
Apprehending Joule Thieves with Cinder

Citation Stephen M. Rumble, Ryan Stutsman, Philip Levis, David
Mazi\&\#232;res, and Nickolai Zeldovich. 2009. Apprehending
joule thieves with cinder. In Proceedings of the 1st ACM
workshop on Networking, systems, and applications for mobile
handhelds (MobiHeld '09). ACM, New York, NY, USA, 49-54.

As Published http://dx.doi.org/10.1145/1592606.1592618

Publisher Association for Computing Machinery (ACM)

Version Author's final manuscript

Accessed Thu Jul 27 10:51:10 EDT 2017

Citable Link http://hdl.handle.net/1721.1/73634

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

http://dx.doi.org/10.1145/1592606.1592618
http://hdl.handle.net/1721.1/73634
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://libraries.mit.edu/forms/dspace-oa-articles.html

Apprehending Joule Thieves with Cinder

Stephen M. Rumble
Stanford University

353 Serra Mall
Stanford, California 94305

Ryan Stutsman
Stanford University

353 Serra Mall
Stanford, California 94305

Philip Levis
Stanford University

353 Serra Mall
Stanford, California 94305

David Mazières
Stanford University

353 Serra Mall
Stanford, California 94305

Nickolai Zeldovich
MIT

32 Vassar Street
Cambridge,

Massachusetts 02139

Abstract
Energy is the critical limiting resource to mobile comput-
ing devices. Correspondingly, an operating system must
track, provision, and ration how applications consume en-
ergy. The emergence of third-party application stores and
marketplaces makes this concern even more pressing. A
third-party application must not deny service through ex-
cessive, unforeseen energy expenditure, whether accidental
or malicious. Previous research has shown promise in track-
ing energy usage and rationing it to meet device lifetime
goals, but such mechanisms and policies are still nascent,
especially regarding user interaction.

We argue for a new operating system, called Cinder, which
builds on top of the HiStar OS. Cinder’s energy awareness
is based on hierarchical capacitors and task profiles. We
introduce and explore these abstractions, paying particular
attention to the ways in which policies could be generated
and enforced in a dynamic system.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design

General Terms
Design

Keywords
capacitor, energy, hierarchical

1. INTRODUCTION
Energy is a resource. Just like memory, mass storage,

and CPU cycles, it should be allocated, accounted for, and
scheduled in ways that are meaningful and beneficial to the
system and its users. Since it is exhaustible and cannot be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiHeld’09, August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-444-7/09/08 ...$5.00.

reclaimed once spent, the system should be especially dili-
gent in its accounting and robust in apportioning it within
a complex, dynamic, multiprogrammed environment. Pre-
vious systems have shown promise in tracking energy usage
in a program’s structure (Powerscope [4], Odyssey [3]) and
performing accurate global system accounting using either
static hardware profiles (ECOSystem [9]) or by dynamically
inferring usage based on energy draw history across vary-
ing device power states (Quanto [5]). Several other works
showed it is possible to use this data to ration access to other
resources, i.e. the energy consumers (CPU, disk, network,
etc.), in order to meet a battery lifetime goal [10, 3]. Ex-
isting systems, however, either require explicit application
interaction [3] or do not address a dynamic system, in which
application sets change [9]. For the modern mobile device,
intended to frequently download and execute new code from
the network, static partitioning of resources is insufficient.

Mobile devices today run a variety of full UNIX-like ker-
nels with user-downloaded applications sitting atop complex
software stacks. Apple’s App Store and Google’s Android
Market both provide immediate access to a growing suite
of thousands of third-party applications [1]. This explosion
of mobile software complexity and application availability
makes it difficult to reason about the energy requirements
and expenditures of mobile systems. Additionally, the sheer
bulk of available software implies that many applications are
buggy, malicious, or inefficiently implemented.

Unfortunately, users currently have no quantitative means
to determine how much energy an application is consum-
ing, nor do they have much control over it, beyond choosing
whether or not to run the application at all. Current sys-
tems are not in command of their limited energy budgets
and, consequently, users have no means of reserving or pri-
oritizing energy for important applications while curtailing
others. Although platforms can be extended to track energy
for tasks [9, 10, 5], previous research has not adequately ad-
dressed dynamic systems, application control of energy bud-
gets (i.e. suballocation), and policy generation via system
feedback.

We argue for a new operating system called Cinder. Cin-
der is designed to answer not only which applications are
energy-expensive, but also what behavior we can expect and
how they may be controlled by both the user and the appli-
cations in order to achieve their desired energy goals. Cinder
empowers users and applications - the former via useful sys-
tem feedback coupled with policy generation, and the latter

through delegation of energy resources and the enablement
of application-level resource control.

The HiStar [8] OS has a data-centric security architec-
ture, consisting of a minimal, trusted kernel upon which
user-level library operating systems (e.g. a POSIX layer)
are built. Cinder is based on HiStar and inherits many of
its features. Most importantly, Cinder is built atop a min-
imal set of seven first-class kernel objects. Object contain-
ers, one such example, are particularly useful for resource
tracking and revocation, enabling fine-grained resource ac-
counting using a fundamental, pervasive system primitive.
Finally, a fast, simple, and non-reentrant kernel greatly sim-
plifies accounting across the protection boundary. HiStar is
simple, yet sophisticated; the above are only the salient as-
pects involved in resource handling.

Cinder extends HiStar by adding a new fundamental ker-
nel type for energy: capacitors, an abstraction for flexible,
dynamic, and hierarchical energy management. Cinder also
differentiates itself by maintaining task profiles to aid mean-
ingful policy generation. In Cinder, a capacitor is modeled
after its real-world electrical counterpart, but with a spe-
cial distinction: it contains rights to request consumption of
joules, rather than reservations for actual joules. A capac-
itor is then a storage pool for potential energy, with addi-
tive increase and multiplicative decrease in residual poten-
tial energy. Capacitors can naturally place a ceiling on this
quantity, which would ensure that it does not grow without
bound.

Cinder will also maintain task profiles, running statistics
of application energy consumption. Since it is unreasonable
to expect a user to know or care how many joules their mail
reader, for example, consumes over a certain time interval, it
is nonsensical to have users express energy policies in units
of energy or power, or fractions thereof. Instead, we envision
users expressing their desire for the system to ensure that
their mail reader will run for a given number of minutes or
hours based on previous application behavior. It is then the
responsibility of the system to keep the users well-informed,
first aiding policy generation and later enforcing them.

2. STATUS
We have implemented the abstractions described in this

paper as part of the Cinder kernel running on i386, amd64,
and sparc platforms. Additionally, we have ported the ex-
okernel, POSIX libOS, and minimal userspace to the ARM
architecture with a limited set of devices. We are currently
bringing the system up on the HTC Dream (T-Mobile G1
with Google) platform. We have already augmented the
system to schedule CPU share along its container hierar-
chy using a hierarchical stride scheduler [7]. We suspect,
with minimal additional work, the system can be made to
treat CPU resources similarly to energy, perhaps even plac-
ing them in a variant of capacitors.

Our next step will be to implement an energy model for
some set of hardware, refining and validating our work both
in the lab and on real devices.

3. DESIGN

3.1 Capacitors
In Cinder, a capacitor is the arbiter of energy consumption

and a means for tracking such usage. Threads are associ-

ated with one or more capacitors, and derive their ability to
consume energy from these relationships. Capacitors may
be connected to other capacitors to realize complex energy
policies and enable applications to delegate their own energy
resources. In isolation, however, a capacitor in Cinder can
be regarded as a 4-tuple consisting of the following:

potential energy An integer representing the right to re-
quest some amount of energy from a parent capacitor.
It is crucial to note that this only represents a request -
it does not represent the joules that could be expended
in exercising the request, nor is it a reservation (the ac-
tual joules may or may not be available at any given
time).

expenditure The total quantity of actual joules consumed
from the capacitor, for accounting purposes.

input rate The wattage of the capacitor; how much poten-
tial energy is added to it per second. This serves to
bound any actual energy consumption.

decay factor A multiplicative factor between 0 and 1, in-
clusive, which affects the quantity of potential energy
in the capacitor. This may be used to forbid hoarding,
preventing applications from starving others, while pro-
viding a smooth feedback signal to the system when
potential energy exceeds demand.

Capacitors fill with potential energy at the specified input
rate and leak based on the decay factor. They are updated
on demand, similar to Quanto [5], but unlike ECOSystem
[9], avoiding the complexity of choosing a single frequency
appropriate to a broad spectrum of device usage. We an-
ticipate short-term energy expenditure to be approximated
based on global system knowledge (e.g. device power states),
and accurate accounting and billing to be performed on var-
ious events, such as explicit power state changes and timers
that estimate potential energy exhaustion. Such events will
also trigger surplus decay and potential energy addition. For
example, if our input rate is a constant, i, the decay factor
is d, and no energy is being consumed, after t seconds the
capacitor’s energy allocation is modeled as:

E = i

„
(1− d)t − 1

−d

«
Though the utility of capacitors does not depend on it,

modeling them with multiplicative decay has three impor-
tant benefits. First, it affords applications frequent, small
deviations in energy consumption, yet it still facilitates wider
fluctuations while discouraging hoarding and mitigating star-
vation. In other words, it is expected that applications have
some variability in energy consumption in the course of nor-
mal operation. Applications should not be penalized for
this; however, applications that wish to make use of large
amounts of energy in short periods are a threat to the in-
tegrity of the system and should be taxed in proportion to
the threat they represent. With decay, it is typically the
case that an application can afford to do something, but it
is rarely the case that it can afford do something expensive.
Second, using decay provides a more even and continuous
signal of the system-wide decay of all the capacitors. Using
a cutoff value to prevent hoarding, as other systems have [9,
10], would cause a capacitor’s decayed energy to instanta-
neously jump from zero to a positive value when it reaches

Figure 1: Example capacitor hierarchy. Lines depict the parent-child relationship between threads, capacitors,
and the battery. Capacitors have a designated input rate (watts) and potential energy (joules). 1) Before any
energy use is billed. 2) The hierarchy immediately after billing - note that a capacitor reaches 0 potential
energy and descendant threads become unrunnable. 3) Infusion of potential energy after 2), but before any
additional energy use is billed.

the cutoff. This sudden signal provides much less feedback to
the system and application than a multiplicative decay and
is less stable. As toolkits, power managers, and other utili-
ties emerge, we believe that providing a continuous, gradual,
and stable signal will greatly simplify their design and im-
plementation. Finally, using a decay factor inherently binds
capacitance to the input rate. Increasing a capacitor’s input
will also increase its maximum capacitance. Rather than
tuning two separate parameters, decay makes it feasible to
adapt the system by tuning only one.

3.2 Capacitor Hierarchies
Since mobile devices are becoming complex, multiprogram-

med systems, they are host to dynamic workflows, comprised
of several applications with varying degrees of importance
and different requirements. In order to facilitate flexible en-
ergy allocation schemes, we envision individual capacitors
as part of a hierarchy.

To realize this, capacitors form a tree: each capacitor has
a parent capacitor. The root capacitor, representing the ac-
tual battery, has a 0 watt input rate (unless the battery is
charging), a decay rate of 0, and a number of joules, likely
queried from the actual battery. As the ultimate ancestor,
it is special and unique in that it does not contain poten-
tial energy, but rather a reservation of actual joules. We
refer to this capacitor as the “battery”. A thread is attached
to any number of capacitors from which it can choose to
draw energy. When some energy is consumed (as a result
of work done or requests made on behalf of the thread), its
selected capacitor is debited, reducing its potential energy.
This debit is propagated upward along the capacitor hierar-
chy, i.e. the potential energy of each capacitor is reduced by
the same constant amount (Figure 1A,B). If any capacitor’s
potential energy along the path from the thread to the root
of the capacitor hierarchy energy falls to (or below) zero the
thread cannot draw more energy via that capacitor and is
blocked (Figure 1B). In this way, capacitors represent a del-
egation of the right to request consumption of some amount,
either absolutely (via the potential energy) or as a rate (via
the input rate). In essence, any delegations for energy can be

constructed, yet it is only when the root capacitor is finally
debited that those delegations become manifest as actual
joules. This ensures that all delegations, leading from the
thread back to the root capacitor, agree and are satisfied
that this consumption should be allowed.

Capacitors in Cinder are first-order objects that can be
allocated and stored in the container hierarchy. As with all
objects in Cinder, capacitors must reside in some container
and, when all references to the capacitor are deleted, the ca-
pacitor must be garbage collected as well. If, in the course of
operation, some capacitor that is an intermediate node gets
garbage collected, a chain of capacitors (potentially linking
some thread to the root capacitor) is broken. Since energy
can only be extracted from a capacitor that has a path to
the root capacitor (that is, the battery), the thread can no
longer draw energy via this capacitor. This works naturally,
since deleting a capacitor is, effectively, a revocation of the
resources it was granted.

Importantly, however, a process need not always consist
of threads drawing resources from a single capacitor. That
is, although in the traditional UNIX sense we can imagine
a process as a single container having resources associated
with it and one or more threads within, Cinder is egalitarian
by design - a process may create subcapacitors with different
input rates, decay factors, and initial potential energy and
place threads within them. This provides a simple and flex-
ible means of suballocation; a process is at liberty to choose
how its own energy allotment is to be spent.

Similarly, a thread need not be the child of a single ca-
pacitor. It is frequently the case that multiple principals
may benefit from a specific task. Having a stake in the re-
sults of the task, a principal may wish to donate resources
to it by allowing a thread to use potential energy from the
principal’s capacitor. Initially, only the thread creating the
capacitor “owns” it, granting it the right to change its in-
put rate, decay factor, and energy storage. It can delegate
this privilege to other threads as it chooses. Likewise, any
thread that owns the capacitor can grant other threads the
privilege to consume energy from it (the “write” privilege)
or it can delegate the privilege to grant that right as well.

3.3 Task Profiles
Capacitors are but a possible mechanism for complex, dy-

namic energy policy enforcement. They serve little purpose
without a means of crafting policies that express users’ ac-
tual intentions. Previous systems [3, 10] proposed that users
specify a desired global system lifetime. It was then the
job of either the operating system or the application to en-
sure that average power usage remained close to the rate
necessary to meet this time goal. We consider it more use-
ful, however, for a user to specifically express their inten-
tions with respect to application use rather than to try for
a global system lifetime. The system should be responsible
for attempting to maintain the user’s goals and to keep her
apprised of its ability to do so in an uncertain and changing
environment. To this end, additional information is useful.

For instance, a user may wish to keep their mail appli-
cation running all day, while being able to watch an hour’s
worth of video. Interspersed could be web accesses, applica-
tion downloads, and other activities of lesser importance. A
global system lifetime does not represent the intention that
the device reserve resources to handle a day’s worth of email
and watch the video clip, while permitting surplus energy to
fund miscellaneous usage. In order to accomodate such poli-
cies, the system must have some a priori idea of the energy
required and a means of adjusting and informing the user of
its ability to meet the requirements.

We consider it essential, therefore, for the system to learn
the energy consumption of various applications and to make
this data accessible and useful in generating energy policies.
Previous work [9, 4, 5] has pioneered several effective strate-
gies for task-based energy consumption accounting. As the
problem of understanding where energy is going and who is
responsible is better understood, we endorse coupling this
information with a policy generation engine. We suspect
that even a simple system with worst, best, and average
case estimations of energy consumption per application over
a reasonable time interval would often suffice. Using such
task profiles, the system could respond to a user’s desire
to run an arbitrary profiled application for a specific du-
ration. Furthermore, such profiles could provide useful de-
veloper feedback, enabling them to determine inefficiencies
across diverse hardware platforms and to amalgamate statis-
tics to provide better energy consumption expectations to
other mobile users.

Since energy consumption will vary significantly with many
classes of applications (e.g. network access is expensive and
often unpredictable), we cannot expect the system to be
perfect. However, since much energy is consumed due to
interactive, user-initiated events such as starting downloads
or playing a media file, it is reasonable to engage the user
in the enforcement strategy. For instance, the system may
have a simple widget that indicates the system’s perceived
ability to meet the user’s constraints given the recent or past
energy consumption. That way, a user who does more work
than expected can either reduce their burden on the sys-
tem, or revise their expectations, perhaps by accepting the
fact that e-mailing a series of large attachments will not be
compatible with their video viewing.

4. APPLICATIONS
A typical mobile device consists of a wide variety of ap-

plications from various sources. In sophisticated, multipro-

grammed systems, such as those present in modern mobile
computing platforms, workloads are diverse and dynamic.
Users may frequently use a web browser, a calendar, map
software, a mail client, location sharing, and a media player.
Today a user may be finding the location of the nearest
restaurants and listening to audio while the device checks
for email and nearby friends and activities. Though each of
these services has varying importance to the user, he has no
means to specify this to the system and each application is
fully trusted with respect to resources. Therefore, resource
delegation and isolation, particularly with respect to energy,
are key in allowing users to exercise control over applications
running on their behalf.

Previous systems, such as ECOSystem [9, 10], have con-
sidered a flat, proportional model of resource distribution
among tasks, yet none has addressed modern realistic ap-
plications that have fine-grained resource concerns. Fortu-
nately, it is these intricate applications themselves that are
best equipped to specify such resource policies, and Cin-
der is designed precisely to take advantage of that. Any
non-trivial application, such as mapping software, requires
a number of subtasks (fetching map tiles, probing sensors,
and rendering, for example). Current flat models cause par-
ent processes to compete against their children with little
control over them. Allowing energy accounting across a hi-
erarchical structure like capacitors naturally facilitates such
applications and restores control to the resource owners.

Cinder’s capacitor mechanism makes it just as easy for
an application to subdivide its energy share among its con-
stituent subtasks as it does for a user. To make this prac-
tical, the concerns of users and their applications are inter-
sected via the capacitor hierarchy, applying the policies of
the superuser, the users, and the applications in a naturally
composable way.

4.1 Fine-grained Control
Web browser plugins and extensions have become ubiq-

uitous and important in the way users interact with the
web on desktop platforms, and this trend is certain to spill
over onto mobile devices as their browsers become more ma-
ture. With desktop computers generally being well over-
provisioned, fine-grained resource control has taken a back
seat to functionality. However, on mobile devices, where typ-
ically all resources are more precious than those on desktop
machines, users cannot afford the luxury of such frivolous
trust.

For example, a user may wish to install a browser ex-
tension to block advertisements by preventing their down-
load from servers, knowing that the parsing of web pages
will cause some additional computational overhead. Imag-
ine the user has determined that he will want up to two
hours of web browsing on the current battery charge, and
he has instructed Cinder to assist him in achieving that goal.
Cinder, in response to the user’s desire, may determine that,
based on prior behavior, the browser task should limit itself
to two watts on average, compensating for burstiness via the
potential energy of its capacitor. The system would create a
capacitor with a two watt input and add a reference to the
browser process.

The browser, in concert with task profiling information,
may suggest and request a rate (perhaps, 0.25 watts) from
the user to protect itself from the extension. It then employs
Cinder’s capacitors to install the necessary constraints, a

policy that naturally maps onto our framework. It creates
a capacitor as a child of the first, giving it an input of 0.25
watts, and adds a reference to the extension’s thread. The
browser runs the extension when pages download and aborts
the extension’s threads if they take too long to respond (say,
100 ms), opting instead to display the version with the ads.
Furthermore, the extension is free to protect itself in a sim-
ilar fashion from inadvertently exhausting its own resources
on large or complicated pages by parsing pages in threads
that have the right to a small portion of the extension’s 0.25
watts.

4.2 Buggy and Malicious Code
This same isolation extends to any code that cannot be

fully trusted with energy. Applications in mobile platforms
increasingly rely on poorly-vetted, potentially inefficient, and
possibly malicious libraries. Despite the tight integration
between the browser and its extension, all energy is care-
fully tracked and accounted for, ensuring that even if the
extension were malicious it could not exceed its 0.25 watt
quota. Cinder also inherits HiStar’s fine-grained mandatory
access control (explained in detail in [8]). Leveraging this
system, the browser can protect the integrity and secrecy of
its important data structures, which could otherwise cause
the browser’s own threads to consume additional energy (or
worse). Given HiStar’s focus on information flow control it
is worth noting that capacitors can allow (potentially secret)
information to flow between threads and that low integrity
threads may affect high integrity threads using them. We
view these channels as being explicitly authorized by the
users of capacitors, and, depending on the construction of
the capacitor hierarchy, they can be mitigated. We plan to
formalize this more fully in future work.

4.3 Cooperative Resource Sharing
Treating capacitors as first-class objects in the operat-

ing system gives applications flexibility in how they use and
share energy. Global Positioning System (GPS) sensors on
mobile devices provide data that can be useful to a number
of applications, but are energy hungry. Any single applica-
tion alone may not be willing to bear the cost of making use
of the sensors; however, capacitors give applications a way
to cooperatively amortize the expensive sensor reads across
interested threads.

For example, imagine a user is actively using a mapping
application (maps) as she tracks her route on a drive. At the
same time her mobile phone is taking advantage of a loca-
tion sharing service (loc) that informs friends of her loca-
tion. Both applications are making calls to the GPS daemon
(gpsd). Inherited from HiStar, Cinder’s “gate” kernel object
type makes it straightforward to properly account for en-
ergy consumed for the expensive sensor reads, even if those
reads occur as part of gpsd on behalf of another applica-
tion. Being the only form of inter-process communication in
Cinder, gates are simply named entry points into an address
space that threads can “jump” into. Therefore, in this case,
when maps makes a call to request GPS data from gpsd, the
thread belonging to the maps application is executing in the
address space of gpsd. In this way, all the energy consumed
as a result of work completed by that thread is billed to its
capacitor.

In order to conserve energy, one of the threads may fre-
quently receive cached data after calling into gpsd. If maps,

being unlucky, is always forced to pay for the actual sensor
read, then it is unfairly bearing the full cost while loc bene-
fits. To prevent such inequity, gpsd may require that all calls
into it pay a certain amortized energy fee. Cinder makes
this easy, since any application can subdivide and delegate
its resources. Upon the maps thread calling gps_read, gpsd
moves some number of joules from the maps thread’s capac-
itor into its own capacitor. In the kernel, this is achieved
by first ensuring that along the path from the maps capaci-
tor to the root capacitor, the requisite amount of potential
energy is available in each of the capacitors. If it is avail-
able, the system subtracts that amount of potential energy
from each capacitor along that path, and then traverses the
path from gpsd’s capacitor to the root capacitor adding that
amount of potential energy to each capacitor. Being satis-
fied, gpsd returns the sensor value to maps (perhaps from a
cached value or from a fresh read of the sensor), and on fu-
ture calls it simply adds its capacitor as one of the parents of
the client’s thread, allowing it to use the energy within. As
a result, gpsd can wait to accumulate enough energy from
client threads before activating the GPS sensor again.

4.4 Background Applications
Capacitors also naturally encapsulate reduced frequency

or reduced fidelity services. For example, continuing with
the previous example, gpsd may have its threshold adjusted
dynamically, allowing it to operate at reduced frequency
when the battery is low or the system is under unexpected
load. Likewise, the user may want the loc service to run
with reduced performance while she performs other tasks or
when the phone is idle. This is easily enabled by placing a
low input rate on the capacitor, representing the entire loc

background task. To enable loc to deal with its presumably
bursty workload, she will grant it a low decay rate as well.
However, when she opens the user interface corresponding to
the loc service she may want increased responsiveness. The
user interface’s capacitor, therefore, supplies a subcapacitor
with additional resources the loc background daemon can
take advantage of.

5. RELATED WORK
The HiStar [8] operating system, on which Cinder is based,

is designed from the ground up to minimize the amount of
code that must be trusted. The system allows applications
to express data security policies in terms of information flow,
which the kernel enforces. HiStar has no notion of supe-
ruser, which complicates resource revocation, and makes it
critical that all resources are carefully accounted for. For
this reason, it uses hierarchical containers to account for all
storage. Cinder’s capacitors augment HiStar’s kernel object
type system to consider energy as well, creating a complete
and coherent platform for resource management. The result
is the ability to run the complex software stacks of today,
while providing simple, transparent mechanisms that allow
flexible and understandable policies for all aspects of the
system.

Recognizing a need for resource accounting and policies in-
dependent of the process abstraction, Linux has recently in-
corporated “cgroups” [6] into the mainline kernel, which fills
a similar role as resource containers [2] do. Though cgroups
is extensible to support a wide variety of resources, it cur-
rently does not address energy. Furthermore, the Linux ker-
nel contains many tasks for which energy use is not clearly

attributable to specific principals, complicating the prob-
lem. However, cgroups serves to demonstrate that the need
for resource accounting, isolation, and subdivision is already
being acknowledged by developers. In Cinder all allocation
will be done in terms of capacitors and containers, guaran-
teeing that resources are properly accounted for, both in the
kernel and in userspace.

ECOSystem [9, 10] presents an abstraction for energy,
“currentcy”, which unifies a system’s device power states. It
represents logical tasks using a flat form of resource contain-
ers [2] by grouping related processes in the same container.
Such a model suffers under realistic workloads, as tasks have
little control over how resources are used within subtasks,
since it forces the parent process to compete against its (pos-
sibly ill-behaved) children for its own resources. Also, be-
ing implemented atop Linux, ECOSystem suffers from the
same accounting issues as cgroups. Finally, ECOSystem dis-
tributes energy proportionally among applications, whereas
Cinder leaves such policy up to the scheduler. This will
allow Cinder to have different allocation policies for each
capacitor, giving the system, and applications, additional
flexibility.

ECOSystem must be configured with an energy model of
the system to map runtime power states to power draw.
This makes it susceptible to variability that occurs outside
of the models for the devices, such as temperature or ra-
dio interference. Since Quanto [5] tracks actual energy use
at runtime, it accounts for such dynamism. In any case,
tracking energy consumption to device states remains an
area of research and difficulty as systems become more de-
centalized, increasingly delegating work to specialized chips
and devices. Cinder addresses the problem of presenting
this low-level accounting to applications in a meaningful way
while providing fine-grained control. Though we expect to
face the same challenges found in other approaches, Cinder
will benefit directly from all work in this area.

Acknowledgments
Some research is funded by NSF Cybertrust award CNS-
0716806. This research was performed under an appoint-
ment to the U.S. Department of Homeland Security (DHS)
Scholarship and Fellowship Program, administered by the
Oak Ridge Institute for Science and Education (ORISE)
through an interagency agreement between the U.S. Depart-
ment of Energy (DOE) and DHS. ORISE is managed by Oak
Ridge Associated Universities (ORAU) under DOE contract
number DE-AC05-06OR23100. All opinions expressed in
this paper are the author’s and do not necessarily reflect the
policies and views of DHS, DOE, or ORAU/ORISE.

6. REFERENCES
[1] Apple previews developer beta of iphone os 3.0, Mar.

2009.
http://www.apple.com/pr/library/2009/03/17iphone.html.

[2] G. Banga, P. Druschel, and J. Mogul. Resource
containers: A new facility for resource management in
server systems. Operating Systems Review, 33:45–58,
1998.

[3] J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In SOSP ’99:
Proceedings of the seventeenth ACM symposium on
Operating systems principles, pages 48–63, New York,
NY, USA, 1999. ACM.

[4] J. Flinn and M. Satyanarayanan. Powerscope: A tool
for profiling the energy usage of mobile applications.
In WMCSA ’99: Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and
Applications, page 2, Washington, DC, USA, 1999.
IEEE Computer Society.

[5] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:
Tracking energy in networked embedded systems. In
R. Draves and R. van Renesse, editors, OSDI, pages
323–338. USENIX Association, 2008.

[6] P. Menage. cgroups, Oct. 2008.
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=blob;f=Documentation/cgroups/cgroups.txt;
hb=b851ee7921fabdd7dfc96ffc4e9609f5062bd12.

[7] C. A. Waldspurger and W. E. Weihl. Stride
scheduling: Deterministic proportional-share resource
management. Technical report, 1995.

[8] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, pages
263–278, Seattle, WA, November 2006.

[9] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: Managing energy as a first class operating
system resource. pages 123–132, 2002.

[10] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Currentcy: A unifying abstraction for expressing
energy management policies. In In Proceedings of the
USENIX Annual Technical Conference, pages 43–56,
2003.

