i is the feedback gain computed in Step 3.

The results are exact because node 1 breaks all the cycles.

The feedback messages from node 1 cancel out the cyclic

effects caused by node 1 by revising the potential vector on

T and adding correction terms.

B. Feedback Message Passing for General Graphs

For general graphs an FVS may have multiple nodes. In

[14] a factor 2 approximate algorithm is proposed to find an

FVS of size at most two times the minimum size.

The feedback message passing algorithm with multiple

feedback nodes is essentially the same as the single feedback

node case. Without loss of generality, we order the nodes such

that the feedback nodes are the first k nodes, where k is the

size of the FVS. Here we briefly explain the differences and

summarize the algorithm in Fig. 2.

In Step 1 and Step 2, the difference is that k extra potential

vectors similarly defined are used instead of just one. In Step

3, solving an inference problem on a graph with k nodes is

required. In Step 4 and Step 5, the variances are corrected

by adding multiple correction terms corresponding to all the

feedback nodes.

C. Accuracy and Complexity

The feedback message passing algorithm described in Fig.

2 gives exact means and variances. We have the following

result:

Result 1: The feedback message passing algorithm con-

verges in O(k2n) time and gives the exact means and vari-

Input: information matrix J , potential vector h and feedback

vertex set F of size k
Output: mean μi and variance Pii for every node i

1. Construct k extra potential vectors: ∀p ∈ F ,hp = JT ,p,

each corresponding to one feedback node.

2. Perform BP on T with JT , hT to obtain P T
ii = (J−1

T )ii

and μT
i = (J−1

T hT )i for each i ∈ T . With the k
extra potential vectors, calculate the feedback gains

g1
i = (J−1

T h1)i, g
2
i = (J−1

T h2)i, . . . , g
k
i = (J−1

T hk)i

for i ∈ T by BP .

3. Obtain a size k subgraph with ĴF and ĥF given by

(ĴF )pq = Jpq −
∑

j∈N (p)∩T
Jpjg

q
j , ∀p, q ∈ F

(ĥF )p = hp −
∑

j∈N (p)∩T
Jpjμ

T
j , ∀p ∈ F ,

and solve the inference problem on the small graph by

PF = Ĵ−1
F , μF = Ĵ−1

F ĥF .

4. Revise the potential vector on T by

h̃i = hi −
∑

j∈N (i)∩F
Jijμ

F
j , ∀i ∈ T .

5. Another round of BP with the revised potential vector

h̃T gives the exact means for nodes on T .

Add correction terms to obtain the exact variances for

nodes in T :

Pii = P T
ii +

∑
p∈F

∑
q∈F

gp
i PF

pqg
q
i , ∀i ∈ T .

Fig. 2. Feedback message passing algorithm for general graphs

ances for all nodes, where k is the size of the FVS and n is

the total number of nodes.

The proof is provided in a longer version of this paper, and

essentially follows from Gaussian elimination in a carefully

designed order.

If the size of the FVS is bounded by a constant, the means

and variances can be computed exactly in linear time. If the

size of the FVS is unbounded but grows much slower than

the graph size, e.g., if the size of the FVS is O(log n), the

algorithm is still much faster than direct matrix inversion .

As stated in [14] the complexity of the factor 2 approximate

algorithm to find an FVS is O(min{m log n, n2}), where m
is the number of edges. For any graph in which the number of

edges grows linearly with the number of nodes, this algorithm

takes O(n log n) time.

IV. APPROXIMATE FEEDBACK MESSAGE PASSING

For graphs with many cycles, the FVS may have a large size.

In such problems the feedback message passing algorithm may

not be tractable. A grid graph is such an example, where the

size of the FVS grows linearly with the size of the graph [15].

To better trade off between accuracy and efficiency, we

consider a subset of an FVS (pseudo-FVS) of some specified
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Input: information matrix J and maximum size k
Output: a pseudo-FVS F̃ of size at most k

1. Let F̃ = ∅ and normalize J .

2. Repeat until |F| = k or the remaining graph is empty.

(a) Clean up the graph by eliminating all the tree

branches.

(b) Update the scores s(i) =
∑

j∈N (i) |Jij |.
(c) Put the node with the largest weight into F̃ .

Fig. 3. Selecting a pseudo-FVS with bounded size

size. We denote a pseudo-FVS by F̃ and still call the nodes

in F̃ the feedback nodes although F̃ is not necessarily an

FVS. Similarly, we use T̃ to denote V\F̃ although T̃ may

still have cycles. The only change in the feedback message

passing algorithm is to use LBP instead of BP on T̃ in Step

2 and Step 5.

A. Finding a Bounded Size pseudo-FVS

We begin by addressing the problem of finding a good

pseudo-FVS F̃ . We should keep in mind that in a loopy graph

the problems of divergence and inaccuracy of LBP are caused

by the existence of cycles. Therefore, one goal is to ensure

convergence while the other goal is to obtain smaller errors.

Breaking all the cycles by using a complete but large FVS

can clearly achieve both goals together. However, it may lead

to intractable algorithms. Therefore, we want to select a small

set of nodes whose removal breaks most cycles. We will see

later that there is a huge performance difference between a

good selection and a bad selection of F̃ . The approach here

is motivated by a sufficient condition for LBP convergence.

Consider a normalized information matrix J with the diag-

onal entries equal to one. Define R = I − J where I is the

identity matrix. Therefore R has zero diagonal entries. Let R̄
be the matrix formed with the absolute values of entries in

R. A sufficient condition for LBP to converge is ρ(R̄) < 1,

where ρ(R̄) is the spectral radius of R̄. A Gaussian graphical

model with ρ(R̄) < 1 is called walk-summable [7].

If we have a subgraph T̃ with smaller ρ(R̄T̃ ), where R̄T̃ is

the corresponding submatrix of R̄, LBP on T̃ is more likely

to converge. A bound on the spectral radius of a nonnegative

matrix [16] is given by

mini

∑
j

R̄ij ≤ ρ(R̄) ≤ maxi

∑
j

R̄ij .

Motivated by this inequality, we remove the node i with the

largest score s(i) =
∑

j∈N (i) R̄ij from the graph and put it

into F̃ . The remaining graph T̃ thus has a smaller upper bound

on the spectral radius of the corresponding R̄T̃ . We continue

this procedure on the remaining graph until the maximum

allowed size k of F̃ is reached or the remaining graph does

not have any cycles. The algorithm is summarized in Fig. 3.

The complexity of this procedure is O(km), where m is the

number of edges.

B. Convergence and Accuracy

For the convergence and accuracy of the approximate

feedback message passing algorithm, we have the following

results:

Result 2: If a Gaussian graphical model is walk-summable,

the approximate feedback message passing algorithm con-

verges with any selection of feedback nodes.

If the model is not walk-summable, the approximate feed-

back message passing algorithm with a suitable set of feedback

nodes often converges even though LBP does not converge.

When both algorithms converge, the approximate feedback

message passing algorithm often converges faster.

Result 3: When the approximate feedback message passing

algorithm converges, it always gives the correct means for all

nodes.

This result is a natural extension of the fact that LBP gives

the correct means when it converges.

Result 4: For attractive Gaussian graphical models (i.e.

models with only non-negative partial correlation), the ap-

proximate feedback message passing algorithm converges with

any selection of F̃ and the variance estimations are lower

bounds of the true variances. With a sequence of increasing

pseudo-FVS F̃1 ⊂ F̃2 ⊂ F̃3 . . ., the estimated lower bounds

also increase and eventually reach the exact variances after a

pseudo-FVS becomes an FVS.

For non-attractive Gaussian graphical models, the situa-

tion is more subtle. Based on the walk-sum interpretation

of inference in Gaussian graphical models [7], the correct

variance at each node corresponds to the sum over a certain

set of “walks” in the graph. LBP only captures a subset of

these walks, and thus gives inaccurate variance estimates. Our

approximate feedback message passing algorithm with any set

of pseudo-FVS nodes calculates the sum of a strictly larger set

of walks than LBP. In practice, we have observed that variance

estimates improve significantly even for non-attractive models.

However, since the walks may have both positive and negative

weights, capturing more walks does not directly lead to better

estimates.

The proofs of the results are omitted here. They are provided

in a longer version of this paper.

V. NUMERICAL RESULTS

From our Result 1 exact inference on any graph with a

small FVS can be solved efficiently. In this section, we focus

on the case when the size of the FVS is large. Grid graphs

are widely used in computer vision, seismic data modeling,

and many other applications. Inference on a grid graph is in

general not easy even though the graph is sparse. Here we

apply the approximate feedback message passing algorithm

and show that it gives good approximate results in a tractable

procedure.

Consider l × l grid graphs with different values of l. The

graph size is n = l2. Given a fixed graph structure, we

randomly generate an information matrix J , which is sparse

with respect to the graph. Its nonzero entries are drawn from

an i.i.d. uniform distribution ranging between −1 and 1. We
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Fig. 4. Inference errors of a 40 × 40 grid graph

also generate a potential vector h whose entries are also

drawn from an i.i.d. uniform distribution ranging between

−1 and 1. We ensure the information matrix J is positive

definite by adding proper diagonal values. We perform exper-

iments on models with different parameters including many

ill-conditioned models (e.g. those whose smallest eigenvalue

of J equals 0.02). On each grid graph, LBP and the approx-

imate feedback message passing algorithm with two different

feedback sets are used. One set has k = 	log n
 feedback

nodes while the other has k =
√

n nodes. The feedback

nodes are selected by the algorithm described in Fig. 3. We

plot the average errors for both variances and means on a

logarithmic scale. We use “k-FVS” to denote the algorithm

with k feedback nodes in the figures.

In Fig. 4 and Fig. 5, numerical results are shown for 40×40
and 80 × 80 grids respectively. In each case, direct LBP fails

to converge. With k = 	log n
 feedback nodes, our algorithm

converges for both grids and gives much better approximations

than LBP in fewer iterations. If k =
√

n feedback nodes are

used, we obtain even better approximations but with more

computations in each iteration. By performing many more

experiments, k = 	log n
 feedback nodes seem to be sufficient

to give a convergent algorithm and good approximations. The

complexity of such a method is thus O(n log2 n).
We also note that making a good selection of feedback

nodes is important. In Fig. 6, an opposite criterion is used

in selecting the feedback nodes: we choose the node with

the smallest score as defined in Fig. 3 instead of the largest.

LBP, 7-FVS and 40-FVS algorithms all fail to converge with

feedback nodes selected by this criterion. This phenomenon

in some sense shows the importance of selecting suitable

feedback nodes and the effectiveness of our selection criterion.

VI. CONCLUSIONS

The feedback message passing algorithm solves inference

problems in a Gaussian graphical model in linear time if the

graph has a small FVS. For a graph with a large FVS, the

approximate feedback message passing algorithm can be used.

By carefully choosing a small number of feedback nodes, very

good inference results can be obtained efficiently.
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Fig. 5. Inference errors of an 80 × 80 grid graph
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Fig. 6. Inference errors with a bad selection of feedback nodes
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